
Research Article
Drug-Target Interaction Prediction via Dual Laplacian Graph
Regularized Logistic Matrix Factorization

Aizhen Wang 1 and Minhui Wang 2

1Department of Pharmacy, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital
of Huai’an, Huai’an 223002, China
2Department of Pharmacy, Lianshui People’s Hospital Affiliated to Kangda College, Nanjing Medical University,
Huai’an 223300, China

Correspondence should be addressed to Minhui Wang; 12679@whut.edu.cn

Received 15 January 2021; Revised 6 March 2021; Accepted 13 March 2021; Published 28 March 2021

Academic Editor: Chang Tang

Copyright © 2021 Aizhen Wang and Minhui Wang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Drug-target interactions provide useful information for biomedical drug discovery as well as drug development. However, it is
costly and time consuming to find drug-target interactions by experimental methods. As a result, developing computational
approaches for this task is necessary and has practical significance. In this study, we establish a novel dual Laplacian graph
regularized logistic matrix factorization model for drug-target interaction prediction, referred to as DLGrLMF briefly.
Specifically, DLGrLMF regards the task of drug-target interaction prediction as a weighted logistic matrix factorization problem,
in which the experimentally validated interactions are allocated with larger weights. Meanwhile, by considering that drugs with
similar chemical structure should have interactions with similar targets and targets with similar genomic sequence similarity
should in turn have interactions with similar drugs, the drug pairwise chemical structure similarities as well as the target
pairwise genomic sequence similarities are fully exploited to serve the matrix factorization problem by using a dual Laplacian
graph regularization term. In addition, we design a gradient descent algorithm to solve the resultant optimization problem.
Finally, the efficacy of DLGrLMF is validated on various benchmark datasets and the experimental results demonstrate that
DLGrLMF performs better than other state-of-the-art methods. Case studies are also conducted to validate that DLGrLMF can
successfully predict most of the experimental validated drug-target interactions.

1. Introduction

It is well known that drug discovery is a difficult and expen-
sive process, and identifying potential drug-target interac-
tions (DTIs) plays an important role in yielding successful
candidate compounds for drug development. Predicting
interactions between different drugs and targets can provide
critical information by discovering off-target effects. Accu-
rate prediction of DTIs can also substantially accelerate lead
generation. Drug-target interaction prediction can be also
regarded as a useful step in biomedical research and precision
medicine [1–9]. However, it is still time consuming for tradi-
tional experimental approaches to identify potential DTIs,
and the success rates are also very low. In addition, only a
very limited number of DTIs have been experimentally vali-

dated. Therefore, it is necessary to develop computational
methods for DTIs, which can significantly reduce both the
time and labor costs, as well as improve the efficiency of drug
discovery. Furthermore, there are various datasets which
contain experimentally validated interactions of drugs and
targets, such as KEGG [10], DrugBank [11], and GenBank
[12], which also benefit the prediction of potential DTIs by
using computational techniques.

In recent years, a large number of computational
methods for DTI prediction have been proposed, and these
methods are often based on some machine learning and data
mining models, e.g., logistic regression [13, 14], support vec-
tor machine (SVM) [15–17], Bayesian classifiers [18], matrix
completion [9], matrix factorization [19, 20], kernel learning
[21, 22], and network inference [23–25]. For classification-
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based methods, they treat drug-target interaction pairs and
noninteraction pairs as positive instances or negative
instances and convert the DTI prediction problem into a
label classification task [14, 17]. In [15], a genetic algorithm
is used to screen related compounds; the drug-target pairs
with strong binding capacity were found with SVM and
particle swarm optimization. Garcasosa et al. [13, 18] used
logistic regression and naive Bayesian classifiers for the clas-
sification of compounds. In [26], the experimentally vali-
dated targets are employed to train a SVM model and find
potential proteins with similar structure. Network-based
methods [23, 27, 28] utilize the theory of network and graph
[29] and incorporate the drug and target similarities with
experimentally validated interactions to infer the potential
unknown drug-target interactions. Due to the strong learn-
ing capability of data representation, matrix factorization
has also been used for drug-target interaction prediction,
such as Bayesian matrix factorization [30], collaborative
matrix factorization [31], and robust graph regularized
matrix factorization [20]. The principle of these matrix
factorization-based methods lies in that a high-dimensional
drug-target interaction matrix can be decomposed into a
multiplication of low-dimensional matrices, and the intrinsic
property of original data can be well captured by these low-
dimensional matrices. Due to the powerful feature represen-
tation and linear relation learning capability, deep neural
network-based methods are also proposed to learn the rela-
tionship between drug and target [32, 33].

