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Background. Accumulating studies have demonstrated that autophagy plays an important role in hepatocellular carcinoma (HCC).
We aimed to construct a prognostic model based on autophagy-related genes (ARGs) to predict the survival of HCC patients.
Methods. Differentially expressed ARGs were identified based on the expression data from The Cancer Genome Atlas and ARGs
of the Human Autophagy Database. Univariate Cox regression analysis was used to identify the prognosis-related ARGs.
Multivariate Cox regression analysis was performed to construct the prognostic model. Receiver operating characteristic (ROC),
Kaplan-Meier curve, and multivariate Cox regression analyses were performed to test the prognostic value of the model. The
prognostic value of the model was further confirmed by an independent data cohort obtained from the International Cancer
Genome Consortium (ICGC) database. Results. A total of 34 prognosis-related ARGs were selected from 62 differentially
expressed ARGs identified in HCC compared with noncancer tissues. After analysis, a novel prognostic model based on ARGs
(PRKCD, BIRC5, and ATIC) was constructed. The risk score divided patients into high- or low-risk groups, which had
significantly different survival rates. Multivariate Cox analysis indicated that the risk score was an independent risk factor for
survival of HCC after adjusting for other conventional clinical parameters. ROC analysis showed that the predictive value of this
model was better than that of other conventional clinical parameters. Moreover, the prognostic value of the model was further
confirmed in an independent cohort from ICGC patients. Conclusion. The prognosis-related ARGs could provide new
perspectives on HCC, and the model should be helpful for predicting the prognosis of HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
cancer worldwide and the third most common cause of can-
cer mortality [1]. The main cause of HCC is nonalcoholic
fatty liver disease (NAFLD) and hepatitis virus infection
including chronic hepatitis B virus (HBV) infection and
chronic hepatitis C virus (HCV) infection [2]. In America,
although the 5-year survival rate of HCC patients increased
by 90% between 2006 and 2012 compared to 1992-1999,
the overall prognosis of HCC remains poor [3]. Therefore,
establishing an effective prognostic model can provide new
guidance for clinical management. However, conventional
clinical parameters used to predict clinical outcome often
have some limitations given the heterogeneity of HCC [4].

Therefore, the establishment of a novel effective prognostic
model must be based on the molecular heterogeneity of
HCC.

Autophagy is a lysosomal degradation pathway for
unwanted, damaged, and defective intracellular compo-
nents and is essential for survival, differentiation, develop-
ment, and homeostasis [5]. In recent decades,
accumulating evidence has demonstrated that abnormal
expression of autophagy-related genes (ARGs) is involved
in the development of various cancers [6, 7]. However,
the role of ARGs in cancer remains inconclusive. In gen-
eral, at the early stage of liver cancer, autophagy protects
cells from carcinogenesis. At an advanced stage, however,
autophagy can promote cancer progression [8, 9]. For liver
cancer, dysregulated autophagy is dependent on changes
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in ARG expression [10]. Thus, it is of special significance
to identify biomarkers from ARGs that are associated with
the prognosis of patients with cancer and to calculate their
influence on the prognosis model. Recent reports have
shown that prognostic models based on ARGs provide
better prediction of clinical outcomes for patients with
cancer, such as thyroid cancer and bladder cancer [11,
12]. However, studies on prognostic models based on
ARGs in HCC are limited. Thus, our aims in this study
were to construct a prognostic model based on ARGs to
predict HCC patient survivals.

In this study, we identified the 62 differentially
expressed ARGs in HCC based on The Cancer Genome
Atlas (TCGA) database. Enrichment analysis of differen-
tially expressed ARGs may help to identify the potential
molecular mechanisms in autophagy. In addition, we per-
formed univariate Cox regression analysis to identify 34
prognosis-related ARGs and conducted multivariate Cox
regression analysis to select 3 key genes (PRKCD, BIRC5,
and ATIC) to construct a prognostic model. Univariate
and multivariate Cox regression analyses confirmed that
the risk score calculated by the model formula was an
independent risk factor for patient survival. Survival anal-
ysis and ROC curve analysis demonstrated that the model
had good performance in predicting prognosis. Moreover,
we confirmed the reliability of this model by analyzing
another independent data cohort obtained from the Inter-
national Cancer Genome Consortium (ICGC) database. In

Table 1: General characteristics of HCC patients included in the
present study (data downloaded from the TCGA database).

