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Introduction. In recent years, the tumour immunosuppressive mechanism has attracted attention as a cause of tumour
chemoresistance. Although chemoresistance and immunosuppression of tumours have been reported to be associated with a
hypoxic environment, effective treatments to improve hypoxia in tumours have not yet been established. We have previously
applied carbon dioxide (CO2) to squamous cell carcinoma and have shown that improvement in local oxygenation has an
antitumour effect. However, the effects of local CO2 administration on tumour immunosuppression, chemoresistance, and
combination with chemotherapy are unknown. In this study, we investigated the effects of local CO2 administration on
squamous cell carcinoma and the effects of combined use with chemotherapy, focusing on the effects on tumour
immunosuppressive factors. Methods. Human oral squamous cell carcinoma (HSC-3) was transplanted subcutaneously into the
back of a nude mouse, and CO2 and cisplatin were administered. After administration twice a week for a total of 4 times,
tumours were collected and the expression of tumour immunosuppressive factors (PD-L1, PD-L2, and galectin-9) was evaluated
using real-time polymerase chain reaction and immunostaining. Results. Compared with the control group, a significant
decrease in the mRNA expression of PD-L1 was observed in both, CO2-treated and combination groups. Similarly, the
expression of PD-L2 and galectin-9 decreased in the CO2-treated and combination groups. Furthermore, immunostaining also
showed a significant decrease in the protein expression of tumour immunosuppressive factors in the CO2-treated and
combination groups. Conclusion. It was confirmed that the tumour immunosuppressive factors decreased due to local CO2
administration to the mouse model. CO2 administration has the potential to improve the hypoxic environment in tumours, and
combined use with chemotherapy may also improve tumour immunosuppression.

1. Introduction

The currently available main standard treatments for head
and neck cancers are surgery, radiotherapy, and chemother-
apy. Among them, chemotherapy is often selected in com-
bination with radiotherapy as either radical or additional
postoperative treatment. In addition, chemotherapy is often
used to treat recurrent and metastatic cancer. However,
resistance to chemotherapy is an important problem in can-
cer treatment.

Hypoxia is one of the most important factors that cause
chemotherapy resistance. For head and neck squamous cell
carcinoma (HNSCC), hypoxia-induced drug resistance has
been reported with cisplatin administration [1, 2]. One of

the important factors involved in hypoxia-induced drug
resistance and especially chemotherapy resistance is
hypoxia-inducible factor-1 (HIF-1), which acts through the
development of hypoxia. HIF-1 transcriptional targets may
induce drug resistance by affecting drug transporters [3–7].

In recent years, tumour immunosuppression, in which
cancer avoids the immune system of the living body, has
received attention as a cause of cancer treatment resistance.
Tumour immunosuppression is also related to hypoxia [8–
10]. A hypoxic environment and increasing levels of HIF-1
affect the expression of immunosuppressive factors such as
programmed death-ligand 1 (PD-L1) and programmed
death-ligand 2 (PD-L2) in the tumour microenvironment
[11, 12]. Shen et al. reported that PD-L1 may be strongly
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associated with the development of cisplatin resistance in
HNSCC cell lines [13]. Therefore, improvement of the hyp-
oxic environment in cancer tissues is important for cancer
treatment, and various approaches have been attempted to
achieve this [8]. However, effective treatments for improving
tumour hypoxia have not yet been established. Methods need
to be developed for improving the hypoxic environment in
the tumour effectively and efficiently.

