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Diabetes mellitus termed as metabolic disorder is a collection of interlinked diseases and mainly body’s inability to manage
glucose level which leads to cardiovascular diseases, renal failure, neurological disorders, and many others. The drugs
contemporarily used for diabetes have many inevitable side effects, and many of them have become less responsive to this
multifactorial disorder. Momordica charantia commonly known as bitter gourd has many bioactive compounds with
antidiabetic properties. The current study was designed to use computational methods to discover the best antidiabetic
peptides devised from hypoglycemic polypeptide-P of M. charantia. The binding affinity and interaction patterns of
peptides were evaluated against four receptor proteins (i.e., as agonists of insulin receptor and inhibitors of sodium-glucose
cotransporter 1, dipeptidyl peptidase-IV, and glucose transporter 2) using molecular docking approach. A total of thirty-
seven peptides were docked against these receptors. Out of which, top five peptides against each receptor were shortlisted
based on their S-scores and binding affinities. Finally, the eight best ligands (i.e., LIVA, TSEP, EKAI, LKHA, EALF,
VAEK, DFGAS, and EPGGGG) were selected as these ligands strictly followed Lipinski’s rule of five and exhibited good
ADMET profiling. One peptide EPGGGG showed activity towards insulin and SGLT1 receptor proteins. The top complex
for both these targets was subjected to 50 ns of molecular dynamics simulations and MM-GBSA binding energy test that
concluded both complexes as highly stable, and the intermolecular interactions were dominated by van der Waals and
electrostatic energies. Overall, the selected ligands strongly fulfilled the drug-like evaluation criterion and proved to have
good antidiabetic properties.

1. Introduction

Diabetes mellitus (DM) is widely known as a rising multifac-
torial disease reaching epidemic level. It has been affecting
every age group without any discrimination [1]. It has been
estimated by the International Diabetes Federation that
almost 415 million people were suffering from diabetes in
the year 2015, and by the year 2040, this will exceed to 640
million [2]. There are two main types of diabetes (i.e., type

1 and type 2). In type I DM, the body stops producing insu-
lin, and in type II, there is a defect in insulin secretion and its
action [3]. Diabetes can be treated by healthy dietary intake,
regular exercise, and use of synthetic or natural drugs and
maintaining a healthy lifestyle [4]. Present therapies are
effective in managing diabetes but have many side effects.
Limitations of current therapies are not just escalating the
diabetes prevalence but also crossing the limits of economi-
cal budget. All these effects are demanding safer, efficient,
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easy to administrate, and budget-friendly treatment [5]. The
traditional approach of treatment involves antidiabetic com-
pounds from different plant species, and it is catching more
and more attention as natural drugs show fewer side effects
compared to synthetic drugs [6]. It has been estimated that
almost 1200 plant species have been identified which are
comprised of compounds with promising hypoglycemic
activity. Plant species with respective bioactivity have also
been scrutinized to find exact lead compounds for desirable
activity [7].

Momordica charantia is commonly known as bitter
gourd. Its extract has been known for effectively lowering
the blood glucose level [8]. There are many hypoglycemic
compounds isolated from M. charantia including insulin-
like peptides, vicine, polypeptide-P, alkaloids, charantin,
sterol glycosides, mcIRBP, triterpenoids, cucurbutanoid
compounds, flavonoids, and phenols, and all these com-
pounds have hypoglycemic activity. Water-soluble proteins
(MC1, MC6, MC6.1, MC6.2, and MC6.3 and MC2–1-5)
and insulin receptor- (IR-) binding protein all have antidia-
betic activity [9]. Due to antihyperglycemic activity of M.
charantia, its consumption as a dietary source and use in
traditional medicines has made it more attractive for the
advanced research [10]. In a study, Elekofehinti et al. [11]
have reported that M. charantia have many bioactive com-
pounds such as charantin, cucurbitacin, and momordicoside
D which have antidiabetic properties, and all these com-
pounds belong to saponin class. Similarly, Shivanagoudra
et al. [12] isolated 3β,7β,25-trihydroxycucurbita-5,23(E)-
dien-19-al, charantal, charantoside XI, and 25ξ-isoprope-
nylchole 5,6-ene-3-O-D-glucopyranoside from the fruit of
M. charantia and used in molecular docking studies. The
compounds were found to have antidiabetic properties.