Parameters
Patients (N = 235)

Number %

Age

≤65 y 164 69.79

>65 y 71 30.21

Gender

Male 161 68.51

Female 74 31.49

Grade

G1/2 132 56.17

G3/4 103 43.83

Pathologic stage

I/II 163 69.36

III/IV 72 30.64

T stage

T1/2 163 69.36

T3/4 72 30.64

N stage

N0 231 98.3

N1-3 4 1.7

M stage

M0 231 98.3

M1 4 1.7

Table 2: Characteristics of the differentially expressed autophagy-
related genes by using the Wilcoxon rank-sum test (tumor vs.
normal).

Gene symbol logFC Regulation p value FDR

BIRC5 4.8146253 Up 2:35E − 28 4:82E − 26

PEA15 1.83411226 Up 3:57E − 27 3:66E − 25

RAB24 1.70056392 Up 8:37E − 27 4:29E − 25

CLN3 1.7043542 Up 7:73E − 27 4:29E − 25

HSP90AB1 1.63411809 Up 3:53E − 26 1:45E − 24

MAPK3 1.37850531 Up 5:73E − 26 1:68E − 24

CAPN10 1.49940395 Up 4:96E − 26 1:68E − 24

CDKN2A 4.65431982 Up 1:87E − 25 4:26E − 24

RHEB 1.21520158 Up 2:98E − 25 6:10E − 24

RPTOR 1.30199062 Up 4:43E − 25 8:26E − 24

TSC1 1.56728821 Up 2:41E − 24 4:11E − 23

ATG4B 1.05882354 Up 4:52E − 24 7:13E − 23

ATIC 1.26886226 Up 1:56E − 23 2:18E − 22

ITGA6 2.05950447 Up 1:59E − 23 2:18E − 22

FKBP1A 1.164278 Up 2:89E − 23 3:37E − 22

TP73 4.10294233 Up 2:96E − 23 3:37E − 22

ULK3 1.25487092 Up 3:47E − 23 3:75E − 22

MLST8 1.04550722 Up 4:72E − 23 4:84E − 22

CAPNS1 1.10213996 Up 5:81E − 23 5:42E − 22

PARP1 1.34948718 Up 6:82E − 23 6:08E − 22

BAX 1.52707657 Up 7:52E − 23 6:42E − 22

ATG10 1.0226174 Up 1:11E − 22 9:11E − 22

DIRAS3 -2.2142941 Down 2:04E − 22 1:49E − 21

HGS 1.59409057 Up 3:22E − 22 2:28E − 21

TSC2 1.1673426 Up 4:51E − 22 3:08E − 21

CANX 1.10228843 Up 2:00E − 21 1:32E − 20

WDR45B 1.03610977 Up 4:09E − 21 2:62E − 20

FOS -2.4192498 Down 6:68E − 21 4:15E − 20

DAPK2 2.15868832 Up 1:19E − 20 7:20E − 20

NPC1 1.40873288 Up 1:77E − 20 9:80E − 20

GAPDH 1.24841467 Up 5:02E − 20 2:64E − 19

PELP1 1.02773866 Up 5:19E − 20 2:66E − 19

HSPA5 1.07141566 Up 1:04E − 19 5:18E − 19

HDAC1 1.0260015 Up 6:77E − 19 2:89E − 18

VMP1 1.03638398 Up 1:06E − 18 4:45E − 18

RUBCN 1.05799379 Up 1:65E − 18 6:76E − 18

BAK1 1.61591549 Up 1:55E − 17 5:67E − 17

CD46 1.12531986 Up 1:83E − 17 6:60E − 17

CASP3 1.01180546 Up 1:98E − 17 6:98E − 17

DDIT3 1.50655255 Up 3:18E − 17 1:10E − 16

CAPN2 1.4191918 Up 3:60E − 17 1:23E − 16

SQSTM1 1.73640938 Up 9:02E − 17 2:89E − 16
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summary, the prognostic model we constructed in this
study is not only helpful in identifying the potential mech-
anism of autophagy but also important for developing an
effective prediction tool for HCC patients.

