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To improve the performance of the ultrasonic device during the endovascular operation, a scissor-type ultrasonic catheter device
with compound vibration was developed. The heat generated by friction between the target and the device affects its coagulation
mechanism while the actuator contacts the tissue. The scissor-type ultrasonic catheter device proposed in this study is expected
to improve heat generation performance because it has the action of rubbing the object when it is pushed by combined
vibration. In addition, since it is constructed by simple notch processing, it can be miniaturized and can be expected to be
introduced into catheters. However, the observation of ultrasonic vibration during frictional heating is difficult, which is an issue
for device design. In this paper, a thermal-structure coupling analysis was done using the finite element method to calculate the
heat generation efficiency and evaluate its coagulation performance.

1. Introduction

Vibration has been widely utilized for therapeutic pur-
poses. Since the 1950s, many medical devices based on
vibration have been invented and applied for therapy
applications including tissue cutting, cataract phacoemulsi-
fication, fat emulsion, ultrasonography, bone fracture heal-
ing, cancer treatment, sonothrombolysis, and so on [1, 2].
These devices work based on mechanical vibration, and
the effective vibration needs to be delivered to the tip
directly in complicated environments with many restric-
tions. In this thesis, a new end-effector with the desired
vibration mode at the end-effector tip was designed for
catheter surgery applications. The proposed new structure
of the end-effector can transmit the longitudinal elastic
wave through a shaft and convert it into scissor-type
vibration (compound longitudinal-transversal vibration)
just at the end-effector tip.

The main research line of this thesis is to design an effec-
tive end-effector used in a microcatheter for hemostasis by

coagulated proteins. In the coagulation of proteins by friction
of an end-effector which is excited by mechanical vibration,
the tip transversal vibration is needed for supplying friction
heating function in narrow blood vessels. An ultrasonic cath-
eter surgery device is a device that uses ultrasonically vibrat-
ing heat to denature the tissue protein and simultaneously
performs hemostasis and cutting function at the incision.
According to the reports on hemostasis by an ultrasonic
device [3, 4], the essential hemostatic mechanism is that the
coagulated proteins caused by the friction heat seal the bleed-
ing vessels. For these devices, the heat generation efficiency
depends on the state of contact between the tissue and the
vibrating blade because the blood coagulation needs enough
heat (the coagulated protein occurs at 63 degrees [5]). On
the contrary, it will take a long time to interrupt the blood
flow if the heat does not rise enough, which will lead to inci-
sion closure difficulties and other tissue damage. Therefore,
we realized that the effective solution for stopping the bleed-
ing quickly during surgery is to improve the heat generation
efficiency at the incision.
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In this study, we analysed an ultrasonic catheter sur-
gery device with a novel structure to improve the heat
generation efficiency by exciting the scissor-type com-
pound vibration at the tip of the device and using the
ultrasonic vibration of rubbing while pushing the blade
against the tissue. To find the optimal design of this new
ultrasonic catheter surgery device, it is necessary to evalu-
ate the heat generation phenomenon and compare it with
other models. It is difficult to observe small vibrations at a
high sampling speed. Due to the individual differences of
biomaterials, the reproducibility of the test and associated
parameters which contribute to device performance are
difficult to be ensured and evaluated, respectively. There-
fore, we developed a finite element analysis model with
heat-structural interaction to evaluate the device’s coagu-
lating characteristics, and the heat generation perfor-
mances with different model shapes were simulated and
compared in this paper.

2. Design and Modelling

2.1. Designed Method of Ultrasonic Device. The schematic
image of the new proposed scissor-type actuator was
designed in our previous research [6–9], as shown in
Figure 1. This actuator consisted of a shaft and two small
branches.

The two branches were connected to the shaft, and
two inverse symmetrical slant planes are cut at the head
end of the branches. Figure 2 presents the cutaway view
of the scissor-type ultrasonic incision device. It works the
following way. Firstly, a sinusoid voltage with the required
frequency is applied to the transducer to generate the lon-

gitudinal elastic wave. Then, the longitudinal wave propa-
gates through the shaft and reaches to the branch; the
wave impinges on the slant plane with an oblique angle
and excites a fluctuating motion of the branch due to
the reflection and mode conversion caused by the wave
reflection. Finally, swing the branches in the opposite
direction between branches I and II like a scissor, as
shown in Figure 2.