Carbon dioxide (CO2) therapy is generally known for
improving the hypoxic environment. This effect of CO2 is
mainly caused by an increase in blood flow and a partial
increase of O2 pressure in the local tissue; this is known as
the Bohr effect [14]. In previous studies, we developed a
CO2 administration method, which can allow efficient local
absorption of CO2 [14, 15]. In this method, the CO2-absorb-
ing hydrogel allows absorption of CO2 gas through the skin,
and the pH of the solution decreases depending on the vol-
ume of absorbed CO2 (H2O + CO2 ⟶H+ +HCO3

−). A
study using near-infrared spectroscopy demonstrated that
this transcutaneous application of CO2 upregulates O2 pres-
sure in the local tissue [14]. We also applied CO2 to SCC
in vivo and discovered that it improved local oxygenation
in the tumour [16, 17]. However, the effects of local CO2
administration on tumour immunosuppression and che-
moresistance, when used alone and in combination with che-
motherapy, are unknown. We hypothesised that improving
the hypoxic environment by CO2 administration would
decrease immunosuppressive factors such as PD-L1, PD-L2,
and galectin-9 and improve chemoresistance.

In this study, we aimed to investigate the effects of local
CO2 administration on squamous cell carcinoma and the
effects of its combined use with chemotherapy.

2. Materials and Methods

2.1. Cell Culture. The oral cancer cell line HSC-3 was
obtained from the Health Science Research Resources Bank
(Osaka, Japan). It was established from a metastatic deposit
of poorly differentiated SCC of the tongue in a midinternal
jugular lymph node from a 64-year-old man [18]. HSC-3
cells were cultured in Eagle’s minimum essential medium
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with
10% foetal bovine serum (Sigma-Aldrich) and 1000 units/mL
penicillin/streptomycin solution (Sigma-Aldrich). Trypsin
(0.25%) and ethylenediaminetetraacetic acid (0.02%; Sigma-
Aldrich) solutions were used to isolate cells for subculture,
as previously described [16, 19].

2.2. Animal Models. Male athymic BALB/cAJcl-nu/nu nude
mice aged 7 weeks were obtained from CLEA Japan (Tokyo,
Japan). The animal experiments were approved by the Insti-
tutional Animal Care and Use Committee (Permission num-
ber: P-170402) and were performed in accordance with the
Guidelines for Animal Experimentation at Kobe University
Animal Experimentation Regulations. HSC-3 cells (4 × 106
cells in 300mL Eagle’s minimum essential medium) were
injected subcutaneously into the dorsal region of the mice.

2.3. Transcutaneous CO2 Treatment.As previously described,
the area of skin around the implanted tumour was covered
with a CO2absorption-enhancing hydrogel (CO2 hydrogel),
and this area was then sealed with a polyethylene bag; 100%
CO2 gas was then pumped into the bag [16] (Figure 1).
Transcutaneous CO2 treatment was applied for 20min, fol-
lowing which the hydrogel was gently wiped off the skin.
Control animals were treated similarly, with room air replac-
ing the CO2 [16, 20–22].

2.4. Cisplatin (CDDP) Treatment. Cisplatin (Randa Inj. Nip-
pon Kayaku, Tokyo, Japan) was injected intraperitoneally at
a dose of 4mg/kg twice a week for 2 weeks [23, 24].

2.5. In Vivo HSC-3 Tumour Studies. Forty mice were ran-
domly divided into four groups: a control group (n = 10), a
CO2-treated group (n = 10), a CDDP-treated group (n = 10
), and a CO2 and CDDP combination-treated (combination)
group (n = 10). Treatment commenced 14 days after HSC-3
cell implantation and was performed twice a week for 2
weeks. Tumour volume and body weight were monitored
twice weekly until the end of treatment; tumour volume
was calculated according to the formula V = π/6 × a2 × b,
where a and b represent the shorter and longer diameters
of the tumour, as previously described [16, 20–22]. At 24
hours after the end of treatment, the mice were weighed
and sacrificed, and the tumours were removed. Immediately
after dissection, single-cell suspensions were processed from
half the tumour, and RNA was extracted. The other half of
the tumour was formalin-fixed and paraffin-embedded for
staining. Serial 10mm thick transverse sections were pre-
pared from each block [16].