2. Materials and Methods

2.1. Data Acquisition. The Human Autophagy Database
(HADb, http://www.autophagy.lu/index.html) is the first
human autophagy-dedicated database. It is a public reposi-
tory containing information about the human genes involved
in autophagy described to date [13]. All ARGs for subsequent
analysis were downloaded from this database. The expression
data (type: FPKM) and clinical information of HCC were
obtained from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/) database to identify differentially
expressed ARGs and construct the prognostic model, and
independent datasets obtained from the International Cancer
Genome Consortium (ICGC, https://icgc.org) were used to
validate the model. Data were downloaded from the publicly
available database; hence, additional ethical approval was not
necessary for this study.

2.2. Differentially Expressed ARGs and the Enrichment
Analysis. The Wilcoxon rank-sum test was used for the iden-
tification of differentially expressed ARGs in HCC samples
compared with noncancer tissue samples with the criteria

of adjusted p value < 0.05 and ∣log2FC ∣ >1. The Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were performed using the R clus-
terProfiler package, and the GO and KEGG results were visu-
alized using the GOplot package. A p value < 0.05 was set as
the cutoff criterion for both GO and KEGG functional
analyses.

2.3. Construction and Validation of the Prognostic Model.
Univariate Cox regression analysis evaluated the associa-
tion between the expression of differentially expressed
ARGs and patient overall survival (OS). Genes with a p
value less than 0.05 were considered prognosis-related
ARGs and then entered into a stepwise multivariate Cox
regression analysis tested by AIC (Akaike Information
Criterion, assessing the goodness of fit of a statistical
model) to identify the predictive model. Then, a prognos-
tic model was constructed, and the formula of the risk
score was as follows: risk score = ðthe expression of gene1
× regression coefficient of gene1Þ + ðthe expression of gene2
× regression coefficient of gene2Þ +⋯+ðthe expression of
genen × regression coefficient of genenÞ.

Based on the risk score, HCC patients were classified
into low- or high-risk groups. Survival curves were gener-
ated using the Kaplan-Meier method, and two-sided log-
rank tests were employed to compare the differences in
OS between the low- and high-risk groups. Univariate
Cox regression analysis and multivariate Cox regression
analysis were conducted to explore whether the risk score
could be an independent indicator of OS in the TCGA
data cohort of HCC patients. The sensitivity and specific-
ity of the prognostic model to predict the clinical outcome
of HCC patients were analyzed by calculating the area
under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve. Moreover, an independent data
cohort of the ICGC database was used to further confirm
the predictive value of the model.

2.4. Statistical Analysis. R 3.6.1 (https://www.r-project.org)
was utilized for plot and statistical analysis. The Wilcoxon
rank-sum test was used to identify differentially expressed
ARGs. Univariate Cox regression analysis was performed
to estimate the prognosis-related ARGs. Multivariate Cox
regression analysis was used to construct the prognostic
model. An independent t-test was used to analyze the
associations between risk score and conventional clinical
parameters. ROC analysis was performed to test the sensi-
tivity and specificity of the model. The survival curve was
plotted using the survival and survminer packages of R.
The forest maps were plotted by the forestplot package
of R. The survivalROC package of R was used to generate
ROC curves and AUC values to calculate according to
ROC curves.

3. Results

3.1. Differentially Expressed Autophagy-Related Genes
between HCC and Normal Tissues. To date, HADb datasets
include a total of 232 ARGs that have been described as

Table 2: Continued.