DM is a complicated disease because it can be caused by
defects in many organs, proteins, and enzymes [13]. Due to
complex nature of this disease, one cannot rely on a single
experimental model and also single treatment cannot cir-
cumvent this multifactorial disease. The experimental
models are the protein receptors which are involved in the
regulation of glucose throughout the body such as insulin
receptor and sodium-glucose cotransporter 1 and 2 [14].
Insulin receptor (IR) is a member of the protein tyrosine
kinase family and a transmembrane signaling protein. IR
has many crucial regulatory activities regarding cell growth,
differentiation, and metabolism. Its role in the regulation of
glucose homeostasis discriminates it from other members of
the family [15]. Inactivation of insulin receptor by knocking
out its gene leads towards the loss of insulin secretion and
glucose tolerance. The studies have clearly defined the role
of IR in glucose homeostasis and showed its importance in
the treatment of DM [15]. Studies also reported that an
altered insulin receptor activity has been indicated in type I
and type II DM [16]. Sodium-glucose cotransporter 1
(SGLT1) plays a very important role in the reabsorption of
glucose by facilitated diffusion from the kidney and intestine
[17]. It has been reported that alteration in SGLT1 leads
towards the defects in reabsorption of glucose from the kid-
ney and intestine. Such studies have indicated that inhibition
of SGLT1 might be effective in the treatment of DM [18].

In the current study, four proteins were used as target
receptors including IR, SGLT1, DPP-IV, and GLUT2 pro-
teins. The aim of the study was to explore hypoglycemic
peptides devised from polypeptide-P of M. charantia using
in silico approaches. The selected peptides were scrutinized
through Lipinski’s rule of five and ADMET profiling.
Finally, the ligands which fulfilled all these criteria are
referred as potential antihyperglycemic agents. It is hypoth-
esized that the selected peptides as antidiabetic agents would
be better and safe alternate of currently available treatments
of DM. The findings of this study would be employed as a
novel approach for screening of antidiabetic drugs.

2. Materials and Methods

Molecular docking has accelerated the drug discovery by
providing the structure-based interactions between ligand
and receptor protein. A total of thirty-seven peptides from
polypeptide-P of M. charantia were prepared including
tetra-, penta-, and hexapeptides. These receptor proteins were
selected based on their key roles in DM and in the mainte-
nance of glucose homeostatic. This study involves the docking
of thirty-seven peptides devised from polypeptide-P of M.
charantia against IR as agonists and against SGLT1, DPP-
IV, and GLUT2 as inhibitors. The docking analysis was
performed using Molecular Operating Environment (MOE)
software [19].

2.1. Retrieval of 3D Structures of Receptor Proteins. The
three-dimensional (3D) structures of IR (PDB ID: 1IR3)
[20], SGLT1 (PDB ID: 3DH4) [21], and human dipeptidyl
peptidase-IV (PDB ID: 4A5S) [22] as receptor proteins were
retrieved from the RCSB Protein Data Bank (https://www
.rcsb.org/) in .pdb format [23] while the 3D structure of
GLUT2 which was predicted in our previous study [24]
was also used as a target protein.

2.2. Refinement of Receptor Proteins. Protein structures of
receptor proteins were refined using MOE software before
docking studies. The receptor proteins were prepared and
optimized by removing ligands and water molecules. The
receptor proteins were also energy minimized, and 3D pro-
tonation was done using parameter force field gradient: 0.05.

2.3. Ligand Selection and Database Preparation. The protein
sequence of polypeptide-P from M. charantia was retrieved
from NCBI’s Entrez Protein under accession No.
ADO14327.1. Tetra-, penta-, and hexapeptides were devised
from the polypeptide-P, and their 3D structures were pre-
pared using the ChemSketch software in MOL format [25].
The peptides were energy minimized using MOE.

2.4. Molecular Docking. Molecular docking analysis was car-
ried out to identify the best agonists of IR and inhibitors of
SGLT1, DPP-IV, and GLUT2. The site finder tool of MOE
was used to predict the active sites of both receptor proteins.
The docking analysis was done using default parameters
(i.e., rescoring 1: London dG; retain: 10; refinement: force
field; rescoring 1: London dG; retain: 10). The most appro-
priate protein-ligand interactions were selected on the basis
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of best S-scores and binding interactions. MOE docking
algorithm poses peptides within the catalytic pocket of the
receptor protein with various orientations and conforma-
tional degrees of freedom. The docking analysis predicts
suitable structural interactions of ligand and receptor pro-
tein based on combined scoring functions (i.e., ligand shape,
electrostatic compatibility with the target, solvation effects,
binding energies, and enthalpy and entropic effects, most
stable binding mode with minimum energy, number of
hydrogen bonds, values of root mean square deviation
(RMSD), and S-scores) [26].

