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Background. Tripterygium wilfordii Hook F (TwHF) has been used in traditional Chinese medicine (TCM) for treating
cardiovascular disease (CVD). However, the underlying pharmacological mechanisms of the effects of TwHF on CVD remain
elusive. This study revealed the pharmacological mechanisms of TwHF acting on CVD based on a pharmacology approach.
Materials and Methods. The active compounds were selected from the Traditional Chinese Medicine Systems Pharmacology
(TCMSP) database according to the absorption, distribution, metabolism, and excretion (ADME). The potential targets of
TwHF were obtained from the SwissTargetPrediction database. The CVD-related therapeutic targets were collected from the
DrugBank, the GeneCards database, and the OMIM database. Protein–protein interaction (PPI) network was generated by the
STITCH database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses
were performed by R package. The network of drug-targets-diseases-pathways was constructed by the Cytoscape software.
Results. The 41 effective ingredients of TwHF and the 178 common targets of TwHF and CVD-related were collected.
Furthermore, AKT1, amyloid precursor protein (APP), mitogen-activated protein kinase 1 (MAPK), phosphatidylinositol 3-
kinase catalytic subunit alpha (PIK3CA), and cellular tumor antigen p53 (TP53) were identified as the core targets involved in
the mechanism of TwHF on CVD. Top ten GO (biological processes, cellular components, and molecular functions) and KEGG
pathways were screened with a P value ≤0.01. Finally, we constructed the network of TwHF-targets-CVD-GO-KEGG.
Conclusions. These findings demonstrate that the main active compound of TwHF, the core targets, and pathways maybe
provide new insights into the development of a natural therapy for the prevention and treatment of CVD.

1. Introduction

Cardiovascular disease (CVD) is a collective term for cardio-
vascular and cerebrovascular diseases, which is the first cause

of death in the world [1]. The burden of CVD is on the rise
globally, especially in middle- and low-income countries
(LMIC) [2, 3]. In 2013, the World Health Organization
(WHO) proposed that countries should reduce premature
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mortality that related to noncommunicable diseases, includ-
ing CVD, by 25% by 2025 [4]. Although Western medicines
have made good progress in reducing the risk of cardiovascu-
lar events and total mortality, patients with long-term cardio-
vascular treatment still have difficult adherence that might
lead to discontinuation of these drugs. This can be attributed
to the adverse reactions caused by multiple pharmacologic
agents and some drugs that beyond the affordability of LMIC
[3, 5]. Traditional Chinese medicine (TCM), with thousands
of years of history in China, has gained widespread clinical
applications. In particular, TCM occupies a special position
in their heart of the elderly. As a critical component of com-
plementary and alternative medicine, TCMmedications have
been used for the prevention and treatment of CVD [6].

Tripterygium wilfordii Hook F (TwHF), also known as
Leigongteng and Thunder God Vine, has possessed many
pharmacological activities such as anticancer, anti-inflam-
mation, antifibrosis, antiatherosclerosis, and antiautoim-
mune disorders [7–9]. Recently, several fundamental
researches have indicated that low-dose TwHF can prevent
cardiovascular diseases. Low-dose TwHF can improve the
inflammatory reaction, reduce myocardial injury, and opti-
mize acute coronary syndrome (ACS) rat’s condition with
inhibition of myocardial apoptosis [10]. TwHF extracts were
shown to have cardioprotection effects by inducing the acti-
vation of Nrf2/HO-1 defense pathway, inhibiting the activa-
tion of NF-κB pathway and reducing the expression of
NLRP3 inflammasome [11–13]. In addition, the extracts
can not only improve the vascular function in atherosclero-
sis, but also may help in the prevention of in-stent restenosis
formation following endovascular treatment of lower-
extremity artery disease [14, 15]. However, the underlying
pharmacological mechanisms of the effects of TwHF on
CVD remain elusive.