Although achieving great success by previous computa-
tional model learning-based methods, there are still some
limitations and much room for improvement. Firstly, in pre-
vious methods, the experimentally validated and unknown
interactions are treated equally during the learning process,
which could deduce some noisy information. Secondly, in
some learning models, drug features and target features are
difficult to select. In order to solve the above issues, we pro-
pose a novel drug-target interaction prediction model based
on logistic matrix factorization with dual Laplacian graph
regularization term by using experimentally validated inter-
actions, referred to as DLGrLMF briefly. In our DLGrLMF
model, the chemical structure similarities between drug
pairs, the genomic sequence similarities between target
pairs, and the experimentally validated interactions are inte-
grated together. The similarities between drug neighbors
and target neighbors are exploited to represent the latent
factor vector of the factorized matrices, and the potential
interactions are determined by a probability score through
the logic function.

The efficacy of the proposed DLGrLMF was evaluated on
five benchmark datasets, and we compared DLGrLMF with
several other state-of-the-art drug-target interaction predic-
tion approaches in terms of 10-fold cross-validation, and
the results demonstrate that the proposed DLGrLMF clearly
outperforms other methods. In addition, in order to validate
the ability to predict potential drug-target interactions, case
studies are also performed and the results also demonstrate
that DLGrLMF can accurately predict most of the experi-
mental validated drug-target interactions.

2. Materials and Methods

2.1. Datasets Used in Experiments. In this work, four small-
scale benchmark datasets and a large-scale dataset are used
in the experiments to evaluate the DTI prediction perfor-
mance of the proposed DLGrLMF model. The four small-
scale datasets include nuclear receptors (NRs), G protein-
coupled receptors (GPCRs), ion channels (ICs), and enzymes
(Es) [34], there are four different types of target protein, and
they are publicly available at http://web.kuicr.kyoto-u.ac.jp/
supp/yoshi/drugtarget/. As to the large-scale dataset Drug-
Bank (DB) [35], it is a unique bioinformatics and cheminfor-
matics resource which combines detailed drug data with
comprehensive drug-target information. We use the data
released on Jul. 03, 2018 (version 5.1.1), in our experiments.
The drug and target data were extracted from the DrugBank
database website at http://www.drugbank.ca/. We only use
the approved drug-target interactions for experiments. To this
end, there are totally 1936 drugs, 1609 targets, and 7019
approved drug-target interactions, respectively. We download
the approved drug structures and approved target sequences
from https://www.drugbank.ca/releases/latest#structures and
https://www.drugbank.ca/releases/latest#target-sequences,
respectively.

In Table 1, we present the detailed statistics of the five
datasets. Three types of information for each dataset are
summarized, including the similarities between drug pairs,
the similarities between target pairs, and the experimental
validated DTIs. Specifically, the validated DTIs are obtained
from public datasets including KEGG BRITE [36], BRENDA
[37], DrugBank [38], and SuperTarget [39].

2.2. Problem Formulation of DTI Prediction. In order to make
the subsequent expression clearer, we first give a brief prob-
lem formulation of DTI prediction. Throughout this paper,
we use two sets T = fTigti=1 and D = fDigdi=1 to represent t
targets and d drugs, respectively. The experimentally

Table 1: The statistics of drugs, targets, and interactions in each dataset.