2.5. Molecular Dynamics Simulations. MD simulations were
conducted using the AMBER20 suite of molecular dynamics
program with the force filed FF14SB [27, 28]. AMBER force
field (GAFF) using the Antechamber program was used to
generate force-field parameters for the ligand molecules
[29, 30]. The studied systems were then solvated by immers-
ing each complex in a cubic box of TIP3P water molecules
with a 10Å solute-wall distance. The net charge on the com-
plex protein was neutralized by the addition of Na+ ions.
The energies of the solvated systems were minimized before
undergoing molecular dynamics simulations. All the systems
were subjected to 1,500 steps of the steepest descent algo-
rithm and 1,000 steps of the conjugate gradient algorithm
with a nonbonded cutoff of 8Å. Standard MD simulation
protocol was followed consisting of an initial heating period
of 100 ps starting slowly from 0K to a temperature of 300K
and pressure of 1 atm. Following the heating procedure, each
complex system underwent 100 ps equilibration at a con-
stant temperature of 300K. Equilibration was followed by a
production run of 5 ns for the undocked protein and 12ns
each for all the docked complexes. The Ewald summation
method was applied to treat long-range electrostatic interac-
tions. PTRAJ module of AMBER was utilized to generate
output files for analysis [31]. The conformational entropy
evaluation (normal mode analysis) requires large amounts
of CPU resources. Therefore, the approximation of the cal-
culation of the binding free energy by removing this term
from the MM-GBSA equation has been widely used, includ-
ing in this study, as the removal of the entropic evaluation
can be considered for the analysis and comparison of
structurally similar compounds. All the trajectories were
used for the calculation. The Molecular Mechanics Gener-
alized Born Surface Area (MM-GBSA) method [32] with
the MMPBSA.py script was used to calculate the complex
binding energy [33]. The MM-GBSA energy values of the
50 ns period were calculated from the representative 100
frames. All structures were visualized by UCSF Chimera
[34]. The solvent-accessible surface area (SASA) was per-
formed using a visual molecular dynamics tool [35].

2.6. Drug Scan and ADMET Profiling. The best selected
ligands must fulfill the criteria of drug scan through Lipinski’s
rule of five (Ro5) [36]. The peptides selected on the basis of
Ro5 are considered safe. admetSAR is an online available
webserver. It is used to check ADMET-related properties of
selected ligands including pharmacokinetics of drugs in the
human body including absorption, distribution, metabolism,

excretion, and toxicity. Ligands that accomplished all these
parameters are accepted as potential drug candidates [37].

3. Results

The docking analysis was carried by the MOE algorithm
using devised peptides against IR, SGLT1, DPP-IV, and
GLUT2. The top five peptides were selected in each analysis
based on their interaction patterns and energy validations.

3.1. Interaction Analysis. For insulin receptor, the top five
ligands were selected based on their S-scores and interaction
patterns. Results have pointed out that all the five ligands
have the efficiency to bind with IR. Amino acids that were
unanimous to interact with at least three peptides were
referred as interacting amino acids. The peptide KDDGHL
showed the best interactions (binding score: -18.56) with
the IR receptor, and Ser1270, Asp1143, Glu1108, Glu1115,
and His1058 were found to be the leading interactive resi-
dues in these interactions (Figure 1(a)). The binding mode
of the KDDGHL peptide within the binding pocket of IR is
shown in Figure 1(b). Chaetochromin was also docked
against IR as a positive control because chaetochromin has
been reported for its antidiabetic activity [38]. The chaeto-
chromin showed interactions with ArgB1061, SerA151,
and CysB1056. The interactions and binding pattern of
chaetochromin have been shown in Figure S1. The
chaetochromin showed an S-score of -19.11 and RMSD of
1.89 which is comparable with the best selected peptide in
this study.

The S-scores, RMSD values, and interacting amino acids
of the top five peptides with IR are given in Table 1. All
selected ligands showed strong interactions with Ser1270,
Asp1143, Glu1108, Glu1115, His1057, Thr1345, and
Thr1145. These interactions play a vital role in the determi-
nation of stability of the ligand-receptor complex in terms of
hydrogen bond and hydrophobic and electrostatic interac-
tions. All these interacting amino acids are present in the
catalytic site of the receptor protein. Following KDDGHL,
the interactions and binding patterns of the next three best
peptides have been shown in Figures S2 to S4 of the
Supplementary file.

The binding pocket of SGLT1 receptor protein contains
Asn267, Tyr138, Tyr263, Ser368, and Thr431 as main inter-
acting amino acids. In the current study, out of 37 docked
ligands, the top five ligands with the best S-scores and inter-
actions with these active amino acids are given in Table 1.
The peptide ESIRD showed best interactions (binding score:
-23.81) with the SGLT1 receptor, and Thr431, ser368,
Gln428, Asn142, Ser364, Ser66, Lys294, Gln69, and Glu88
were found to be the leading interactive residues in these
interactions (Figure 2(a)). The binding mode of the ESIRD
peptide within the binding pocket of SGLT1 is shown in
Figure 2(b). The other four peptides DSRHR, RRKKV,
and PTRHM with docking scores of -23.64, -20.64, and
-19.60 showed best interactions with active amino acids
of the binding pocket of SGLT1 (Figures S5-S7 of the
Supplementary file). Phlorizin has been reported as an
inhibitor of SGLT1 [39] and therefore selected as a positive
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control in this study. The peptides reported in this study
showed better S-scores compared to the reported drug
phlorizin (i.e., S-score of -18.25, RMSD of 1.42). The
phlorizin showed interactions with amino acids Asn267,
Ser68, Tyr263, Gln69, and Asn142. The interactions and
binding patterns of phlorizin with SGLT1 have been shown
in Figure S8 of the Supplementary file.