Network pharmacology is an innovative way to analyze
the complicated relationship between drugs and disease at

the system level, which can provide clues for discovering
new drugs [16]. This approach integrates and constructs
the complicated networks among drug targets, disease tar-
gets, and biological processes [17]. It is possible to reveal
potential drug-target-disease interactions and realize novel
therapeutic application beyond the TCM application through
network pharmacology [18]. In this study, target prediction,
pharmacokinetic evaluation, molecular structure, biological
function, and pathway analysis using many available public
databases and bioinformatics tools have systematically eluci-
dated the mechanisms of therapeutic effects of TwHF on
CVD (Figure 1).

2. Materials and Methods

2.1. Active Component Screening. Traditional Chinese Medi-
cine Systems Pharmacology database (TCMSP, https://
tcmspw.com/tcmsp.php) is an efficient pharmacology
resource, which can be used to assess the pharmacokinetics
of TCMs or related compounds [19]. It can provide the
absorption, distribution, metabolism, and excretion (ADME)
properties of compounds, the main indicators of which are
oral bioavailability (OB) and drug similarity (DL). OB is a
reliable indicator to evaluate the intrinsic quality of drugs
objectively, which represents to the speed and degree of
absorbing drugs into the circulatory system. And DL repre-
sents the sum of the pharmacokinetic properties and safety
of compounds, which is calculated by comparing the func-
tional or physical properties of the compounds with those
of the majority of known drugs [20]. In this paper, the com-
pound name “Leigongteng” was inputted to the TCMSP
database, and active ingredients with DL ≥ 0:18 and OB ≥
30% were selected for subsequent analysis. Then, SMILES
and PubChem ID of candidate components were collected
by using the Traditional Chinese Medicines Integrated Data-
base (TCMID, http://www.megabionet.org/tcmid/) [21] and

Admet screening Targets fishing Targets verification Go and KEGG analysis

Active compounds Putative targets

Molecular level Pharmacological level Systems level Mechanism of action

Molecular docking Signaling pathway Networks construction

Networks analysis

Figure 1: Network pharmacology for deciphering pharmacological mechanisms of Tripterygium wilfordii Hook F acting on cardiovascular
disease.
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the PubChem (https://pubchem.ncbi.nlm.nih.gov/) database
[22].

2.2. Identified and Predicted Targets of TwHF. The targets of
active components in TwHF were obtained from the Swis-
sTargetPrediction (http://www.swisstargetprediction.ch),
which is a free public resource used to accurately predict tar-
gets for bioactive molecules [23]. The therapeutic targets of
active ingredients were predicted by inputting these compo-
nents SMILES into SMILES string (s) and searching for their
similar molecules. Within the range of “Homo sapiens,” high
probability targets (probability P < 0:05) were collected after
duplicate contents were removed.

2.3. Target Identification of Known Therapeutic Targets
Acting on CVD. The CVD-related therapeutic targets were
collected from the DrugBank (http://www.drugbank.ca)
[24], the OMIM database (https://omim.org) [25], and the
GeneCards database (https://www.genecards.org) [26].
DrugBank is a freely available network database, which pro-
vides molecular information about drugs, drug targets, drug
effects, and drug interactions. OMIM database, a compre-
hensive web resource, is focusing on genes, genetic pheno-
types, and their relationships. In addition, GeneCards is a
public database that provides detailed information on anno-
tated and predicted genes. With “cardiovascular disease” as
the keyword, CVD-related targets were searched among the
three databases.

2.4. Protein–Protein Interaction (PPI) Network Construction
and Analysis. The identified targets were uploaded to the
STITCH database v5.0 (http://stitch.embl.de/) [27] to build
the protein–protein interaction network and clarify the func-
tional and physical association between them. The protein
interactions were limited to a combined score of 0.9 or
higher. The core target genes were determined based on the
criterion of combined score ≥ 0:9 and the number of
interactions.

2.5. GO and KEGG Pathway Enrichment Analyses. GO anal-
ysis can supply gene product biological function information
and divide candidate targets into various functional modules,
including cellular components (CCs), biological pathways
(BPs), and molecular functions (MFs) [28]. KEGG analysis
can give functional meaning to genes at molecular or higher
levels [29]. Enrichment analyses of GO of core target genes
and KEGG were performed by using R (version 3.6.0 for
Windows). By using a cut-off value adjusted to P < 0:05, the
top ten GO enrichments and KEGG pathways were screened.