Datasets NRs GPCRs ICs Es

No. of drugs 54 223 210 445

No. of targets 26 95 204 664

No. of interactions 90 635 1476 2926

Average no. of drugs/target 3.46 6.68 7.24 4.41

Average no. of targets/drug 1.67 2.85 7.03 6.58

Sparsity of the interaction matrix (%) 93.59 97 96.55 99.01
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validated DTIs are denoted as a binary matrix A ∈ f0, 1gd×t .
If a drug Di has been experimentally validated to interact
with a target T j, then Aij = 1; otherwise, Aij = 0. The elements
with a value of “1” in A represent the “known interactions”
and can be regarded as positive observations, while the zero
elements in A are set as “unknown interactions” and can be
regarded as negative observations. In addition, the drug sim-
ilarities are denoted as DS ∈ℝd×d , and the target similarities
are represented as TS ∈ℝt×t . DTI prediction is aimed at dis-
covering the potential interactions from the negative obser-
vations by using certain prior information of drugs and
targets. The candidate drug-target interactions will be chosen
as predicted interactions according to their predicted proba-
bilities in descending order.

For each dataset, three matrices including A, DS, and TS
are provided, which represent the drug-target interactions,
drug similarities, and target similarities, respectively. Each
entry of DS represents the similarity between a drug pair,
which is measured by using SIMCOMP [40] that describes
the chemical structure similarity between drugs. In SIM-
COMP, the similarity between two compounds c1 and c2
can be computed as Sðc1, c2Þ = ∣c1 ∩ c2 ∣ / ∣ c1 ∪ c2 ∣ . As to T
S, genomic sequence similarity is used to denoting the simi-
larity score between two proteins, which are obtained from
the KEGG GENES dataset [36]. The sequence similarities
between two proteins p1 and p2 are computed via a normal-
ized version of the Smith–Waterman scores [41], which is
defined as Sðp1, p2Þ = SWðp1, p2Þ/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SWðp1, p1ÞSWðp2, p2Þp

,
where SWð·, · Þ represents the original unnormalized Smith-
Waterman score.

2.3. Proposed DLGrLMF Model. Matrix factorization has
been developed for recommendation systems in the very
beginning, which decomposes the observation data matrix
X ∈Rm×n into two low-dimensional matrices U ∈Rm×k

and V ∈Rn×k, where k is the so-called number of hidden fac-
tors. Then, U and V can be regarded as the latent representa-
tion of drugs and targets in the hidden space. In recent years,
it has also been used for predicting the incRNA-miRNA rela-
tionship [42] and drug-target interaction [20]. In this work,
we propose a drug-target interaction prediction model via
logistic matrix factorization with dual Laplacian graph regu-
larization. Here, the occurrence probability pij of a certain
drug-target interaction is calculated based on the inner prod-
uct of the latent factor vectors from drug and target. Specifi-
cally, pij can be formulated as follows:

pij =
e uiv j

Tð Þ
1 + e uiv jTð Þ� � , ð1Þ

where ui is a latent row vector to represent drug di, and vj is a
latent row vector to represent target t j. Then, U and V can be
used to represent the potential characteristics of all drugs and
targets, respectively. In this work, U and V are initialized by
zero-mean spherical Gaussian priors as follows:

p U ∣ σu
2� �

=
Y

d

i=1
N ui ∣ 0, σu2I
� �

,

p V ∣ σv
2� �

=
Y

t

j=1
N vj ∣ 0, σv

2I
� �

,
ð2Þ

where Nðxi ∣ z, ZÞ represents a Gaussian probability density
function with a mean of z, a variance of Z, and an indepen-
dent variable xi.In drug-target interaction prediction studies,
known DTIs are experimentally verified and they should be
more reliable than unknown relationships. Therefore, we
should allocate higher weights to those known DTIs [43,
44]. Specifically, the known DTI pairs and nðn > 1Þ negative
samples are used for training, where the constant n deter-
mines the significance of the interaction pairs. Then, the pos-
terior distribution in logarithm can be written as follows:

