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Background. Obesity is a main contributing factor for the development of glucose intolerance and type 2 diabetes mellitus (T2D).
Roux-en-Y gastric bypass (RYGB) is believed to be one of the most effective treatments to reduce body weight and improve glucose
metabolism. In this study, we sought to explore the underlying mechanisms of weight reduction and insulin resistance improvement
after RYGB. Methods. This was a prospective observational study using consecutive samples of 14 obese subjects undergoing bariatric
surgery. Main assessments were serum indexes (blood metabolites, glucose-lipid regulating hormones, trimethylamine-N-oxide
(TMAO), and lipopolysaccharide-binding protein (LBP), fecal short-chain fatty acids (SCFAs), and gut microbiota. Correlation
analysis of the factors changed by RYGB was used to indicate the potential mechanism by which surgery improves insulin
resistance. Results. The subjects showed significant improvement on indices of obesity and insulin resistance and a correlated
change of gut microbiota components at 1 month, 3 months, and 6 months post-RYGB operation. In particular, the abundance of
a counterobese strain, Akkemansia muciniphila, had gradually increased with the postoperative time. Moreover, these changes were
negatively correlated to serum levels of LBP and positively correlated to serum TMAO and fecal SCFAs. Conclusions. Our findings
uncovered links between intestinal microbiota alterations, circulating endotoxemia, and insulin resistance. This suggests that the
underlying mechanism of protection of the intestine by RYGB in obesity may be through changing the gut microbiota.

1. Background

The global trend in mean body mass index (BMI), and the
proportion of individuals classified as overweight and obese,
is increasing [1], which leads to the prevalence of obesity and
its metabolic comorbidities such as type 2 diabetes mellitus
(T2D), cardiovascular diseases, and certain cancers.

Roux-en-Y gastric bypass (RYGB) is believed one of the
most effective procedures in reducing body weight and
improving metabolism [2, 3]. Recent work indicated that
RYGB could not only reduce food ingestion, increase gastric
emptying, and release satiety-promoting gut hormones [4, 5]
but also reduces adipose and serum glucose by altering the
structure of the gut microbiota [6]. Additionally, RYGB also
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significantly improved glucose and insulin responses within
subjects that received medication or intensive lifestyle therapy
after 5 years, but the exact mechanisms remain unclear [7].

The composition of the microbiota is believed to play a
critical role in obesity [8] and diabetes [9]. Gut microbiota
could also produce several metabolites and certain potential
mediators, such as lipopolysaccharide (LPS) [10] and fecal
short-chain fatty acids (SCFAs) [11], to regulate host metab-
olism. Insulin resistance (IR) is a common feature of both
obesity and T2D. It is reported that feeding mice with LPS
could enhance adipose tissue inflammation and reduce insu-
lin sensitivity [10], which revealed that gut microbiota may
contribute to chronic inflammation, therefore affecting host
metabolism. Diet-derived short-chain fatty acid propionate
could improve beta-cell function in humans and stimulate
insulin secretion from human islets in vitro [12]. However,
there are few reports on the association between RYGB and
microbiota-related metabolites in obese patients.

Here, we used 16 s IDNA amplicon sequencing to analyze
the gut microbiota collected from obesity patients pre- and 1,
3, and 6 months after RYGB. The correlations of certain
strains with body weight and fat mass were identified. More-
over, we also detected hormones and microbiota-related
metabolites such as SCFAs and inflammation-related pro-
teins as a receptor of LPS, and the correlation of these factors
with certain microbiota strains were also discovered.

2. Methods

2.1. Participants. The study was approved by the Ethics Com-
mittee of the First Affiliated Hospital of Jinan University with
approval No. [2015] 022. The sponsors had no role in analy-
sis of the data or in the preparation of the manuscript. The
first author wrote the initial draft of the manuscript. All
authors had independent access to the data and vouch for
the completeness and accuracy of the data and for the fidelity
of the study to the protocol. A written informed consent was
obtained from each participant. All of these subjects were
only simply obese and do not have been diagnosed with
T2D, but have severe insulin resistance. The patients were
from two provinces (Guangdong/Guangxi Province, China)
to reduce the effects of geographical and dietary differences
on the flora. These patients would undergo RYGB treatment
at the First Affiliated Hospital of Jinan University from
March 2015 through January 2016, and we screened 14
patients whose clinical data and experimental samples were
complete. Patients were excluded if they had undergone
other complex abdominal surgeries or previous bariatric sur-
gery or had hypertension, virus hepatitis, colonitis, autoim-
mune disease, etc.