2.2. Mathematic Modelling of Structural-Heat Problem. The
structural dynamics equation is as follows [10, 11].

M½ � €uf g + D½ � _uf g + K½ � uf g = F tð Þf g + P½ �: ð1Þ

Here, ½M�, ½D�, and ½K� are the mass matrix, damping
matrix, and stiffness matrix, respectively; fFðtÞg is the
time-varying load; ½P� is the contact pressure; and fug, f
_ug, and f€ug are the displacement, velocity, and accelera-
tion, respectively. The penalty method was used to calcu-
late the contact pressure ½P�, and then Equation (1) was
used to calculate the frictional stress and vibrational veloc-
ity of the actuator. The transient analysis was done to ana-
lyse the heat transfer between the actuator and tissue, as
follows:

C½ � _h
n o

+ K½ � hf g = Q hð Þf g, ð2Þ

where ½C� is the specific heat matrix, ½K� is the thermal
conductance matrix, fQðtÞg is the heat flow matrix, and
fhg and _fhg are the temperature and time derivative of
temperature, respectively.
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Figure 1: Schematic image of scissor-type ultrasonic device: (a) isometric view, (b) side view of branch, and (c) top view of branch.
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2.3. Finite Element Method and Modelling. The finite ele-
ment method (FEM) model used in this study was based
on the previous research method, which has proposed an
analysis method for friction stir welding [12–18]. The
FEM model of the ultrasonic catheter surgery for
structural-heat analysis was developed by ANSYS software,
as shown in Figure 3. The material of the human tissue
was used as the natural rubber to simplify simulation. As
the mesh near the contact surface, 0.2mm 10-node tetra-
hedral elements were used. The material parameters of
the actuator and nature rubber are listed in Table 1. As
the boundary condition, the bottom surface of the rectan-
gular parallelepiped rubber target was fixed. From previous
research, the shaft of the ultrasonic catheter used in this

research has a structure to generate only longitudinal
vibration [6, 9]. Therefore, only the X-direction displace-
ment was inputted to the left end of the shaft as a bound-
ary condition. The input signal was the displacement with
200μm added on the left end of the shaft to press the
shaft to the rubber target, and the phenomenon of heat
generation during vibration of the actuator was recorded.
As we know, resonance of the actuator by the input sinu-
soidal wave requires a relatively long analysis time to
obtain enough amplitude, which leads to the problem of
computational cost. In addition, the ultrasonic catheter
device does not generate heat unless pressed against the

Table 1: Parameters of actuator and natural rubber.

Material property Titanium Natural rubber

Young’s Modulus 96GPa 17.6MPa

Density 4620 kg/m2 1200 kg/m2

Poisson ratio 0.36 0.3

Thermal expansion 9:4 × 10−6/°C 270 × 10−6/°C
Thermal conductivity 21.9W/m°C 0.2W/m°C

Specific heat 522J/kg°C 150 J/kg°C

Frictional coefficient 0.2

Initial temperature 22°C
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Figure 3: Three-dimensional view of FEM model for scissor-type device. Finite element mesh was generated using 10-node tetrahedral
elements: (a) side view; (b) isometric view.
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Figure 5: Model shapes of branches with different tips: (a) Model 1 (longitudinal), (b) Model 2 (longitudinal+slit), and (c) Model 3 (scissor).
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Figure 6: Time curve results of displacement and temperature about each branch model shape tip: (a) X- and Y-direction displacement-time
curve, (b) Y-direction displacement-time curve, and (c) temperature-time curve.
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Figure 7: Continued.
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target. Considering the above problems, in this study, the
input displacement (UT) was sliced by different time, as
Equation (3) and Figure 4 show, and enough sinusoidal
amplitude and can be obtained in a short analysis time.
The initial gap between the catheter device tip and natural
rubber was 100μm.

UT =
200 μm½ �∙ t

T
t ≤ Tð Þ,

200 μm½ � t > Tð Þ,

8<
:  T = 0:1 ~ 0:4: ð3Þ

3. Results and Discussion

3.1. Effect of Branch Shape. To confirm the effect of the
branch shape on the heat generation efficiency, three types

of models with different structures were developed and
analysed, as shown in Figure 5. Model 1 (longitudinal
tip) has a simple branch with no slit and notches on the
actuator tip, in which the longitudinal vibration mode
was excited along the whole actuator. In Model 2 (longitu-
dinal+slit), a slit was cut at the centre of the branch, and
the longitudinal vibration mode same as Model 1 was
excited. Compared with the above 2 models, Model 3 cut
two inverse symmetrical slant planes at the branch tips,
and a scissor-type vibration was excited successfully by
the longitudinal input signal. Figure 6 shows the analysis
results of the displacement in the X- and Y-directions
and the friction heat temperature for each model. For
the input displacement, the function at T = 0:3ms in
Equation (3) was used. As the results show, the displace-
ments in the X-direction were the same for each model;
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however, the displacements in the Y-direction were totally
different. Under the same input longitudinal displace-
ment, the longitudinal vibrations at the branch tips are
almost the same, but the transverse vibration of Model
3 was clearly bigger than that of the other two models,
which means Model 3 excited the transverse vibration
successfully. The Y-direction displacements of branches I
and II of Model 3 are recorded and shown in
Figure 6(b). Obviously, the transverse vibrations of these
two branches are reversed at the same time. It is con-
firmed that each branch vibrated in the opposite direc-
tion, which induces a scissor-type vibration at the
actuator tip. The displacement in the Z-direction was
about 10% of the X-direction; it is considered that the

influence of the heat generation by the Z-direction dis-
placement is small.