Similarly, the library of devised peptides was also docked
against DPP-IV and GLUT2 receptor proteins. The peptide
PTRHM interacted with Gln268, Thr375, and Asn371 amino
acids of DPP-IV with an S-score of -10.11 (Figure S9). The
interactions and binding patterns of the other two peptides,
i.e., RRKKV and KDDGHL with DPP-IV, have been shown
in Figures S10 and S11. The peptide RRKKV interacted with

Met174, Glu361, and Arg432 amino acids of GLUT2
receptor protein and exhibited the S-score of -10.60
(Figure S12). The interactions and binding patterns of the
other two peptides, i.e., RSIHEP and ERFDSG with GLUT2,
have been shown in Figures S13 and S14. The detail of
interactions (i.e., interacting amino acids, S-scores, and
RMSD values) of the top five peptides against DPP-IV and
GLUT2 as receptor proteins has been given in Table 1.

The interactions and binding patterns of peptides LIVA
with IR and DFGAS with SGLT1 receptor proteins are
shown in Figures 3 and 4, respectively. Both peptides were
found best among all selected peptides on the basis of their
pharmacokinetic parameters which are important for the
bioavailability of compounds as drugs.
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Figure 1: Docking of KDDGHL peptide with insulin receptor. (a) Interactions of peptide with IR. In these interactions, His1058 is a basic
amino acid and acting as a sidechain donor. Glu1108, Glu1115, and Asp1143 are acidic amino acids and acting as sidechain acceptors. (b)
Binding pattern of KDDGHL with the binding pocket of IR.
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3.2. Molecular Dynamics Simulation Study. The dynamics
stability of the receptors (i.e., IR and SGLT1) in the presence
of the filtered peptides was investigated by running 50 ns of
molecular dynamics simulations. The structural stability of
receptors was evaluated first by calculating root mean square
deviation (RMSD) analysis, which computes structural devi-
ations by overlapping simulation snapshots over docking
reference snapshot based on carbon alpha atoms. Both com-
plexes were revealed stable as the RMSD was in good accept-
able range (Figure 5(a)). The RMSD plot of both complexes
was found very consistent, and no major deviations were
reported. The maximum RMSD touched by DFGAS-
SGLT1 is around 2.2 or 2.3Å whereas for LIVA-Insulin
receptor, the maximum RMSD noticed is 3Å. Next, root
mean square fluctuations (RMSFs) were calculated for the
docked receptors. Consistent with the RMSD analysis,
RMSF results indicated the stable nature of complexes
(Figure 5(b)). The RMSF for complexes is within 3Å though
some residues fluctuation was observed. The RMSFs corre-
spond to the receptor loop regions and have no significant
impact on the peptide bonding. Also, radius of gyration
(RoG) analysis was performed to check the compactness of
the complexes (Figure 5(c)). The RoG results are in coher-
ence with the RMSD; the systems are highly compact with
exception of few minor deviations. Both RoG systems fluctu-
ated around 45Å. The systems were seen in good equilib-
rium towards the end of simulation time.

Further, binding free energies of complexes were esti-
mated as tabulated in Table 2. As can be seen in the table,
both electrostatic and van der Waals energy are contributing
significantly to overall system stabilization. The van der

Waals seems to be playing a major role in the ligand stability
at the docked site. Opposed, the solvation energy is noncon-
tributing majorly because of polar solvation energy. The
nonpolar energy term though plays a favorable part in the
complex formation. Overall, both the systems acquired
highly significant net binding energy values, i.e., LIVA-
Insulin (-93.38 kcal/mol) and DFGAS-SGLT1 (-62.85 kcal/-
mol). The individual contribution of each interacting residue
of the receptor to ligand was further determined by decom-
posing the net MM-GBSA binding free energy into residues
of the receptor molecules. It was revealed that most of the
residues near the binding site of the ligands contributed sig-
nificantly in stabilizing the ligands as can be seen by lower
binding energy value. The ligand interacting residue binding
energy value is given in Table 3. The SASA analysis was per-
formed to investigate the surface of the system accessible to
the solvent (Figure S15 of the Supplementary file).