Participate were provided written informed consent,
entered a 6-month tracing period, and underwent repeated
physical and laboratory evaluations to evaluate the effect of
RYGB. Bariatric procedures were performed laparoscopically
by one single surgeon. Participants who were undergoing
RYGB were evaluated by a surgical dietitian.

2.2. Quantification of Trimethylamine-N-Oxide (TMAO) and
Short-Chain Fatty Acids (SCFAs). Fecal SCFAs were deter-
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mined by gas chromatography mass spectrometry (GC-
MS). TMAO was extracted from serum samples and
measured by ultra performance liquid chromatography tan-
dem mass spectrometry (UPLC-MS/MS), see Supplementary
materials for specific operation steps.

2.3. Human Fecal Sample Collection. 14 volunteers were
recruited. Human fecal sample from each individual was col-
lected and frozen immediately, then genomic DNA extracted,
sequenced, and analyzed was carried out at the same time.

2.4. 16S rDNA Gene Sequencing and Processing. Once the
DNA samples were received, DNA concentration and sample
integrity testing were performed by fluorometer and agarose
gel electrophoresis, respectively. To construct the PCR-based
library for 16S rDNA amplicon sequencing, V3-V4 dual-
index fusion PCR primer cocktail and PCR master mix
(NEB phusion high-fidelity PCR master mix) were added to
run the PCR. The PCR products were purified with Ampur-
eXp beads (AGENCOURT) to remove the unspecific prod-
ucts. The qualified libraries were sequenced pair end in the
MiSeq System with the sequencing strategy PE250. Raw
sequences were filtered to eliminate adapters and low quality
reads by inhouse procedure, and paired-end reads with over-
lap were merged with tags [13, 14]. Chimeras were filtered
out by using USEARCH v2.4.3 with the SILVA database
v12.8 [15]. Tags were clustered into operational taxonomic
units (OTU) at 97% sequence similarity by using QIIME
v1.9.1 [16, 17]. OTU representative sequences were taxo-
nomically classified using Ribosomal Database Project
(RDP) Classifier v.2.2 trained on the SILVA database v12.8
by QIIME v1.9.1 [18-20]. The OTU table was used to calcu-
late the alpha diversity and beta diversity and provide taxo-
nomic profiles. Subsequent statistical analysis was
performed in R software (v3.5.2).

To investigate microbial diversity and composition, the
effective tags of each sample were clustered into an opera-
tional taxonomic units (OTU) with a 97% threshold. OTU
numbers were used to estimate microbial diversity [16]. Dis-
similarity of the microbial community structure was evalu-
ated by nonparametric multivariate analysis of similarity
(ANOSIM) and multiresponse permutation procedure
(MRPP). Consistent results were obtained by ANOSIM and
MRPP using Bray curtis Weighted Unifrac and Unweighted
Unifrac distances [21, 22]. Metastat analysis was performed
to find OTUs that exhibited significant differences between
groups, based on Fisher’s exact test and FDR calibration
[23]. Indicator species were surveyed to identify OTUs spe-
cifically associated with the different groups. An indicator
species is a biological species that has a high indicator value
for a group of sites, which represent an environmental condi-
tion of interest. Changes in indicator species are used to iden-
tify changes in ecosystems [24]. Indicator species differ from
species associations in that they are indicative of particular
groups of sites. Good indicator species should be found
mostly in a single group of typology and be present at most
of the sites belonging to that group [25, 26]. Indicator species
analysis was performed with the “indval” function in the R
package “labdsv” [27]. Indicator value > 0.40 was chosen as
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FiGure 1: Continued.