2.6. Construction of Network Relationships. Cytoscape is a
free application software, which can transform biomolecular
interaction networks into a versatile and interactive visuali-
zation framework [30]. The core targets of TwHF on CVD
were constructed for KEGG-GO enrichment visualization
by the Cytoscape (v3.7.1) software [31]. In the interactive
network, the nodes include TwHF, CVD, and their core tar-
gets, GO and KEGG pathways. Then, the edges represent the
interaction between them.

2.7. Molecular Docking. The crystal structures of target pro-
teins were collected from the RCSB Protein Data Bank
(http://www.pdb.org/) and decorated by removing the
ligands and water motifs, adding hydrogen, and optimizing
the mutation sites by the PyMOL (version 2.3). The 3D
chemical structural formulas of key ingredients were col-
lected from PubChem and energy minimized by using
ChemBioDraw 3D (version 14). The sites, binding ability,
and interactions between compounds and targets were ana-
lyzed by PyMOL, AutoDockTools (version 1.5.6), and Dis-
covery Studio 2020 Clients [32, 33]. Autodock vina (1.1.2)
was used to conduct docking between compounds and target
proteins.

3. Results

3.1. Active Ingredient Screening. Total of 51 effective ingredi-
ents of TwHF that satisfied DL ≥ 0:18 and OB ≥ 30% were
screened from TCMSP. But the structural formula of 41
effective ingredients of TwHF could be obtained from Pub-
Chem (https://www.ncbi.nlm.nih.gov/pccompound) for sub-
sequent analysis (Table 1).

3.2. Target Identification of TwHF and CVD. Firstly, a total of
827 candidate targets of TwHF were downloaded from Swis-
sTargetPrediction (Supplementary Table 1). Secondly, 76
known CVD-related targets were downloaded from the
DrugBank database, 358 known CVD-related targets were
downloaded from the GeneCards database, and 474 known
CVD-related targets were downloaded from the OMIM
database (Supplementary Table 1). Then, 802 CVD-related
targets were identified by removing the repeated targets.
Finally, the 178 common targets of the targets of CVD-
related and TwHF were selected for subsequent analysis
(Supplementary Table 1).

3.3. PPI Network Construction and Analysis. Firstly, the PPI
network was generated by uploading these 178 identified tar-
gets to the STITCH database, and screening condition was
limited to combined score ≥ 0:9. Then, AKT1, amyloid pre-
cursor protein (APP), mitogen-activated protein kinase 1
(MAPK), phosphatidylinositol 3-kinase catalytic subunit
alpha (PIK3CA), and cellular tumor antigen p53 (TP53) were
identified based on the number of interactions (Table 2).
These five genes were considered the key putative targets
involved in the effects of TwHF on CVD. The raw data
(combined score ≥ 0:9) was shown in Supplementary
Table 2.

3.4. GO and KEGG Pathway Enrichment Analyses. The 178
candidate targets were selected for GO and KEGG pathway
enrichment analyses. The top ten GO analyses of biological
process (BP), cellular component (CC), and molecular func-
tion (MF) categories were screened (Figure 2). As the results
of GO enrichment, the enriched biological process categories
were dominated by ERBB signaling pathway, regulation of
generation of precursor metabolites and energy, peptidyl-
serine phosphorylation, aging, peptidyl-serine modification,
regulation of developmental growth, neuron death, regula-
tion of DNA metabolic process, cellular response to peptide,

3BioMed Research International

https://pubchem.ncbi.nlm.nih.gov/
http://www.swisstargetprediction.ch
http://www.drugbank.ca
https://omim.org
https://www.genecards.org
http://stitch.embl.de/
http://www.pdb.org/
https://www.ncbi.nlm.nih.gov/pccompound


and response to oxidative stress. CC analysis showed that the
spindle was mainly accounted for the largest proportion. The
enrichedMF categories were dominated by phosphatase bind-
ing and protein serine/threonine kinase activity. The KEGG
pathway analysis showed that these targets were mainly
associated with cancer, melanoma, platinum drug resistance,
glioma, chronic myeloid leukemia, endocrine resistance,

sphingolipid signaling pathway, neurotrophin signaling path-
way, thyroid hormone signaling pathway, apoptosis, cellular
senescence, hepatitis C, and hepatitis B (Figure 3).