2.6. Quantitative Real-Time Polymerase Chain Reaction.
Primers for β-actin, which is the housekeeping gene, were
designed as follows: forward (5′-GAT GAG ATT GGC
ATG GCT TT-3′) and reverse (5′-CAC CTT CAC CGT
TCC AGT TT-3′), which was purchased from Invitrogen
(Carlsbad, CA, USA) [16]. Primers for PD-L1, PD-L2, and
galectin-9 were purchased from Sino Biological Inc. (Beijing,
China). mRNA expression of β-actin, PD-L1, PD-L2, and
galectin-9 was analysed using quantitative real-time poly-
merase chain reaction (PCR). Total RNA was extracted from
the samples using 500μL of the TRIzol reagent (Invitrogen)
per 10mg of thinly sliced tissue and cleaned using an RNeasy
Mini Kit (Qiagen, Valencia, CA, USA). cDNA was synthe-
sised (1000ng of total RNA) using a High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster City,
CA, USA). mRNA expression was analysed by quantitative
real-time PCR. Quantification of mRNA transcription was
performed using an Applied Biosystems StepOne Real-
Time PCR System (Applied Biosystems). Reaction condi-
tions included 95°C for 10min, followed by 40 cycles at
95°C for 15 s and at 60°C for 1min. The level of each target
gene was normalised to the β-actin level and expressed rela-
tive to the levels of the control group (ΔΔCT methods;
Applied Biosystems) [16].
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2.7. Immunohistochemical Staining. For immunohistochem-
ical staining, formalin-fixed and paraffin-embedded tumour
sections were pretreated with pH9 Tris/EDTA buffer for
40min at 95°C, quenched with 0.05% H2O2, and incubated
overnight at 4°C with the following primary antibodies in
Can Get Signal Immunostain Solution A (Toyobo, Osaka,
Japan): PD-L1 polyclonal antibody (Invitrogen), PD-L2
polyclonal antibody (Invitrogen), and galectin-9 polyclonal
antibody (Invitrogen). Following this, sections were incu-
bated with horseradish peroxidase- (HRP-) conjugated goat
anti-rabbit IgG polyclonal antibody (Nichirei Bioscience,
Tokyo, Japan) for 30min at room temperature. Signals were

developed as a brown reaction product using peroxidase sub-
strate 3,3′-diaminobenzidine (Nichirei Bioscience). The sec-
tions were counterstained with haematoxylin and examined
under a BZ-8000 confocal microscope (Keyence, Osaka,
Japan). Immunohistochemical staining was quantified using
Hybrid cell count BZ-H3C software (Keyence) [16].

2.8. Statistical Analysis. Data are presented as the mean ±
standard error. The results were analysed using Kruskal-
Wallis and Steel-Dwass tests; the level of statistical signifi-
cance was set at p < 0:05.

3. Results

3.1. Body Weight. In the CDDP-treated and combination
groups, the body weight of the mice at the end of the inter-
vention was significantly reduced compared to that in the
control group. In contrast, no significant change in body
weight was observed in the CO2-treated group after the inter-
vention (Figure 2).

3.2. Tumour Size. After 14 days, we found a significant
decrease in tumour volume in the CO2-treated, CDDP-
treated, and combination groups, compared to the control
group. The combination group demonstrated the smallest
increase in tumour volume (Figure 3).

3.3. Gene Expression. Quantitative real-time PCR showed
that the mRNA expression of PD-L1 was significantly lower
in the CO2-treated and combination groups than in the con-
trol group. Similarly, PD-L2 and galectin-9 expression in the
CO2-treated and combination groups tended to be lower
than those of the control and CDDP-treated groups. How-
ever, the difference in PD-L2 expression in each group was
not statistically significant (Figure 4).

3.4. Histological Analysis.Consistent with the results of quan-
titative real-time PCR, immunohistochemical analysis
revealed significantly decreased expression levels of PD-L1,
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Figure 1: Transcutaneous CO2 treatment. The skin around the implanted tumour was covered with CO2 hydrogel and sealed with a
polyethylene bag, through which 100% CO2 gas was administered. Treatment commenced 14 days after HSC-3 cell implantation and was
performed twice a week for 2 weeks.
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Figure 2: The average body weight of the mice at each time point.
Body weight was monitored twice a week for 2 weeks from the
start of treatment.
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PD-L2, and galectin-9 in the CO2-treated and combination
groups compared to the control and CDDP-treated groups
(Figures 5 and 6).