Constrained PCoA 2 (29.84 %)

OTU: [8.6% of variance; P < 0.002; 95% CI = 6.8%, 11%]
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F1GURE 1: RYGB changed the composition of gut microbiota. Comparison among shotgun sequencing data of stool samples from the preop
group, post-1 m-op group, post-3 m-op group, and post-6 m-op group, each group contain 14 patients. (a) The abundance of species in each
group. Abundance of species belonging to the preop group was the highest in all the phases, lowest in the post-1 m-op group, recovered
gradually, and approached to the preop group at post-6 m-op. (b) Canonical analysis of principal coordinates among 4 groups. There was
significant difference in the component of microbiota between the preop group and postop groups and no much diversity among postop
groups. (c) Indicator species in each group. Chose OTU over 0.4 as the indicator value when it exists in one group. There were more
indicator species in the preop group and more “common” indicator species belonging to three postop groups contemporary.

the indicator species in each group. We used permutational
multivariate analysis of variance (PERMANOVA) to investi-
gate correlations between clinical indices and changes in the
gut microbiome in RYGB patients.

2.5. Statistical Analysis. We used mean + SD to describe para-
metric data and t-test paired to evaluate the difference
between each time point effect and one-way ANOVA-
repeated measures to assess the effect of RYGB. For nonpara-
metric data, the median with interquartile range was using
and Wilcoxon matched pairs signed rank test to evaluate.
Unless otherwise stated, statistical analyses were made
in the R software. Differential abundances of phyla, genera,
and species were tested by Welch two sample t-test for

comparison between two groups. P values were adjusted
by the Benjamini-Hochberg correction for multiple tests
when required.

3. Result

3.1. RYGB Changed the Composition of Gut Microbiota.
Then, we research analyzed fecal samples from these partici-
pants before and 1, 3, and 6 months after operation to iden-
tify whether RYGB could alter gut microbiota composition in
the short run. The abundance of species belonging to post-1
m-op group was the lowest in all phases and then gradually
recovered. 6 months postoperation, the abundance of species
approached similar to the preop group (Figure 1(a)).
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FIGURE 2: Association of gut microbial species with clinical parameters. Correlation of diversity species in each group and metabolic indices.
Most of the diversity species in the preop group had positive correlation while diversity species in postop groups had negative correlation with

BMI and other metabolic indices.

Figure 1(b) shows the significant differences in microbiota
composition between the preop group and postop groups
through canonical analysis of principal coordinates. No
differences in the diversity of microbiota among the post-1
m-op group, post-3 m-op group, and post-6 m-op group.

Indicator species were used to distinguish the particular
species in pre- and postop groups. Figure 1(c) shows that
there were more indicator species which had stronger speci-
ficity in the preop group and more “common” indicator spe-
cies belonging to the three postop group contemporaries,
such as f_Enterobacteriaceae, f_Lachnospiraceae, f_Rumino-
coccaceae, f_Streptococcaceae, and g_Rothia.

3.2. Associations of Gut Microbial Species with Clinical
Parameters. To determine whether RYGB changes the gut
microbiota in a correlational manner or a coincidental man-
ner, BMI and 12 metabolic indices, including alanine amino-
transferase (ALT), aspartate aminotransferase (AST),