Comparing the maximum frictional heat temperature
(Hmax) of each model, Models 1 and 2 increased only
1.3°C from the initial temperature of 22°C in 0.5ms, while
Model 3 increased 11.4°C. The temperature increase rate
of the scissor-type actuator is more than 10 times com-
pared with that of the other two models. This indicates
that the heating generation of Model 3 is higher than that
of the other models. From these results, it is considered
that generating the vibration amplitude in the Y-direction
due to the swing in Figure 2, ③ and ④, contributed to the
improvement of the heat generation performance of Model
3. To analyse the thermal distribution between the
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Figure 8: Analysis results of ultrasonic catheter device Model 2 (longitudinal+slit). (a–c) Displacement-time curve of input condition U0:1.
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Figure 9: Continued.
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actuator tip and rubber, the temperature contour maps of
different models at the peak value time were recorded and
shown in Figures 7–9. The heat generation tends to
increase at the edge of the tip of the ultrasonic catheter
device.

3.2. Effect of Input Velocity. Since this paper analyses by the
input condition of Equation (3) and Figure 4, the input
speed affects the results and the results may differ from
the real operation. To evaluate the validity of the analysis
model, the effect of changing the input velocity on dis-
placement was discussed in this chapter. The velocity con-
dition was changed by using the function at T = 0:1, 0.2,
0.3, and 0.4ms in Equation (3). The measurement point
was set as the catheter device tip. Figures 7–9 show the
analysis results about the displacement-time curve,

temperature-time curve, and temperature contour map of
each model. Figures 10(a)–10(c) show the simulated
results of peak-to-peak displacements in each direction
(Dx, Dy, and Dz). The results show that the expected
vibration modes are excited in each model. Figure 10(d)
summarizes the analysis results of the maximum tempera-
ture of the target rubber. The displacement results were
suggested to be valid because the displacement in each
direction increased with the speed of the input displace-
ment, and the Y-direction displacement of Model 3 has
the opposite direction vibration in each branch. The tem-
perature results were suggested to be valid because the
heat generation starting time has become faster depending
on the speed of the input displacement, and the tempera-
ture also increased with the speed. In Figure 10(a), the
input velocity has a big influence on the output
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displacement of the X-direction in Model 3 (scissor). It is
considered that the bending vibration of the Y- and Z-
directions can be affected by the amplitude of the X-direc-
tion. The dashed line of Figure 10(d) is drawn at the ini-
tial temperature of 22°C; the result of the temperature
corresponds well to the result of the displacement in the
Y-direction in Figure 10(b).

Moreover, the result of Model 3 (scissor) suggested that
the Y-direction displacement has a large effect on the heat
generation because the results are better under the input con-
ditions of U0:3 and U0:4, even though the X-direction dis-
placement is smaller than the other models. From these
results, the amplitude increases in a direction parallel (Y- or
Z-direction) to the surface of the target are conjectured to
improve the heat generated performance. These results were
explained in terms of the heating phenomenon by friction;
the validity of the analytical model is considered to have been
evaluated. This fact indicates that the scissor-type vibration
mode contributes to the improvement of the heat generation

performance because this mode vibrates parallel to the sur-
face while pressing the target.

4. Conclusions

In this paper, the ultrasound catheter device was designed to
generate a composite vibration like a scissor, and then the
structural-heat interaction analysis was conducted by a series
of finite element models to evaluate the heat generating per-
formance. In the simulation, the results of improving the heat
generation performance with our developed scissor-type
ultrasonic catheter device were obtained. This fact indicates
that the scissor-type vibration mode contributes to the
improvement of the heat generation performance because
this mode vibrates parallel to the surface while pressing the
target. This indicates that the heating generation of our
developed ultrasonic catheter device has higher friction heat
performance than the other models. We plan in the near
future to study the coagulation experiment of blood vessels
using a scissor-type ultrasound catheter device.
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Figure 10: Peak-to-peak displacement andmaximum template results of each branchmodel tip with different input velocities, (a) X-direction
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