3.5. Construction of Network. The network visualization of
TwHF-targets-CVD-GO-KEGG was generated by using the
Cytoscape software (Figure 4).

Table 1: A list of the final selected compounds from TwHF for network analysis.

Molecule ID Molecule name OB (%) DL

MOL003233 Triptofordin B2 107.71 0.76

MOL003209 Celallocinnine 83.47 0.59

MOL003188 Tripchlorolide 78.72 0.72

MOL003206 Canin 77.41 0.33

MOL003225 Hypodiolide A 76.13 0.49

MOL003279 99694-86-7 75.23 0.66

MOL003208 Celafurine 72.94 0.44

MOL003244 Triptonide 68.45 0.68

MOL005828 Nobiletin 61.67 0.52

MOL002058 40957-99-1 57.2 0.62

MOL003217 Isoxanthohumol 56.81 0.39

MOL003224 Tripdiotolnide 56.4 0.67

MOL000211 Mairin 55.38 0.78

MOL003187 Triptolide 51.29 0.68

MOL003280 Triptonolide 49.51 0.49

MOL003185
(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,

4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one
48.84 0.38

MOL003248 Triptonoterpene 48.57 0.28

MOL003196 Tryptophenolide 48.5 0.44

MOL003211 Celaxanthin 47.37 0.58

MOL003267 Wilformine 46.32 0.2

MOL003184 81827-74-9 45.42 0.53

MOL011169 Peroxyergosterol 44.39 0.82

MOL000449 Stigmasterol 43.83 0.76

MOL003245 Triptonoditerpenic acid 42.56 0.39

MOL000422 Kaempferol 41.88 0.24

MOL003231 Triptoditerpenic acid B 40.02 0.36

MOL003232 Triptofordin B1 39.55 0.84

MOL000296 Hederagenin 36.91 0.75

MOL000358 Beta-sitosterol 36.91 0.75

MOL003222 Salazinic acid 36.34 0.76

MOL003189 Wilforlide A 35.66 0.72

MOL003229 Triptinin B 34.73 0.32

MOL003266 21-Hydroxy-30-norhopan-22-one 34.11 0.77

MOL003238 Triptofordin F1 33.91 0.6

MOL003239 Triptofordin F2 33.62 0.67

MOL003278 Salaspermic acid 32.19 0.63

MOL003235 Triptofordin D1 32 0.75

MOL003241 Triptofordin F4 31.37 0.67

MOL003242 Triptofordinine A2 30.78 0.47

MOL003236 Triptofordin D2 30.38 0.69

MOL003210 Celapanine 30.18 0.82
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3.6. Molecular Docking. The crystal structures of potential
targets, including AKT1 (PDB: 6CCY; 2.18Å), APP (PDB:
5BUO; 2.31Å), MAPK1 (PDB: 6SIG; 1.58Å), PIK3CA
(PDB: 4TTU; 2.18Å), and TP53 (PDB: 6RZ3; 4.23Å) were
collected (Figure 5). Other detail of protein structure could
be also found in RCSB Protein Data Bank. Figure 5 showed
celaxanthin binds to AKT1 with a binding pocket consisting
of SER-240 (2.9Å); hypodiolide A fails to bind to APP with-
out a binding pocket; triptofordin B2 binds to MAPK1 with a
binding pocket consisting of SER-153 (3.3Å) and ARG-155
(3.3Å); triptofordin B2 binds to PIK3CA with a binding
pocket consisting of GLN-582 (3.1Å); celallocinnine binds
to TP53 with a binding pocket consisting of LEU-111 (3.2
and 3.0Å), ASN-131 (3.1Å), and TYR-126 (2.9Å).