gamma-glutamyl transpeptidase (gamma-GT), insulin resis-
tance index (HOMA-IR), fasting glucose (FBS), fasting insu-
lin, fasting c-peptide, glycosylated hemoglobin (HbAlc),
triglyceride, ghrelin, gastric inhibitory polypeptide (GIP),
and leptin, were correlated with alterations in the gut micro-
biome (Supplemental Table 1, 2). Study selected 48
operational taxonomic units (OTUs) as diversity species
belonging to the intersection of indicator species and
significant difference species, including 32 OTUs in the
preop group, 7 OTUs in the post-1 m-op group, 4 OTUs in
the post-3m-op group, and 4 OTUs in the post-6 m-op
group as the diverse species. Most of the diversity species in
the preop group had a positive correlation with BMI and
metabolic index and that was reversed in the postop group
(P <0.05; Supplemental Table 3, 4; Figure 2). What is
more, hormones such as circulating GIP and leptin
concentration also had a strong negative correlation with
diversity species (Figure 2) and decreased following the
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F1GURE 3: RYGB downregulates the levels of LBP and increases the formation of SCFAs in obese patients. (a) Serum levels of LBP in obesity
patients in preop, post-1 m-op, post-3 m-op, and post-6 m-op group. Serum levels of LBP had decreased after RYGB. (b) Correlation network
between LBP and diversity species. Red and purple edges denote Spearman’s rank correlation (red denotes positive correlation, and purple
denotes negative correlation), and difference color circles denoted different groups, respectively. Serum levels of LBP existed a positive
correlation with diversity species in the preop group and were negative correlated with postop groups. (c) Correlation between
adiponectin and LBP. (d) Correlation between adiponectin and HOMA-IR. (e) Correlation between LBP and HOMA-IR. (f) Correlation
network between SCFAs and diversity species. Levels of all these SCFAs in feces had negative correlation with diversity species in the

preop group and existed positive correlation in postop groups.

change of gut microbiota, which indicated that the diversity
species may constitute potential biomarkers linking gut
microbiota and metabolic status.

3.3. RYGB Downregulates the Levels of Lipopolysaccharide-
Binding Protein (LBP) in Obese Patients through Altering
the Microbiota. To further understand how RYGB modify
gut microbiome and improve IR, serum LBP was measured
to reveal the serum level of bacteria product LPS that could
be a triggering factor of IR. Figure 3(a) indicates that after

the RYGB operation, the serum level of LBP was decreased
significantly over time. The study chose diversity species to
analyze the correlation of LBP and microbiota and found that
diversity species in the preop group had the positive correla-
tion with the concentration of serum LBP, and diversity spe-
cies in postop groups had the negative correlation with LBP
(Figure 3(b), Supplemental Table 5). What is more, data
also showed that LBP was negatively correlated with
adiponectin (P < 0.05, R — 0.306, Figure 3(c)) and so was the
relationship of adiponectin and HOMA-IR (P <0.05, R=—
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FIGURE 4: Major increase in microbiota-dependent proatherogenic metabolite TMAO after RYGB. (a) Abundance of Akkermansia in obesity
patients in preop, post-1 m-op, post-3 m-op, and post-6 m-op group. Akkermansia hardly existed in the preop group, recovered after RYGB
gradually and stabilized in the post-6 m-op group. (b) Serum levels of TMAO in obese patients in preop, post-1 m-op, post-3 m-op, and post-
6 m-op group. Serum levels of TMAO had increased after RYGB. (c) Correlation network between TMAO and diversity species. Red and
purple edges denote Spearman’s rank correlation (red denotes positive correlation, and purple denotes negative correlation), and
difference color circles denoted different groups, respectively. Serum levels of TMAO existed a positive correlation with diversity species in
postop groups. (d) Levels of SCFAs in patients’ feces in preop, post-1 m-op, post-3 m-op, and post-6 m-op group. Levels of acetate,
propionate, butyrate, pentanoate, isobutyrate, and isopentanoate in feces had increased after RYGB. *From ¢ -test-paired or Wilcoxon

matched-pairs signed rank test vs. preop group.

0.414, Figure 3(d)). In the meantime, LBP showed strong
positive correlation with HOMA-IR (P <0.05, R=0.448,
Figure 3(e)).

Akkermansia muciniphila is one mucin-degrading bacte-
rium, and Figure 4(a) also shows that the abundance of Akke-
mansia muciniphila waslower in the preop group and
enhanced in the postop group which speculated that the
increasing abundance of Akkemansia muciniphila may
improve the gut barrier integrity through which downregu-
lated the transportation of LPS occurred.