Gene symbol logFC Regulation p value FDR

PRKCD 1.41302501 Up 8:94E − 16 2:82E − 15

CASP8 1.04011948 Up 1:52E − 15 4:65E − 15

FOXO1 -1.0757149 Down 4:28E − 15 1:25E − 14

SPNS1 1.31587141 Up 2:15E − 14 5:96E − 14

RB1CC1 1.01420177 Up 4:73E − 14 1:29E − 13

ATG16L2 1.02505335 Up 2:00E − 13 5:40E − 13

NRG1 -1.280118 Down 5:44E − 12 1:25E − 11

DRAM1 1.2000343 Up 1:11E − 11 2:54E − 11

IKBKE 1.86880957 Up 1:30E − 11 2:93E − 11

TMEM74 2.33376628 Up 3:59E − 11 7:83E − 11

ITGB4 2.37261675 Up 1:85E − 10 3:88E − 10

RGS19 1.11586497 Up 5:15E − 10 1:02E − 09

NRG2 2.87978625 Up 1:43E − 09 2:68E − 09

ATG9B 1.05236942 Up 5:60E − 06 8:32E − 06

SPHK1 2.84999763 Up 8:75E − 05 1:21E − 04

ITGA3 2.09689798 Up 4:48E − 04 5:89E − 04

TP63 1.90806327 Up 2:37E − 03 2:93E − 03

IRGM 2.45185036 Up 3:98E − 03 4:86E − 03

NKX2-3 2.56776198 Up 4:50E − 03 5:46E − 03

HSPB8 2.02223664 Up 9:57E − 03 1:13E − 02

logFC: log(fold change); FDR: false discovery rate.
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being involved in autophagy. A total of 50 nontumor tis-
sues and 374 tumor tissue samples with mRNA expression
profiles and 235 HCC clinical follow-up data points were
downloaded from the TCGA database (Table 1). Com-
pared with the noncancer tissue samples, 62 differentially
expressed ARGs were identified in the HCC samples
(Table 2). The results of hierarchical cluster analysis
showed that the HCC samples could be clearly distin-
guished from the normal tissues based on the differentially

expressed ARGs (Figure 1(a)), and the volcano plot
showed that there were 4 downregulated genes and 58
upregulated genes among these ARGs (Figure 1(b)). Fur-
thermore, a scatter plot was generated to visualize the
expression levels of differentially expressed ARGs between
HCC and normal tissue (Figure 1(c)).

3.2. Enrichment Analysis of the Differentially Expressed ARGs.
To further investigate the biological functions of the
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Figure 1: The differentially expressed autophagy-related genes (ARGs) between normal and hepatocellular carcinoma (HCC) tissues. (a) The
hierarchical clustering of differentially expressed ARG expression levels. (b) The volcano plot for the differentially expressed ARGs. Red
indicates high expression, green indicates low expression, and black indicates no difference between HCC and normal tissue. (c) The
boxplot for the expression patterns of 62 significant differentially expressed ARGs in HCC and normal tissue.
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differentially expressed ARGs in HCC, we performed GO
term function and KEGG pathway enrichment analyses
for these genes (Table 3). For biological processes (BPs),
these ARGs participate in autophagy, processes utilizing
autophagic mechanisms, macroautophagy, and the regula-
tion of autophagy. In terms of cellular components (CC),
the genes were related to autophagosomes, phagophore
assembly sites, vacuolar membranes, and autophagosome
membranes. Changes in molecular function (MF) were
enriched in protein kinase regulator activity, kinase regula-
tor activity, cysteine-type endopeptidase activity, and BH
domain binding (Figure 2, Table 3). Furthermore, KEGG
pathway analysis showed that these genes mostly partici-
pated in autophagy-animal, apoptosis, platinum drug resis-
tance, and longevity regulating pathways (Figures 3(a) and
3(b); Table 4).

3.3. Identification of Prognostic-Related ARGs. To identify
ARGs associated with the clinical outcomes of patients,
univariate Cox regression analysis was applied with the
criterion of a p value < 0.05. As shown in Figure 4, 34
genes were selected and significantly associated with the
overall survival (OS) of HCC patients. The hazard ratio
(HR) of each gene was calculated, and all 34 genes had
an HR > 1, indicating that all of these genes are risk fac-
tors for OS in HCC patients.

3.4. Construction and Validation of the ARG-Based
Prognostic Model. Based on the prognosis-related ARGs,
multivariate Cox regression analysis was performed to
construct the ARG-based prognostic model. Three genes,
PRKCD, BIRC5, and ATIC, were finally selected to con-
struct the model (Table 5), and the risk score formula of

Table 3: GO analysis of differentially expressed autophagy-related genes.

Category ID Term Count p value

Biological process GO:0006914 Autophagy 31 8:54E − 33

Biological process GO:0061919 Process utilizing autophagic mechanism 31 8:54E − 33

Biological process GO:0016236 Macroautophagy 23 2:05E − 26

Biological process GO:0010506 Regulation of autophagy 18 1:38E − 17

Biological process GO:0016241 Regulation of macroautophagy 14 3:91E − 16

Biological process GO:0070997 Neuron death 13 1:53E − 10

Biological process GO:2001233 Regulation of apoptotic signaling pathway 13 7:96E − 10

Biological process GO:0097193 Intrinsic apoptotic signaling pathway 11 2:51E − 09

Biological process GO:0071900 Regulation of protein serine/threonine kinase activity 13 7:65E − 09

Biological process GO:0042475 Odontogenesis of dentin-containing tooth 7 1:68E − 08