log p U,V ∣A, σu
2, σv2

� �

= 〠
d

i=1
〠
t

j=1
naijuivj

T − 1 + naij − aij
� �

log 1 + e uiv j
Tð Þh i

− 12σu2 〠
d

i=1
uik k22 − 12σv

2 〠
t

j=1
vj

�

�

�

�

2
2 + C,

ð3Þ

where C is a constant.
Although minimizing Equation (3) can exploit latent vec-

tors globally to predict potential DTIs, the local similarity
information implied among drugs and targets is not taken
into consideration. Therefore, we use the drug similarities
and the target similarities to boost the prediction perfor-
mance. Instead of using all of the similarities in DS and TS,
we extract the local neighbor information of drugs and tar-
gets. As to different drugs, the local neighbor similarity
matrix DS can be obtained from DS by

DS ijð Þ =
DS ijð Þ, if di ∈N dj

� �

,
0, otherwise,

(

ð4Þ

where N ðdjÞ denoted the neighbors of drug dj.In a similar

way, the local neighbor similarity matrix TS can be obtained
from TS by

TS ijð Þ =
TS ijð Þ, if ti ∈N t j

� �

,
0, otherwise,

(

ð5Þ

whereN ðt jÞ denoted the neighbors of target t j.Since the iter-
ations between drugs and targets are complex, different to
previous graph regularized methods that only use the first-
order connections to reflect the local pairwise proximity
between vertices in a graph [45–48], we use the second-
order connection to constrain that similar drugs should be
connected with similar targets. Therefore, we have the fol-
lowing similarity affinity matrices calculating form:
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DS ijð Þ =DS ið ÞDS jð ÞT ,
TS ijð Þ = TS ið ÞTS jð ÞT ,

ð6Þ

where DSðiÞ and DSðjÞ represent the ith and jth column of
original DS, respectively, and TSðiÞ and TSðjÞ represent the
ith and jth column of original TS, respectively.

The main idea of our proposed DLGrLMF model is
under the assumption that if the chemical structure of two
drugs from a drug pair is similar to each other, their latent
representation should also be closed to each other. Similarly,
the latent representation of two targets should also be similar
to each other if their genomic sequence similarities are closed
to each other. For drugs, we can minimize the following
problem:

min
U

〠
d

i=1
〠
d

j=1
DS ijð Þ ui − uj

�

�

�

�

2
2: ð7Þ

As to different targets, we have the following similar minimi-
zation problem:

min
V

〠
t

i=1
〠
t

j=1
TS ijð Þ vi − vj

�

�

�

�

2
2: ð8Þ

By some simple algebra, Equations (7) and (8) can be trans-
formed into the following form:

min
U

Tr UTLDU
� �

, ð9Þ

min
V

Tr VTLTV
� �

, ð10Þ

where LD ∈ℝd×d is the corresponding Laplacian matrix of
drugs with LD =DD −DS, and DD is the diagonal matrix
withDDði, iÞ =∑jDSði, jÞ. LT ∈ℝt×t is the corresponding tar-

get Laplacian matrix of targets with LT =DT − TS, and DT is
the diagonal matrix with DTðp, pÞ =∑qTSðp, qÞ.By combin-
ing Equations (9) and (10) and the maximization of Equation
(3) together, we have our final DLGrLMF model as follows:

min
U,V

1 + naij − aij
� �

log 1 + e uiv j
Tð Þh i
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naijuivj
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+ Tr VTLTV
� �

,

ð11Þ

which is equal to the following problem:

min
U,V

1 + naij − aij
� �

ln 1 + e uiv j
Tð Þh i

− 〠
d

i=1
〠
t

j=1
naijuivj

T + αTr UT LD + Imð ÞU� �

+ βTr VT LT + Inð ÞV� �

,

ð12Þ

where Im and In represent two identity matrices with size m
×m and n × n, respectively. α and β are two nonnegative
constants to balance the regularization terms. In Equation
(12), the first and second terms constitute the logistic matrix
factorization model to formulate the drug-target interaction
probability. The third term is the Laplacian regularization
term to capture the local relationship between drug pairs,
and the fourth term is the Laplacian regularization term to
capture the local relationship between target pairs.