3.4. RYGB Increases the Formation of SCFAs. A possible
mechanism by which gut microbiota improves the gut barrier
integrity is to produce SCFAs. To further identify whether
RYGB could change the formation of SCFAs, the levels of
SCFAs in patients’ faeces were recorded. As expected, acetate,
propionate, butyrate, pentanoate, isobutyrate, and isopen-
tanoate levels increased in postop groups (Figure 4(d)). Fur-
thermore, all of these SCFAs had the negative correlation
with the diversity species in the preop group and a positive

correlation in the postop group (Figure 3(f) and Supplemen-
tal Table 6, 7). Results further indicated that RYGB could
enhance the formation of SCFAs through which to preserve
the gut barrier, improve stability, decline the permeability
further to reduce LPS shifting into blood circulation,
decreasing LBP, and alleviating endotoxemia.

3.5. Microbiota-Dependent Proatherogenic Metabolite TMAO
Increased after RYGB. TMAO has been reported to be a
microbiota-dependent proatherogenic metabolite, whether
RYGB may help to control this metabolite was worth to
detect. However, the results found that the TMAO level
was significantly increased in a short period (1 month after
surgery) and continued to grow over time (Figure 4(b)).
Through analyzing the correlation of TMAO with diverse
microbiota OTUs in each group, the results indicate that
diversity OTUs in the preop group had a negative correla-
tion with the serum level of TMAO, while the postop group
had a positive correlation with TMAO (Figure 4(c), Supple-
mental Table 8).
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4. Discussion

Study [28] has shown that after the laparoscopic band oper-
ation, patients in the early phase of T2D could restore insulin
sensitivity within several months after surgery. These dra-
matic effects suggested rapid insulin sensitizing effects and
pancreatic f-cell enhancing effects related to intestinal
bypass of nutrients, usually occurring prior to maximal
weight loss [29]. The results of our follow-up analysis show
that 6 months after bariatric surgery sustained weight reduc-
tion and insulin resistance remission. Patients who under-
went RYGB were capable of achieving a HbAlc level under
6% and HOMA-IR level under 2. Participants would yield
lower fat percentage and content when 3 months after RYGB
(Supplemental Table 1). Thus, weight loss and insulin
sensitivity recovery are the main advantages of the surgery.
However, in our results, there was no significant change of
LDL-c between post and proop, and we speculated that it
may be due to the special high-protein diet that is requested
by the doctor after surgery. Fatty liver index (FLI), which
has been used as a noninvasive estimate of hepatic steatosis
[30], is much lower at 3 month and 6™ month
(Supplemental Table 1). It showed that RYGB might
alleviate nonalcoholic fatty liver disease and is not fully
dependent on serum lipid levels as a recovery indicator.

We also found that the metabolic indices such as BMI,
ALT, AST, gamma-GT, FBS, fasting insulin, HOMA-IR,
and triglyceride showed a positive correlation with diversity
OTUs in the preop group and negative correlation in the
postop group. These results suggest that glucose and lipid
metabolism may be modulated by gut microbiota species.

LBP, a signal-transducing integral membrane protein that
specially combined with LPS [31], has been reported to be a
marker of obesity, insulin resistance, and “effective endotoxe-
mia” [32]. We also found that RYGB could downregulate the
levels of LBP in obese patients. Combined with our microbiota
results, we found serum LBP levels had a positive correlation
with diversity OTUs in the preop group and negative in the
postop group, which suggested that the levels of LBP in the cir-
culation may reflect the changes of these bacterial species that
influence the production of LPS in the intestinal tract.

The uppermost control of the gut barrier relies on an
intact epithelium where tight junctions seal the space
between individual epithelial cells through which to maintain
the epithelial integrity [33]. Akkermansia muciniphila stimu-
lated the expression of 2 tight junction proteins, occluding
and ZO-1 in intestinal epithelial cells through which the gut
barrier was preserved [33, 34], and the number of Akkerman-
sia muciniphila was markedly decreased in both genetically
and HFD-induced obese mice [34]. Normalizing the propor-
tion of Akkermansia muciniphila in obese mice would lead to
improvement of several metabolic disorders, including meta-
bolic endotoxemia, fat mass gain, adipose tissue inflamma-
tion, and insulin resistance [34, 35]. Akkermansia
muciniphila could attenuate atherosclerotic lesions by ame-
liorating metabolic endotoxemia-induced inflammation and
restoration of the gut barrier [36]. In our results, we found
that Akkermansia muciniphila was highly enriched in
patients after RYGB and speculated that enrichment of
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Akkermansia muciniphila might attenuate insulin resistance
by preservation of the gut barrier and amelioration of
endotoxemia-induced inflammation.