3.3. Drugability and ADMET Profiling. Lipinski’s rule of five
indicates drug-like characteristics or drug potency of pro-
posed compounds based on parameters such as molecular
mass (<500 Dalton), molar refractive index (40-130), parti-
tion coefficient (LogP ≤ 5), hydrogen bond donors (≤5),
and hydrogen bond acceptors (≤10). This rule basically dis-
tinguishes the compounds based on drug-like and non-
drug-like properties. Only those compounds that fulfill these
criteria are considered as good drug candidates. In this
study, a total of twenty ligands were selected based on their
best interaction patterns with active amino acids of the tar-
get proteins, S-scores, and energy validations. Out of twenty
selected ligands, only eight peptides fulfilled the criteria of

Table 1: Property profile of selected peptides against five selected receptor proteins.

Sr. No. Peptide Receptor S-score RMSD Interacting amino acids

1 KDDGHL IR -18.56 2.75 Ser1270, Asp1143, Glu1108, Glu1115, His1057

2 EPGGGG IR -16.71 1.85 Arg B1026. Glu A186, Asp B1343, His B1057, Lys B1147, Ala B1050, Ser A187

3 TSEP IR -15.66 1.21 Asp1143, Thr1145, Glu1115, Arg1101, Glu1108

4 VAEK IR -15.53 2.29 Glu1115, His1058, Ser1270, Asp1143, Phe1144, Glu1108

5 LIVA IR -14.00 1.73 Thr A178, His B1057, Cys B1056, Val B1059, Glu B1077, Lys B1147

6 ESIRD SGLT1 -23.81 2.86 Thr431, ser368, Gln428, Asn142, Ser364, Ser66, Lys294, Gln69, Glu88

7 DSRHR SGLT1 -23.64 2.46 Thr431, Ser368. Gln428. Ser91, Lys294, Ser365, Gln268, Asn267, Asn64, Ser66

8 RRKKV SGLT1 -20.64 2.92 Thr431, Asn260, Asn267, Tyr263, Asn64, Ser435

9 PTRHM SGLT1 -19.60 1.83 Tyr263, Gln68, Ala63, Ser365

10 DFGAS SGLT1 -9.3259 1.5980 Asp189, Tyr176

11 PTRHM DPP-IV -10.1067 2.5395 Gln268, Thr375, Asn371

12 RRKKV DPP-IV -9.9189 1.7598 Val185, Asn267, Tyr269

13 KDDGHL DPP-IV -9.4991 1.4528 Ser368, Asn267, Val185

14 RSIHEP DPP-IV -9.0877 1.7136 Asn371, Val185

15 VAEK DPP-IV -8.1677 2.3228 Ser59, Ala63, Ser368

16 RRKKV GLUT2 -10.5970 1.3552 Met174, Glu361, Arg432

17 RSIHEP GLUT2 -10.5171 2.4307 Met174, Glu361

18 ERFDSG GLUT2 -9.6986 1.7398 Gln429, Phe421

19 KDDGHL GLUT2 -9.5645 1.5598 Glu282

20 PTRHM GLUT2 -9.2187 1.4949 Arg432
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being good drug candidates according to Lipinski’s Ro5
(Table 4). Six tetrapeptides, one pentapeptide, and one hex-
apeptide were revealed to be good agonists of IR. The hexa-
peptide EPGGGG has shown good binding affinity with
both IR and SGLT1 receptors. The peptide (VAEK) showed

good binding affinity with IR and DPP-IV. Similarly, the
peptide (DFGAS) showed good binding affinity with IR,
SGLT1, and DPP-IV. Out of eight, seven peptides violated
only one parameter of Lipinski’s rule of five but one peptide
(LIVA) did not violate any rule and therefore revealed as a
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Figure 2: Docking of ESIRD peptide with SGLT1 receptor. (a) Interactions of peptide with SGLT1. In these interactions, Ser66, Gln69,
Ser364, Ser368, Gln428, and Thr431 are polar amino acids and acting as sidechain acceptors. Asn142 is also a polar amino acid but
acting as a sidechain donor. Lys294 and Glu88 are basic and acidic amino acids and acting as sidechain donor and acceptor, respectively.
(b) Binding pattern of ESIRD with the binding pocket of SGLT1.
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best potential agonist of IR. The structures of these eight
peptides are given in Figure 6. On the basis of Lipinski’s
Ro5, these peptides could be accepted for their reasonable
oral bioavailability.

The best selected peptides were further evaluated
through admetSAR server to check their pharmacokinetics
or ADMET (absorption, distribution, metabolism, excretion,
and toxicity) profiling. The results of admetSAR have sug-
gested that all the selected ligands are non-Ames toxic and
noncarcinogens (Table 5). The evaluation of ADMET profil-
ing of these peptides has predicted that they are tolerable
and safe, and therefore, these peptides could be referred as
efficient drug candidates against selected receptor proteins.