As can be seen from Equation (12), DLGrLMF models
the interaction probability between a drug-target pair by a
logistic function and decomposes the probability matrix into
drug-specific and target-specific latent vectors. In DLGrLMF,
a biologically validated drug-target pair is treated as positive
examples, while an unknown pair is treated as a negative
example. In such a manner, DLGrLMF assigns higher
weights to positive observations than negatives. Since the
positive pairs are biologically validated and thus usually more
trustworthy while the negative pairs could contain potential
DTIs and are thus unreliable, our method can fully exploit
the useful information in validated interaction pairs.

In this work, we use gradient descent to optimize Equa-
tion (12). Supposing the objective function is denoted as F ,
then the partial derivatives of F with respect to U and V
can be obtained as follows:

∂F
∂U

= PV + n − 1ð Þ A⨀Pð ÞV − nAV + α Im + LDð ÞU,
∂F
∂V

= PTU + n − 1ð Þ AT⨀PT� �

U − nATU + β In + LTð ÞV,
ð13Þ

where ⨀ denotes the Hadamard product of two matrices.
Each element of P (i.e., pi j) is formulated by Equation (1),
which denotes the probability of interaction between drug i
and target i. U and V are randomly initialized. During the
optimization process, U and V are updated until to be stable.
After we get the final solution Û and V̂, the final probability
of interaction between drug i and target j can be calculated
as follows:

p̂ij =
e ûiv̂ j

Tð Þ
1 + e ûiv̂ j

Tð Þ� � : ð14Þ

3. Experimental Results

3.1. EvaluationMetrics. In order to validate the efficacy of our
proposed method, experiments on five datasets mentioned in
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Section 2.1 are conducted. Similar to several previous works
[49–51], two evaluation metrics including precision-recall
(PR) curves and the Area Under the Precision-Recall
curves (AUPR) [52] are utilized for performance evalua-
tion. Since we intend to avoid incorrect predictions being
recommended by the prediction algorithms [52], AUPR
is desirable for evaluation because it can penalize the false
positives more.

3.2. Experiment Settings. In our experiments, we use other six
drug-target interaction prediction techniques for perfor-
mance comparison, they are bipartite local model using
neighbor-based interaction-profile inferring (BLMNII) [49],
weighted nearest neighbor profile (WNN) [50], collaborative

matrix factorization (CMF) [31], graph regularized matrix
factorization (GRMF) [51], neighborhood regularized logis-
tic matrix factorization (NRLMF) [45] and label propagation
with linear neighborhood information (LPLNI) [53], and dual
Laplacian graph regularizedmatrix completion for drug-target
interaction prediction (DLGRMC). For each method, we per-
form 5 repetitions of 10-fold cross-validation (CV) on differ-
ent datasets. In each repetition, the observed DTI indicator
matrix A was divided into 10 folds. Then, each fold was
selected for testing while the remaining 9 folds were used
for training; the final AUPR score was the average results
over 5 repetitions.

Similar to previous works [31, 54, 55], we conduct CV
under the following three different settings:

Table 2: Average AUPR values of different methods on the four datasets under CV1 setting (the values following the symbol “±” are the
standard deviations of 5 repetition results).