Changes in the intestinal flora in SCFA composition have
been consequently found to be associated with the develop-
ment of obesity, insulin resistance, and diabetes [37-39].
Supplementation of butyrate to HFD could increase insulin
sensitivity and reduce body weight in C57BL/6 mice [40].
Administration of probiotic VSL#3 to HFD fed mice could
increase butyrate production and then suppress body weight
gain and insulin resistance [38]. Withal, appropriate intake of
dietary fibers was associated with a SCFAs profile that could
increase the anti-inflammatory response in the body; how-
ever, a HFD was often associated with a reduction of SCFAs
and an increase in LPS levels [41]. In our results, we found
that not only butyrate but also acetate, propionate, pentano-
ate, isobutyrate, and isopentanoate were all increased in
months 1, 3, and 6 after operation. What is more, diversity
OTUs in the preop group had a negative correlation with
these SCFAs and had a positive correlation in postop groups.
Therefore, we considered that obese participants who under-
went RYGB may have had a different structure of microbiota,
which could heighten SCFA levels after operation. The
increased SCFAs contribute to decreasing the intestinal per-
meability to some extent, which reduces the translocation
of LPS to tissues, thus resulting in the decrease of
endotoxemia-induced inflammation and subsequently
ameliorated insulin resistance.

We found that TMAO levels were evidently increased in
months 1, 3, and 6 after operation. Our result was in line with
the recent report that TMAO was not elevated in obese
patients or reduced by lifestyle interventions but increased
approximately twofold after bariatric surgery [42]. The diver-
sity of OTUs in the preop group existed a negative correla-
tion with serum TMAO levels and a positive correlation in
the postop group. It manifested that RYGB may change the
composition of microbiota through which to turn up the cir-
culation levels of TMAO. Studies had found that elevated
TMAO levels could predict the incidents of thrombotic
events in human subjects [43]. Clinical data showed that
there is a positive correlation between high blood plasma
TMAO levels and increased CVD risk, independent of tradi-
tional risk factors, such as kidney failure or diabetes [44].
With the combination of literature and our data, TMAO
levels were evidently increased in months 1, 3, and 6, which
might predict the high CVD risk after RYGB. On the other
hand, a five-year outcome data from a STAMPEDE trial
showed that the incidence of CVDs had no obvious increase
in patients undergoing RYGB [7]. We speculated that , due to
changes in intestinal flora, TMAO may not be used as a stan-
dard for predicting CVDs in patients undergoing weight-loss
surgery, and it is also needed to be cautious for patients who
have any kind of cardiovascular risk to choose RYGB [45].

Nevertheless, we also obtained results that obese patients
could have the higher abundance of Akkermansia mucini-
phila and more SCFAs produced by the flora, all of which
might improve the integrity of the gut barrier. We inferred
that the changes of microbiota component affecting the pro-
duction of LPS and the decreased intestinal mucosal
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permeability might be the reason for the reduced transloca-
tion of LPS, together with these two synerise attenuated
endotoxemia-induced inflammation, then reduce CVD risk.
RYGB directly changed the gastrointestinal tract structure
of obese individuals through which to affect the intestinal
flora and the intestinal immune system indirectly. Neverthe-
less, the regulating function of the microbiota in the intesti-
nal immunity is not fulfilled by one single germ cell, but
carried out by interactions between different strains within
the flora. Complete rejection of RYGB benefits would be
unreasonable when only considering TMAO as a disease pre-
dictor. In the meantime, we also should not exaggerate the
benefits of the surgery either.

5. Conclusion

Our findings uncovered links between intestinal microbiota
alterations, circulating endotoxemia, and insulin resistance,
suggesting that the underlying mechanism of the protective
effect of RYGB in obesity may be through changing gut
microbiota. Since it is only a single-center prospective obser-
vational study, the results of the study are limited to a certain
extent. We will continue further multicenter prospective
studies to evaluate the efficacy of this novel template.
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