Cellular component GO:0005776 Autophagosome 7 1:26E − 08

Cellular component GO:0000407 Phagophore assembly site 5 1:38E − 08

Cellular component GO:0005774 Vacuolar membrane 11 4:53E − 08

Cellular component GO:0000421 Autophagosome membrane 4 2:83E − 06

Cellular component GO:0098589 Membrane region 8 1:05E − 05

Cellular component GO:0005770 Late endosome 7 1:43E − 05

Cellular component GO:0005765 Lysosomal membrane 8 1:74E − 05

Cellular component GO:0098852 Lytic vacuole membrane 8 1:74E − 05

Cellular component GO:0101031 Chaperone complex 3 3:25E − 05

Cellular component GO:0045121 Membrane raft 7 7:15E − 05

Molecular function GO:0019887 Protein kinase regulator activity 7 4:93E − 07

Molecular function GO:0019207 Kinase regulator activity 7 1:14E − 06

Molecular function GO:0004197 Cysteine-type endopeptidase activity 5 1:55E − 06

Molecular function GO:0051400 BH domain binding 3 4:96E − 06

Molecular function GO:0008234 Cysteine-type peptidase activity 6 1:35E − 05

Molecular function GO:0051087 Chaperone binding 5 1:72E − 05

Molecular function GO:0031072 Heat shock protein binding 5 3:93E − 05

Molecular function GO:0044389 Ubiquitin-like protein ligase binding 7 6:46E − 05

Molecular function GO:0030295 Protein kinase activator activity 4 9:71E − 05
Molecular function GO:0019209 Kinase activator activity 4 0.000135
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the model was as follows: risk score = ð0:3175 × PRKCD
expressionÞ + ð0:4397 × ATIC expressionÞ + ð0:2479 × BIRC
5 expressionÞ.

To assess the performance of the prognostic model in
predicting the clinical outcome of HCC patients, we calcu-
lated the risk score of each HCC patient and divided
patients into high- or low-risk groups using the median
risk score as the cutoff value. The survival curve indicated
that the high-risk group (n = 117) suffered significantly
lower 3- and 5-year survival rates than the low-risk group
(n = 118) (Figure 5). The risk score distribution, survival
status of each patient, and heat map of the three gene
expression profiles in the TCGA database are shown in
Figure 6. The results indicated that survival time decreased
and the mortality rate increased as the risk scores
increased. We further analyzed the associations between
the expression of the three ARGs and clinical parameters
in HCC patients. The results of the independent t-test
are shown in Figure 7. We observed significant correla-
tions between overexpression of PRKCD and advanced
histological grade (p = 0:001), advanced T stage (p = 0:011
), advanced pathologic stage (p = 0:011), and female sex
(p = 0:032). High BIRC5 expression was closely related to
advanced T stage (p = 0:007), advanced pathologic stage
(p = 0:007), and advanced histological grade

(p = 3:352e − 04). Overexpression of ATIC occurred in
the advanced T stage (p = 0:047), advanced pathologic
stage (p = 0:047), and advanced histological grade
(p = 0:002). In particular, we used the same method to
analyze the correlations between the risk score calculated
by the model and clinical parameters. As shown in
Figures 7(k)–7(n), we found that a high-risk score was sig-
nificantly related to younger patients (p = 0:047), advanced
T stage (p = 0:002), advanced histological grade (p = 0:001
), and advanced pathologic stage (p = 0:002).

Then, we wanted to determine whether the risk scores
or other conventional clinical parameters of HCC patients
were independent risk factors for the OS of patients. In
Figure 8, univariate Cox analysis showed that advanced
pathologic stage, advanced T stage, advanced M stage,
and risk score were risk factors for OS. However, after
adjusting for clinical parameters, only the risk score
remained an independent prognostic indicator for HCC
patients in multivariate analyses (HR = 1:745, 95%CI =
1:420‐2:145, p < 0:001). Moreover, we plotted the ROC
curve to compare the predictive value of the risk score
with other clinical parameters, as is shown in Figure 9.
The results indicate that the T stage (AUC = 0:708) and
pathological stage (AUC = 0:703) have the highest predic-
tive value among the conventional clinical parameters.
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However, the predictive value of the risk score
(AUC = 0:758) was higher than that of the T stage and
pathological stage.