Methods NRs GPCRs Ics Es

BLMNII 0:642 ± 0:039 0:482 ± 0:017 0:647 ± 0:012 0:622 ± 0:014
WNN 0:568 ± 0:023 0:589 ± 0:021 0:586 ± 0:016 0:593 ± 0:015
CMF 0:578 ± 0:037 0:676 ± 0:012 0:855 ± 0:006 0:804 ± 0:004
GRMF 0:595 ± 0:024 0:677 ± 0:013 0:368 ± 0:017 0:325 ± 0:013
NRLMF 0:677 ± 0:035 0:679 ± 0:014 0:887 ± 0:012 0:846 ± 0:005
DLGRMC 0:697 ± 0:025 0:705 ± 0:016 0:897 ± 0:016 0:877 ± 0:006
DLGrLMF 0:713 ± 0:020 0:724 ± 0:012 0:908 ± 0:015 0:896 ± 0:006

Table 3: Average AUPR values of different methods on the four datasets under CV2 setting (the values following the symbol “±” are the
standard deviations of 5 repetition results).

Methods NRs GPCRs Ics Es

BLMNII 0:429 ± 0:046 0:309 ± 0:022 0:288 ± 0:027 0:287 ± 0:027
WNN 0:505 ± 0:503 0:287 ± 0:017 0:238 ± 0:035 0:236 ± 0:035
CMF 0:467 ± 0:056 0:357 ± 0:015 0:266 ± 0:033 0:269 ± 0:030
GRMF 0:483 ± 0:052 0:355 ± 0:019 0:287 ± 0:025 0:286 ± 0:024
NRLMF 0:543 ± 0:052 0:364 ± 0:017 0:347 ± 0:033 0:346 ± 0:034
DLGRMC 0:576 ± 0:053 0:375 ± 0:015 0:367 ± 0:023 0:367 ± 0:023
DLGrLMF 0:587 ± 0:018 0:395 ± 0:011 0:379 ± 0:014 0:382 ± 0:019

Table 4: Average AUPR values of different methods on the four datasets under CV3 setting (the values following the symbol “±” are the
standard deviations of 5 repetition results).

Methods NRs GPCRs Ics Es

BLMNII 0:414 ± 0:041 0:335 ± 0:013 0:203 ± 0:015 0:164 ± 0:014
WNN 0:515 ± 0:023 0:365 ± 0:006 0:320 ± 0:013 0:386 ± 0:015
CMF 0:486 ± 0:037 0:404 ± 0:008 0:357 ± 0:012 0:378 ± 0:005
GRMF 0:518 ± 0:028 0:364 ± 0:013 0:345 ± 0:019 0:348 ± 0:012
NRLMF 0:494 ± 0:046 0:412 ± 0:045 0:356 ± 0:014 0:397 ± 0:015
DLGRMC 0:528 ± 0:023 0:415 ± 0:016 0:364 ± 0:018 0:414 ± 0:013
DLGrLMF 0:538 ± 0:022 0:432 ± 0:013 0:388 ± 0:014 0:425 ± 0:011
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(i) CV1: CV on drug-target pairs—we randomly select
some entries from A (i.e., drug-target pairs) for test-
ing, which refers to test the efficacy of the DTI predic-
tion method for new (unknown) drug-target pairs

(ii) CV2: CV on drugs—we randomly select several rows
in A (i.e., drugs) for testing, which refers to the DTI
prediction for new drugs

(iii) CV3: CV on targets—we randomly select a portion
of columns in A (i.e., targets) for testing; this setting
refers to the DTI prediction for new targets

As to CV1, CV2, and CV3, we use 90% of entries in A,
90% of rows in A, and 90% of columns in A as training data
and the remaining data as testing data in each round,
respectively.
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Figure 1: The PR curves of different methods on different datasets.
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3.3. DTI Prediction Results. In Tables 2–4, we show the pre-
dicted AUPR values of different methods on different datasets
under varying CV settings. As can be seen, our proposed
DLGrLMF consistently outperforms other methods on all of
the datasets. Considering that the drug discovery and develop-

ment aim to serve the treatment of disease, in order to predict
new targets which the drugs react, we plot the precision-recall
(PR) curves of the results underCV3 for all of the datasets. The
PR curves are shown in Figure 1; the results also demonstrate
the superiority of our proposed DLGrLMF.

Table 5: The top 10 interacted targets of drug “D00094” in dataset NRs predicted by different methods (“√” denotes experimentally validated
targets, and “ × ” denotes nonvalidated targets).