4. Discussion

There is an urgent need to promote new drugs for CVD treat-
ment because of the heavy burden of CVD and the poor effi-
cacy and side effects of the currently used medicines.
Network pharmacology was applied to reveal the interaction
between medicines and targets of diseases, and it can com-
prehensively describe the complexity between drugs and dis-
eases [33, 34]. Therefore, the use of network pharmacology
uncovering multiple drug-target interactions may contribute
to novel drug discovery in complex diseases such as CVD.
TwHF exhibits therapeutic efficacy in preclinical models of
CVD and has been identified in several studies [35–37]. In
the present study, the underlying mechanism of the protec-
tive effects of TwHF on CVD was uncovered by a network
pharmacology strategy. Therapeutic targets and signaling
pathways were investigated by database screening, PPI net-
work construction, and pathway enrichment analysis. Fur-
thermore, to validate the specific interactions between core
targets and CVD, molecular docking was conducted.

In this study, 41 active compounds of TwHF were deter-
mined based on ADME. Pharmacological analysis suggested
that these active components may have protective effects
against CVD. Nobiletin has been reported to attenuate
hypoxia/reoxygenation-induced injury by the inhibition of
oxidative stress and apoptosis in H9c2 cardiomyocytes, as
well as myocardial ischemia and reperfusion injury in vivo
[38, 39]. Triptonide ameliorates diabetic cardiomyopathy
via mediating inflammation [40, 41]. Isoxanthohumol
regulates vivo vascular proliferation and in vivo—the inflam-
matory crosstalk of vascular cells, contributing to the treat-
ment of angiogenesis and inflammation-related diseases
[42]. Stigmasterol blocked Ang II-induced aortic smooth

muscle cell proliferation by the arrest of the cell-cycle and
promoted apoptosis and ROS production [43]. Kaempferol
attenuates cardiac hypertrophy and isoproterenol-induced
heart failure in diabetic rats [44, 45].

Subsequently, the targets of TwHF and CVD were also
identified. 178 common candidate targets between TwHF
and CVDwere selected. Finally, we screened 5 core candidate
genes for further analysis. The interactive values and interac-
tion indicate that these targets are closely contacted with
other targets in “CVD-target PPI network” and are responsi-
ble for TwHF acting on CVD and the pathogenesis of CVD.
As was well known, Akt signaling plays an important role in
many processes of CVD pathology such as atherosclerosis,
vascular remodeling, and cardiac hypertrophy. Several Akt
inhibitors have been proven to be potential novel therapeu-
tics for the CVD [46]. PIK3R1, MAPK1, and PIK3CA may
modulate platelet activation and be involved in CVD [47].
Class I phosphatidylinositol 3-kinases (PI3Ks) are composed
of a regulatory subunit (p85 regulatory subunit) and a cata-
lytic subunit (p110 catalytic subunit) [48, 49]. The catalytic
subunit p110α of PI3K is encoded by the gene PIK3CA,
which regulates doxorubicin-induced cardiotoxicity [50].
Indeed, the compounded cardiovascular risk of PI3Kα inhib-
itor use in breast cancer is particularly relevant given the
prevalence of p110α gain-of-function mutations [51]. p38
mitogen-activated protein kinase (p38), extracellular signal-
regulated kinase1/2 (ERK), and c-Jun NH2 terminal protein
kinase (JNK) are major components of MAPK kinases,
which control embryogenesis, differentiation, proliferation,
and death [52]. The inactivation of JNK, p38MAPK, and
ERK1/2 could block vascular smooth muscle cell prolifera-
tion and migration [53–55]. APP is associated with the
adhesion of platelets to amyloid peptides and thrombus for-
mation [56, 57]. It was reported TP53 can differentiate
patients with left main coronary artery disease from healthy
participants [58].