3.5. Confirmation of the Prognostic Model Using an
Additional Data Cohort. The International Cancer Genome
Consortium (ICGC) database contains large-scale cancer
genome studies in tumors from 50 different cancer types
[14]. To further validate the predictive value of this model,
we downloaded the data cohort (Liver Cancer-RIKEN, JP,

https://dcc.icgc.org/releases/current/Projects/LIRI-JP), which
contains expression profiles and clinical follow-up informa-
tion from 232 HCC patients. We analyzed the correlation
between the expression levels of three genes and the survival
of HCC patients in both the TCGA and ICGC databases.
Kaplan-Meier analysis results indicated that high expression
of the three genes was significantly associated with inferior
OS in HCC patients (Figure 10). Similarly, these patients were
divided into low- or high-risk groups based on the risk score
calculated by the prognostic model constructed based on the
TCGA data. The Kaplan-Meier analysis of the two groups
was significantly different (p = 4:505e − 06 < 0:001) and a sim-
ilar trend was observed in TCGA (Figure 11(a)). In addition,
the AUC calculated by the ROC curve was 0.739, which indi-
cated that the model has good performance for predicting
HCC patient survival (Figure 11(b)).

4. Discussion

The incidence of HCC is characterized by insidiousness,
rapid progression, and a low early diagnosis rate. Most
patients are already in advanced tumor stages when they
receive treatment [15, 16]. Due to the heterogeneity of
liver cancer, conventional clinical parameters such as age,
sex, grade, and TNM stage often do not accurately predict
clinical outcomes [17]. Therefore, there is an urgent need
to develop new prognostic features to facilitate the predic-
tion of clinical outcomes in HCC patients. In recent
decades, many studies have focused on identifying novel
biomarkers to promote the prediction of HCC patient sur-
vival [18–20]. Based on the advantages of this type of
research, the combination of multiple prognosis-related
genes with conventional clinical parameters to construct
a prognostic model may have better predictive value for
HCC patients.

Autophagy is an intracellular self-digestion process that
plays a fundamental role in cell homeostasis, and numer-
ous studies have demonstrated that ARGs play important
roles in tumorigenesis [21–23]. Therefore, identifying bio-
markers from ARGs may provide new perspectives of the
diagnosis or treatment for various cancers. Recently, accu-
mulating reports have shown that using ARGs to build a
prognostic model can provide better prediction of clinical
outcomes for cancer patients. Lin et al. established a prog-
nostic signature based on three ARGs in thyroid cancer
[11]. Wang et al. analyzed TCGA and GEO datasets to
construct and validated an autophagy-clinical prognostic
model in bladder cancer [12]. Although numerous studies
have confirmed the close relationship between the devel-
opment of HCC and autophagy, a prognostic model based
on ARGs in HCC had not been reported previously.

In this study, we used high-throughput expression pro-
file data from TCGA to construct an ARG prognostic
model and validated this model using data from TCGA
and ICGC. First, we identified 62 ARGs were differentially
expressed in tumor tissues. GO analysis and KEGG path-
way enrichment analysis were used to explore the potential
biological functions of these genes. GO enrichment
revealed that these genes were mostly enriched in

Table 4: KEGG analysis of differentially expressed autophagy-
related genes.

ID Term Count p value

hsa04140 Autophagy-animal 16 2:50E − 16

hsa04210 Apoptosis 10 2:02E − 08

hsa01524 Platinum drug resistance 7 5:52E − 07

hsa04211 Longevity regulating pathway 7 2:15E − 06

hsa04136 Autophagy-other 5 2:24E − 06

hsa04215 Apoptosis-multiple species 5 2:24E − 06

hsa04115 p53 signaling pathway 6 8:78E − 06

hsa04218 Cellular senescence 8 1:14E − 05

hsa04657 IL-17 signaling pathway 6 3:84E − 05

hsa04151 PI3K-Akt signaling pathway 10 1:19E − 04

p value Hazard ratio
RUBCN 0.010

0.007
<0.001
<0.001

<0.001

<0.001
<0.001

<0.001

<0.001

<0.001

<0.001
<0.001

0.001

0.002

0.009
0.008

0.035

0.034

0.038

0.047
0.004

0.042
0.014
0.007
0.009
0.026
0.006

0.007
0.008

0.003
0.039

0.003
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Figure 4: Thirty-four differentially expressed autophagy-related
genes with a prognostic value determined by univariate Cox
regression.
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autophagy, a process utilizing autophagic mechanisms,
macroautophagy, and autophagosomes, indicating that
the differentially expressed genes mainly affect the progres-
sion of liver cancer by affecting autophagy [24, 25]. KEGG
pathway enrichment was mainly enriched in autophagy-
animal, apoptosis, and platinum drug resistance. The
results are consistent with previous studies showing that
dysregulated apoptosis and platinum-based resistance are
common features of many cancers, including HCC [26–
28]. Then, univariate Cox regression analysis identified
34 genes closely related to the survival of HCC patient,
and multivariate Cox regression analysis finally selected
three key genes (PRKCD, BIRC5, and ATIC) to construct
the prognostic model. We divided patients into high- or
low-risk groups and found that the high-risk group had