Rank
Targets predicted by different methods

BLMNII WNN CMF GRMF NRLMF DLGRMC DLGrLMF

1 hsa5914 (√) hsa190 (√) hsa6096 (√) hsa6257 (√) hsa5915 (√) hsa5914 (√) hsa5914 (√)

2 hsa5915 (√) hsa6257 (√) hsa6257 (√) hsa5915 (√) hsa190 (√) hsa5915 (√) hsa5915 (√)

3 hsa6257 (√) hsa5915 (√) hsa5915 (√) hsa6256 (√) hsa6096 (√) hsa190 (√) hsa6096 (√)

4 hsa190 (√) hsa6256 (√) hsa190 (√) hsa190 (√) hsa5914 (√) hsa6096 (√) hsa190 (√)

5 hsa6258 (√) hsa190 (√) hsa6256 (√) hsa6258 (√) hsa6097 (√) hsa6257 (√) hsa5256 (√)

6 hsa6097 (√) hsa6097 (√) hsa5916 (√) hsa5916 (√) hsa6258 (√) hsa6256 (√) hsa6257 (√)

7 hsa2099 ( × ) hsa5916 (√) hsa2104 ( × ) hsa5915 (√) hsa5916 (√) hsa6258 (√) hsa6258 (√)

8 hsa4306 ( × ) hsa2908 ( × ) hsa2421 ( × ) hsa2101 ( × ) hsa6257 (√) hsa5916 (√) hsa5916 (√)

9 hsa5465 ( × ) hsa2104 ( × ) hsa4306 ( × ) hsa2104 ( × ) hsa367 ( × ) hsa2099 ( × ) hsa6097 (√)

10 hsa2104 ( × ) hsa2421 ( × ) hsa9970 ( × ) hsa5465 ( × ) hsa4306 ( × ) hsa2908 ( × ) hsa9970 ( × )

Table 6: The top 10 interacted targets of drug “D00255” in dataset GPCRs predicted by different methods (“√ “denotes experimentally
validated targets, and “ × ” denotes nonvalidated targets).

Rank
Targets predicted by different methods

BLMNII WNN CMF GRMF NRLMF DLGRMC DLGrLMF

1 hsa147 (√) hsa150 (√) hsa151 (√) hsa155 (√) hsa155 (√) hsa147 (√) hsa155 (√)

2 hsa148 (√) hsa146 (√) hsa146 (√) hsa150 (√) hsa147 (√) hsa155 (√) hsa151 (√)

3 hsa146 (√) hsa155 (√) hsa147 (√) hsa151 (√) hsa146 (√) hsa151 (√) hsa150 (√)

4 hsa150 (√) hsa153 (√) hsa148 (√) hsa147 (√) hsa150 (√) hsa150 (√) hsa147 (√)

5 hsa1812 ( × ) hsa154 (√) hsa155 (√) hsa154 (√) hsa148 (√) hsa146 (√) hsa148 (√)

6 hsa2550 ( × ) hsa1234 ( × ) hsa154 (√) hsa1268 ( × ) hsa2550 ( × ) hsa154 (√) hsa154 (√)

7 hsa2913 ( × ) hsa1241 ( × ) hsa2911 ( × ) hsa135 ( × ) hsa3361 ( × ) hsa1128 ( × ) hsa153 (√)

8 hsa5739 ( × ) hsa3354 ( × ) hsa1241 ( × ) hsa2911 ( × ) hsa5729 ( × ) hsa2911 ( × ) hsa2911 (√)

9 hsa7201 ( × ) hsa7201 ( × ) hsa3354 ( × ) hsa57105 ( × ) hsa9052 ( × ) hsa3269 ( × ) hsa3354 ( × )

10 hsa552 ( × ) hsa6751 ( × ) hsa6751 ( × ) hsa886 ( × ) hsa2911 ( × ) hsa3352 ( × ) hsa1268 ( × )

Table 7: The top 10 interacted targets of drug “D00110” in dataset ICs predicted by different methods (“√” denotes experimentally validated
targets, and “ × “denotes nonvalidated targets).