4. Discussion

In silico screening of natural compounds for drug designing
has become the need of the hour due to expensive, tiresome,
and laborious screening methods. A giant amount is wasted
due to directionless laboratory procedures which lack struc-
tural understanding of drugs and target molecules. On the
other hand, computational biology reduces the risk of late-
stage failure of a drug [40]. In the current study, M. charan-
tia was selected as a source of antidiabetic agent. It has been
reported that a series of fractions from the fruit of M. char-
antia have been used to treat the diabetic rats. Consequently,
those fractions improved the insulin signaling in diabetic
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Figure 3: Docking of LIVA peptide with insulin receptor. (a) Interactions of LIVA with IR. In these interactions, GlnA1004 and SerA1006
are polar amino acids and acting as backbone acceptor and backbone donor, respectively. AsnA1137 is a polar amino acid and acting as a
sidechain acceptor. The amino acid AspA1150 is acidic in nature and acting as backbone acceptor while MetA1153 (greasy in nature) is
acting as backbone donor. (b) Binding pattern of LIVA with the binding pocket of IR.
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rats [41]. In the current study, four target receptors were
selected (i.e., IR, SGLT1, DPP-IV, and GLUT2) due to their
crucial roles in maintaining the glucose level in the body
[42]. Interestingly, the finding of small molecules which
can elicit the IR signaling pathway and inhibit SGLT1,
DPP-IV, and GLUT2 would be great alternative of insulin
to treat DM.

The docking analysis of thirty-seven peptides devised
from polypeptide-P of M. charantia was performed against
IR, and the top five peptides were selected based on their
scoring and binding patterns. The amino acids that were
unanimously involved in structural interactions of peptides

and receptors were found to be Ser1270, Asp1143,
Glu1108, Glu1115, His1057, Tyr1087, and Thr1145. These
amino acids are repeatedly involved in the binding interac-
tion of each peptide with receptor protein and therefore
adapted as active amino acids of the catalytic cleft. In a
similar study, the antidiabetic potential of cowpea peptides
was determined which can act as agonists of insulin and
the peptides were proved to activate the IR signaling path-
way [43]. Many previous studies have proved that M.
charantia contains many peptides which are involved in
the lowering of blood glucose level, and these studies sup-
port our findings [44].
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Similarly, molecular docking of thirty-seven peptides
was also performed against SGLT1 and the top five peptides
were selected as potential ligands based on their interactions
with active amino acids on the basis of their S-scores. From
the docking analysis, Asn267, Tyr138, Tyr263, Ser368, and

Thr431 were found to be active amino acids in the binding
patterns with SGLT1. Previously, the interaction with
Ser368 has been reported, and in the present study, Ser368
is repeatedly and actively involved in the binding patterns
between receptor and selected ligands [45, 46]. Similarly, the
SGLT1 inhibitor LX4211 ((2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-
ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,
4,5-triol) has been found to be involved in the inhibition of
SGLT1 and consequently reduces the glucose absorption
from the intestine. The results of these studies are in accor-
dance with current findings. A number of antidiabetic pep-
tides also have been reported from soy protein [47]. A great
number of bioactive compounds from different parts of M.
charantia have been found effective to treat diabetes.
Shivanagoudra et al. [48] isolated two compounds (i.e.,
momordicoside G and gentisic acid 5-O-β-D-xyloside) and
docked against α-amylase and α-glucosidase as receptor pro-
teins. The momordicoside G showed the highest inhibition of

0
0

1

2

3

4

5

6

5 10 15 20 25
Time (ns)

30 35 40 45 50

RM
SD

 (Å
)

LIVA-insulin
DFGAS-SGLT1

(a)

0
0

4

DFGAS-SGLT1

100 200 300 400
Residue number

500 600

RM
SD

 (Å
)

2

1

3

LIVA-insulin receptor

(b)

DFGAS-SGLT1
LIVA-insulin

0
0

10

20

30

40

50

60

5 10 15 20 25
Time (ns)

30 35 40 45 50

RO
G

 (Å
)

(c)

Figure 5: Structural stability evaluation of complexes based on carbon alpha atoms. (a) RMSD, (b) RMSF, and (c) RoG. The residue
numbering is adjusted from 1 to the end.

Table 2: MM-GBSA binding free energy estimation (all the values
are described in kcal/mol).

Energy component LIVA-Insulin DFGAS-SGLT1

van der Waals -66.15 -50.27

Electrostatic -52.45 -45.12

Polar solvation 35.69 39.41

Nonpolar solvation -10.47 -6.87

Net gas phase -118.6 -95.39

Net solvation 25.22 32.54

Net complex energy -93.38 -62.85
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α-amylase (70.5%), and gentisic acid 5-O-β-D-xyloside
showed the highest inhibition of α-glucosidase (56.4%). In
another study [49], the docking analysis of the compound
nerolidol fromM. charantia showed the best binding interac-
tions with the diabetic enzyme glucokinase which is respon-
sible to cause diabetes in humans.