4. Discussion

In this study, we showed that transcutaneous CO2 applica-
tion reduced the expression of PD-L1, PD-L2, and galectin-
9 in SCC tissues. The combination of cisplatin and CO2
application also reduced the expression of these tumour
immunosuppressive factors.

To the best of our knowledge, this is the first study on the
effects of local CO2 administration on chemotherapy and
tumour immunosuppression. The negative impact of hyp-
oxia on cancer cells in relation to the efficacy of chemother-
apy has been known for several decades [13]. As tumours
develop regions of hypoxia, they acclimate through the acti-
vation of HIFs, which upregulate the expression of multiple
genes associated with angiogenesis, metabolic regulation,
pH balance, and cell apoptosis. This results in the promotion
of tumour survival [25]. Furthermore, changes in tumour
properties by the upregulation of HIFs make solid tumours
difficult to treat, leading to resistance to chemotherapy,
radiotherapy, and immunotherapy [25].

In recent years, immune checkpoint inhibitors have been
shown to affect cancers that are resistant to conventional che-
motherapy, and the involvement of tumour immunosup-
pression in cisplatin-resistant tumours has attracted
attention [26]. The PD-1/PD-L1 pathway is one of the repre-
sentative pathways for tumour immunosuppression in head
and neck cancer. Programmed cell death 1 (PD-1) is an
immune checkpoint receptor expressed on cytotoxic T cells;
there are two ligands, namely, PD-L1 and PD-L2 [27–29].
These are expressed in various cells, including cancer and
immune cells, and downregulate T-cell antitumour activity
[27–32]. Galectin-9 is a ligand for the immune checkpoint
molecule Tim-3, which suppresses antitumour immune sur-
veillance by killing cytotoxic T lymphocytes and impairing
natural killer cell activity [33, 34]. There are only few reports
on the regulation of galectin-9 expression, and the details of
its mechanism remain unclear.

In contrast, there are various reports on the effects of cis-
platin and tumour immunosuppressive factors. Many studies
have shown that PD-L1 and PD-L2 are upregulated by che-
motherapy including cisplatin, but some have shown con-
trasting results. Ock et al. reported that HNSCC cell lines
treated with cisplatin show increased PD-L1 expression
[35]. There are also research reports showing increased PD-
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Figure 3: Tumour growth rate in the control group (a), CO2-treated group (b), CDDP-treated group (c), and combination group (d). Tumour
size was monitored twice a week for 2 weeks from the start of treatment, and tumour volume was calculated according to the formula V =
π/6 × a2 × b, where a and b represent the shorter and longer diameters of the tumour. The tumour growth rate was calculated based on
the tumour volume 14 days after cell transplantation.
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L1 expression with platinum treatment in other tumours [36,
37]. Sudo et al. reported that cisplatin also increased PD-L2
expression in oral squamous cell carcinoma cell lines [38].
However, no significant change in PD-L1 expression was
observed in the chemosensitive cells [13]. In this study, there
was no significant difference in the expression of both, PD-L1
and PD-L2, in between the CDDP-treated and control
groups. The tumour volume decreased on administration of
cisplatin. However, cisplatin did not affect the tumour immu-
nosuppressive factors in this study. In addition, at the end of
the intervention, the body weight of the mice in the CDDP-
treated and combination groups was significantly reduced
compared to that in the control group. Although the dose
of CDDP was not considerably higher than those of previous
studies [39, 40], it is possible that the observed weight loss
was related to the toxicity of cisplatin. These results may be
attributed to the type of cell line, the cisplatin treatment reg-

imen, and the time point of evaluation. To evaluate the effects
of chemotherapy, it is necessary to examine treatment condi-
tions in further investigations. At least, the findings suggest
that CO2 administration does not increase the toxicity of
cisplatin.