Rank
Targets predicted by different methods

BLMNII WNN CMF GRMF NRLMF DLGRMC DLGrLMF

1 hsa6336 (√) hsa11280 (√) hsa6530 (√) hsa6532 (√) hsa6529 (√) hsa6331 (√) hsa6530 (√)

2 hsa6532 (√) hsa6530 (√) hsa6532 (√) hsa11280 (√) hsa6532 (√) hsa6336 (√) hsa6532 (√)

3 hsa6530 (√) hsa6529 (√) hsa11280 (√) hsa6336 (√) hsa6336 (√) hsa6530 (√) hsa6336 (√)

4 hsa11280 (√) hsa6331 (√) hsa6529 (√) hsa6336 (√) hsa6331 (√) hsa6532 (√) hsa6331 (√)

5 hsa6529 (√) hsa6532 (√) hsa6331 (√) hsa6530 (√) hsa11280 (√) hsa11280 (√) hsa11280 (√)

6 hsa2554 ( × ) hsa2554 ( × ) hsa6336 (√) hsa6529 (√) hsa9312 ( × ) hsa6529 (√) hsa6529 (√)

7 hsa2901 ( × ) hsa9177 ( × ) hsa2901 ( × ) hsa1137 ( × ) hsa93589 ( × ) hsa1141 ( × ) hsa11254 (√)

8 hsa3748 ( × ) hsa773 ( × ) hsa27012 ( × ) hsa9312 ( × ) hsa23704 ( × ) hsa1137 ( × ) hsahsa10060 ( × )

9 hsa1134 ( × ) hsa8514 ( × ) hsa8973 ( × ) hsa3762 ( × ) hsa2892 ( × ) hsa9312 ( × ) hsa9132 ( × )

10 hsa9177 ( × ) hsa9311 ( × ) hsa2560 ( × ) hsa1139 ( × ) hsa3756 ( × ) hsa93589 ( × ) hsa9311 ( × )
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3.4. Case Study. In order to validate the capacity of
DLGrLMF for potential DTI prediction, we randomly choose
a drug from each dataset and report the top 10 predicted
interactions of different methods under CV3. The predicted
results are reported in Tables 5–8. As can be seen from the
results, our proposed DLGrLMF can successfully predict a
larger amount of the experimental validated DTIs when com-
pared with other methods, which also indicates that
DLGrLMF is capable of predicting novel DTIs for drug
development.

4. Discussion and Conclusions

In this paper, we propose a novel dual Laplacian graph
regularized logistic matrix factorization model for drug-
target interaction prediction, i.e., DLGrLMF. Specifically,
DLGrLMF regards the task of drug-target interaction predic-
tion as a weighted logistic matrix factorization problem, in
which the experimentally validated interactions are allocated
with larger weights. Meanwhile, by considering that drugs
with similar chemical structure should have interactions with
similar targets and targets with similar genomic sequence
similarity should in turn have interactions with similar drugs,
the drug pairwise chemical structure similarities as well as the
target pairwise genomic sequence similarities are fully
exploited to serve the matrix factorization problem by using
a dual Laplacian graph regularization term. By performing
extensive experiments, the efficacy of the proposed method
can be well validated, and case studies demonstrate that the
proposed method is powerful to predict potential novel
drug-target interactions.

In addition, experimental results also demonstrate that
there is still much room for improvement since there also
exists missed interactions in case studies. In this work, only
one type of representation for drugs or targets is used. In
practical, each drug/target is often with multiple representa-
tions. For example, a drug can be represented by its chemical
structure or by its chemical response in different cells. A pro-
tein target can be represented by its sequence or by its gene
expression values in different cells. In our future work, we
will try to integrate multiple representations for drug-target

interaction prediction and we believe that the prediction
results can be improved with a large margin.
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