Top ten GO of each category (BP, MF, and CC) and
KEGG pathways associated with TwHF acting on CVD were
classified. These categories composed of the most key targets
are considered specific and meaningful enrichment. The data
showed that the major components were mainly related with
multiple BPs, such as ERBB signaling pathway, regulation of
generation of precursor metabolites and energy, peptidyl-
serine phosphorylation, aging, peptidyl-serine modification,
regulation of developmental growth, neuron death, regula-
tion of DNA metabolic process, cellular response to peptide,
and response to oxidative stress. It is reported that ERBB sig-
naling can regulate cardiovascular development and multiple
cardiac cell biology [59, 60]. Regulation of developmental
growth and regulation of DNA metabolic process suggested
TwHF acting on CVD through cardiovascular proliferation.
However, BPs including precursor metabolites and energy,
peptidyl-serine phosphorylation, neuron death, and cellular
response to peptide have not been well investigated. Further
studies should be conducted to determine the role of these
BPs. The major components acting on CVD were also associ-
ated with spindle in terms of CC, which indicated TwHF
acting on CVD was associated with regulation of the prolifer-
ation and differentiation of cardiovascular cells. The enriched

Table 2: A list of the key putative targets involved in the effects of
TwHF on CVD.

Name The number of interactions

PIK3CA 50

AKT1 36

APP 34

TP53 34

MAPK1 31
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MF categories were dominated by phosphatase binding and
protein serine/threonine kinase activity. Various phospha-
tases promoted vascular remodeling and pulmonary arterial
hypertension by modulating smooth muscle cell proliferation
[61, 62]. Many serine-threonine kinases, such as P-21-
activated kinases, PAKs, or RhoA/Rho-kinase, have been well
demonstrated to promote the development of CVD [63, 64].
It was reported that there was a strong crosstalk between oxi-
dative stress and various CVDs, including atherosclerosis,

myocardial ischemia, ischemia reperfusion injury, and
drug-induced cardiotoxicity [65, 66]. In addition, oxidative
stress regulates multiple cardiovascular functions, such as cell
proliferation and death [67]. KEGG pathway enrichment
analysis showed TwHF may exert protective effects on
CVD mainly by cancer pathways. Cancer and cardiovascular
disease (CVD) share overlapping pathophysiology and risk
factors as well as biological mechanisms [68]. Protein–pro-
tein interaction analysis has varied roles in driving and
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Figure 2: GO map of putative target genes. (a) Biological process categories. (b) Cellular component categories. (c) Molecular function
categories.
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maintaining the growth of cancer and CVD [69, 70]. TwHF
was also determined as an efficacy treatment of multiple can-
cers [71–73]. In summary, GO and KEGG pathway enrich-
ments indicated that TwHF exerting protective effects on
CVD probably through modulation of the proliferation of
cardiovascular system cells.

According to the screening criteria of high OB, celax-
anthin, hypodiolide A, triptofordin B2, and celallocinnine
were chosen for the compound-ligand interaction analysis
by molecular docking to validate the effects of TwHF acting

on CVD. The results of molecular docking reflected that
these active compounds possess suitable anti-CVD activity.
However, to verify the active properties of TwHF and the
molecular target genes of anti-CVD, further experimental
studies need to be performed.

5. Conclusion

In summary, the network pharmacology method was per-
formed to unveil the chemical basis and investigate the action
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mechanism of TwHF on CVD. Firstly, 41 active compounds
of TwHF and 5 core target genes (AKT1, APP, MAPK,
PIK3CA, and TP53) of TwHF against CVD were identified.
Then, based on the analysis of GO and KEGG, the cancer
pathway was found to be closely associated with the protec-
tive effect of TwHF on CVD. It provides a theoretical basis

and a clue for the pharmacological mechanism study of
TwHF on CVD in this study.

5.1. Limitation. There are some limitations to this study.
Because of the collection of targets from databases, the pre-
dicted targets might be inaccurate and specific. Other values
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Figure 5: Molecular models of the binding of TwHF to the predicted targets (a) AKT1, (b) APP, (c) MAPK1, (d) PIK3CA, and (e) TP53
shown as 3D diagrams.
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of compounds might be also inaccurate, such as the OB value
of triptofordin B2, which is greater than 100%. These values
also were predicted by chemometric method. Therefore,
further experimental studies of these prediction results are
needed to validate the potential applications.
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