Hypoxia can affect immune evasion in tumours, and sev-
eral mechanisms have been reported [41]. HIF-1α, a tran-
scription factor that promotes the transcription of genes
required for adaptation to hypoxia, regulates PD-L1 expres-
sion transcriptionally [11, 12]. It is suggested that a similar
mechanism is involved in the regulation of PD-L2 expression
[42]. It has also been reported that PD-L2 expression is
upregulated by GLUT1, which is a target gene of the HIF
pathway [42]. These findings suggest that the hypoxic envi-
ronment in the tumour, chemotherapy resistance, and
tumour immunosuppressive effect appear to interact with
each other. Therefore, it is expected that improving the
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Figure 4: Relative mRNA expression. At the end point, the mean expression of mRNA of PD-L1 (a), PD-L2 (b), and galectin-9 (c) in each
group was evaluated using quantitative real-time PCR.
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Figure 5: Immunohistochemical staining area. Quantification of mean immunohistochemical staining of PD-L1 (a), PD-L2 (b), and galectin-
9 (c). The stained area at each randomly selected point in each group was quantified.
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Figure 6: Immunohistochemical staining. Representative histological sections for PD-L1, PD-L2, and galectin-9 in the implanted tumour
from each group. Bar = 100 μm.
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hypoxic environment of tumours may reduce the expression
of tumour immunosuppressive factors, which may lead to
improved tumour chemotherapy resistance. Hence, various
methods such as hyperbaric oxygen therapy, hypoxia-
activated prodrugs, and oxygen transport agents have been
devised to improve hypoxia in the tumour [8]. However, no
clinically effective method has been established for improv-
ing tumour hypoxia to date [8].

We have previously reported that the transcutaneous
application of CO2 improves hypoxia in healthy people and
various animal models [14, 43, 44]. It has been confirmed that
transcutaneous CO2 application to the flap on the back of rats
improves its blood flow and reduces HIF-1α [45]. Transcuta-
neous CO2 application also suppresses the growth of primary
human SCC and related lymphogeneousmetastasis by making
their environment less hypoxic and increasing HIF-1α [16,
17]. In this study, it is highly likely that the decrease in PD-
L1 and PD-L2 expression in the CO2-treated group was
caused by the improvement of hypoxia through CO2 applica-
tion. In the combination group, galectin-9 showed similar
results as those of PD-L1 and PD-L2. Although the effect of
the combined use with cisplatin could not be confirmed at this
time, the findings suggest that CO2 application is effective in
reducing tumour immunosuppressive factors that are gener-
ally elevated. Based on the findings of this study, we speculate
that the combined administration of CO2 may reduce che-
moresistance to cisplatin by improving hypoxia.

The strengths of the transcutaneous CO2 administration
method used in this study lie in the fact that it is an inexpen-
sive and simple method, which can efficiently supply oxygen
locally. If transcutaneous CO2 administration can improve
tumour immunosuppression and treatment resistance, it is
expected to have many subsequent effects, such as improve-
ment of patient prognosis, increase in survival rate, decrease
in drug dose, and reduction of side effects associated with
tumour treatment. However, for clinical application, gaseous
CO2 cannot be applied to the head and neck region; this is a
limitation. We are therefore developing a paste, in which
CO2 is generated; the produced CO2 is efficiently absorbed
from the skin without the formation of gaseous CO2.

5. Conclusions

We confirmed that transcutaneous CO2 application to a
mouse model, in which an SCC was transplanted, reduced
tumour immunosuppressive factors such as PD-L1, PD-L2,
and galectin-9. This suggests that transcutaneous CO2 appli-
cation improved the hypoxic environment in the tumour and
that combined use with chemotherapy may also improve the
tumour immunosuppressive mechanism. Further studies are
required to confirm the mechanism and clinical effect of CO2
application on immunosuppression and chemotherapy.
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