a lower 3- or 5-year survival rate. Then, we confirmed that
the risk score calculated by the model formula was an
independent prognostic indicator after adjusting for other
clinical parameters. In addition, ROC curve analysis dem-
onstrated that the risk score has a better predictive value
than other clinical parameters. Furthermore, we also
observed a similar trend of survival analysis and ROC
curve analysis in an independent dataset from the ICGC
database which further confirmed the reliability of this
prognostic model.

The three ARGs that we have selected to construct the
prognostic model have been reported to be involved in the
development of cancer in other studies. PRKCD is one of
the PKC family members and is a family of serine- and
threonine-specific protein kinases that can be activated
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Figure 7: Continued.
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by calcium and the second messenger diacylglycerol [29].
Previous studies suggested that PRKCD can show
completely opposite effects on tumors in different cell
types [30]. For example, PRKCD overexpression protected
keratinocytes from UV-induced apoptosis and enhanced
long-term survival which is a protective mechanism
against skin carcinogenesis [31, 32]. LV et al. found that
PRKCD can promote tumor progression in pancreatic
cancer [33]. In liver cancer, Zhang et al. reported that
dihydromyricetin inhibits the migration and invasion of
hepatoma cells by reducing MMP-9 expression via a
mechanism that is dependent on the upregulation of
PRKCD [34]. Nambotin et al. confirmed that Frizzled-7
displays anticancer properties against HCC involving
PRKCD activation [35]. In addition, Cai et al. implied that
PRKCD is an independent gene involved in the progres-
sion of NAFLD to HCC [36]. Combined with our
research, we suggest that high expression of PRKCD in
HCC may affect tumorigenesis and serve as a biomarker
for predicting patient survivals. BIRC5 (also known as
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survivin) is a member of the inhibitor of the apoptosis
(IAP) gene family, which is essential for cell division and
can inhibit apoptotic cell death [37, 38]. Ambrosini et al.
first described this gene as an oncogene that is promi-
nently expressed in all common human cancers of the
lung, colon, pancreas, prostate, and breast [39]. Consistent
with the results of previous studies, Chen et al. recently
found that increased BIRC5 expressions are associated
with histological grade, tumor size, and TNM stage in
HCC patients which is consistent with our findings [40].

The protein encoded by ATIC is the last enzyme in the
de novo purine biosynthetic pathway [41]. Previous stud-
ies have demonstrated that the purine synthesis pathway
correlates with cancer cell proliferation [42, 43]. Li et al.
recently found that ATIC is an oncogenic gene that pro-
motes survival, proliferation, and migration by targeting
AMPK-mTOR-S6K1 signaling in HCC [44]. Although
many studies have reported that all three ARGs we
selected to construct prognostic models were directly or
indirectly involved in various cancers, this is the first study
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Figure 10: The correlation between the expression level of three genes included in the prognostic model and survival of HCC: (a) ATIC
expression level and patient survival (data from TCGA), (b) PRKCD expression level and patient survival (data from TCGA), (c) BIRC5
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to combine those genes with clinical information to pre-
dict the prognosis of HCC.

In summary, we constructed and validated a prognostic
model based on three ARGs and this model could be a useful
tool to predict the survival of HCC. To our knowledge, the
three ARG-related prognostic models have not been reported
previously, and the differentially expressed ARGs may pro-
vide a new perspective for the study of HCCmolecular mech-
anisms. However, there are some limitations of our research
that should be taken into consideration. First, we only
focused on the mRNA levels of these genes, and protein levels
should be further investigated. Second, the results are exclu-
sively based on the TCGA and ICGC datasets, and additional
independent cohorts are necessary to confirm the reliability
of this model. Third, the results of our study are descriptive
and the potential molecular mechanisms of the three genes
warrant additional functional experiments.
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