The effectiveness and safety are the primary objectives
for hunting a new drug as all drugs can help to combat dis-
eases as well as cause harmful effects [50]. In silico analysis

has played an increasingly significant part in the drug
research and discovery by providing an effective way to
assess multiple pharmacokinetics properties [51]. In this
study, by taking into account all drug-like characteristics,
only eight peptides were shortlisted (i.e., LIVA, TSEP, EKAI,
LKHA, EALF, VAEK, DFGAS, and EPGGGG) followed by
Lipinski’s rule of five (Ro5). The peptide EPGGGG showed
good binding affinity and efficacy for both IR and SGLT1
receptors. Some of the remaining ligands did not fulfill the

Table 3: Net MM-GBSA binding free energy decomposition into residues of the receptors. The values are provided in kcal/mol.

Residue LIVA-Insulin Residue DFGAS-SGLT1

Gln1004 -2.54 Ala62 -1.51

Gly1005 -1..85 Ala63 0.47

Ser1006 1.58 Asn64 1.47

Phe1007 -1.64 Ile65 1.02

Lys1085 -1.36 Ser66 -2.48

Ser1086 -1.00 Gly68 -1.35

Asp1083 -3.45 Tyr138 -1.23

His1130 0.25 Tyr176 -1.00

Asp1132 -0.89 Val185 -1.85

Arg1136 -1.65 Asp189 -2.58

Asn1137 0.05 Tyr263 -1.55

Met1139 1.63 Asn267 -1.27

Asp1150 -2.54 Gln268 -1.20

Phe1151 -1.02 Tyr269 -2.04

Gly1152 -1.50 Ile270 -0.87

Met1153 -2.54

Thr274 0.68

Ser365 0.12

Ser364 -1.08

Ala367 -1.36

Met369 -1.54

Asn371 1.02

Table 4: Pharmacokinetic parameters important for bioavailability of compound drug-likeness properties of selected peptides.

Peptides Target
Molecular properties†

MW HBD HBA nrotb LogP A Violations

LIVA IR 414.54 5 6 12 0.51 111.74 0

TSEP IR 432.43 7 10 14 -3.21 103.31 1

EKAI IR 459.54 7 7 16 -1.09 116.22 1

LKHA IR 467.57 7 7 15 -0.99 121.46 1

EALF IR 478.55 6 6 14 0.03 123.58 1

VAEK IR/DPP-IV 445.51 7 7 15 -1.48 111.41 1

DFGAS IR/SGLT1/DPP-IV 495.48 8 8 15 -3.30 118.13 1

EPGGGG IR/SGLT1 472.45 7 10 18 -3.34 111.79 1

GDVEC SGLT1 521.55 9 9 16 -3.11 121.41 2

DDPTG SGLT1 503.47 8 9 17 -4.19 116.53 2

PTRHM DPP-IV/GLUT2 640.77 11 10 19 -2.87 165.54 3

RRKKV DPP-IV/GLUT2 685.88 14 10 26 -3.22 181.62 3

DTDEL DPP-IV 591.57 10 10 19 -3.42 135.64 3
†Molecular properties were calculated using SwissADME, an online tool. MW: molecular weight; HBD: number of hydrogen bond donors; HBA: number of
hydrogen bond acceptors; nrotb: number of rotatable bonds; LogP: the logarithm of octanol/water partition coefficient; A: molar refractivity.
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drug-like criteria as they violated two or more rules of Ro5.
The eight selected ligands also passed the evaluation through
ADMET drug profiling to predict the capability or incapabil-
ity of these peptides as potential drugs DM.

Among the parameters predicted by admetSAR, the
LogP value tells about the permeability of a compound
through a lipid membrane, and for a potential drug, it
should be ≤5. The number of hydrogen bond acceptors
and hydrogen bond donors of a drug describes its ability to
bind with other compound(s) that consequently define its
solubility and permeability. Nonrotatable bonds explain the
molecular flexibility and permeation rate of a drug candi-
date. CYP450 is a superfamily of heme-containing enzymes
that facilitate the metabolism of drugs. There are five differ-
ent isoforms of CYP450 (CYP 3A4, 2D6, 1A2, 2C9, and
2C19). The oxidation of a drug is necessary for its proper
functioning and excretion from the body, and for this rea-
son, the consideration of action of drugs against these
enzymes is necessary [52]. All the top eight ligands short-
listed in this study are noninhibitors of CYP50 family
enzymes which is good for their metabolism. The Ames test
predicts whether a selected ligand causes DNA mutation(s)
or not. All the top eight peptides were predicted as non-
Ames toxic. Structural alerts (SAs) are the main components
which are the mastermind behind certain toxicities and car-
cinogenic behaviors. For the first time, it was reported that
there is strong connection between some structural alters
and chemical mutagenicity in Salmonella sp. [53]. Therefore,
admetSAR predicts toxicity and carcinogenicity of ligands
based on SAs. In our current findings, all top eight ligands

are non-Ames toxic and noncarcinogenic and, therefore,
they are safe and tolerable. Finally, all the eight peptides
were predicted as having potential drug-like characters by
successfully fulfilling the ADMET profiling criteria. The
selected ligands have good affinity for receptors and efficacy
to active receptors and acting as agonists of IR and inhibitors
of SGLT1, DPP-IV, and GLUT2.

The foremost goal of the current study was to target
those proteins that act as receptors in the regulation of glu-
cose level in the body. Any insertion, deletion, and/or substi-
tution in the amino acid sequence of these receptor proteins
can lead to a deleterious effect in the maintenance of glucose
level. Currently, many antidiabetic drugs have been exces-
sively used but their disastrous outcomes make them unde-
sirable and unsafe to use. This alarming situation requires
the discovery of antihyperglycemic compounds with mini-
mal side effects and maximal efficacy, and therefore, in the
current study, we have explored natural peptides with great
affinity for receptors involved in glucose regulation. In silico
drug discovery is expected hunting the drugs quicker,
cheaper, and more effective, but in spite of all these pros,
the computational biology techniques have some limitations
as various tools give different results for the same analyses,
and therefore, one cannot fully rely on the results without
wet lab investigation and validation [54].

5. Conclusion

Diabetes mellitus is an inevitable disorder, and in spite of
all the available treatments, its consequences are rapidly

Table 5: ADMET profiling enlisting absorption, metabolism, and toxicity-related drug-like parameters of best selected peptides.

Peptides
LIVA TSEP EKAI LKHA EALF VAEK DFGAS EPGGGG

Absorption

BBB + + + + – + + +

HIA – – – + + – – +

Caco-2 permeability Caco-2- Caco-2- Caco-2- Caco-2- Caco-2- Caco-2- Caco-2- Caco-2-

PGS Substrate NS Substrate Substrate Substrate NS NS Substrate

PGI NI NI NI NI NI NI NI NI

ROCT NI NI NI NI NI NI NI NI

Metabolism

CYP3A4 substrate Substrate NS Substrate Substrate NS NS NS Substrate

CYP2C9 substrate NS NS Substrate NS NS NS NS Substrate

CYP2D6 substrate NS NS NS NS NS NS NS NS

CYP3A4 inhibition NI NI NI NI NI NI NI NI

CYP2C9 inhibition NI NI NI NI NI NI NI NI

CYP2C19 inhibition NI NI NI NI NI NI NI NI

CYP2D6 inhibition NI NI NI NI NI NI NI NI

CYP1A2 inhibition NI NI NI NI NI NI NI NI

Toxicity

Ames toxicity NAT NAT NAT NAT NAT NAT NAT NAT

Carcinogens NC NC NC NC NC NC NC NC

BBB: blood-brain barrier; HIA: human intestinal absorption; PGS: P-glycoprotein substrate; PGI: P-glycoprotein inhibitor; ROCT: renal organic cation
transporter; NS: nonsubstrate; NI: noninhibitor; NAT: non-Ames toxic; NC: noncarcinogenic.
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enhancing epidemiologically. Protein-ligand docking and
simulation approaches have greatly accelerated the discovery
of novel antidiabetic agents. In the current study, using an in
silico approach, we have discovered, designed, and proposed
novel antidiabetic peptides for oral administration. Upon
investigating dynamics stability, it was found that both com-
plexes (i.e., LIVA-IR and DFGAS-SGLT1) were revealed to
be stable as the RMSD values of both complexes were in good
acceptable range. These ligands might reduce dependency on
painful subcutaneous administration of insulin and on other
drugs with a number of side effects. Out of thirty-seven pep-
tides, the peptides LIVA, TSEP, EKAI, LKHA, EALF, VAEK,
DFGAS, and EPGGGG were found to be the best ones as
potential antidiabetic agents based on their interaction stud-
ies through molecular docking. These ligands were strictly
evaluated through Lipinski’s rule of five and ADMET profil-
ing which strongly supported their antihyperglycemic prop-
erties, and therefore, these natural bioactive compounds
would act as agonist of IR and inhibitors of SGLT1, DPP-
IV, and GLUT2 and may lead to design potential drugs to
combat diabetes with fewer or no side effects. A wet lab pro-
cedure has to be performed to further evaluate their activity
as antidiabetic agents.
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