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Background. The pathophysiology of keloids is complex, and the treatment for keloids is still an unmet medical need. Our study is
aimed at identifying the hub genes among the differentially expressed genes (DEGs) between normal skin tissue and keloids and key
pathways in the development of keloids. Materials and Methods. We downloaded the GSE92566 and GSE90051 microarray data,
which contain normal skin tissue and keloid gene expression data. GSE92566 was treated as a discovery dataset for summarizing the
significantly DEGs, and GSE90051 served as a validation dataset. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes
pathway, Reactome enrichment analysis, gene set enrichment analysis, and gene set variation analysis were performed for the
key functions and pathways enriched in DEGs. Moreover, we also validated the hub genes identified from the protein-protein
interaction network and predicted miRNA-hub gene interactions. Results. 117 downregulated DEGs and 204 upregulated DEGs
in GSE92566 were identified. Extracellular and collagen-related pathways were prominent in upregulated DEGs, while the
keratinization-related pathway was associated with downregulated DEGs. The hub genes included COL5A1, COL5A2, and
SERPINH1, which were also validated in GSE90051. Conclusion. This study identified several hub genes and provided insights
for the underlying pathways and miRNA-hub gene interactions for keloid development through bioinformatic analysis of two
microarray datasets. Additionally, our results would support the development of future therapeutic strategies.

1. Introduction

Keloid is one of the fibroproliferative disorders as a result
of deep injuries that reach the reticular dermis, such as
trauma, burn, surgery, chickenpox, vaccination, and insect
bite [1]. A typical manifestation of keloid could be keloidal
collagen or collagen bundle accumulation accompanied by
pain, pruritus, hyperesthesia, limitation of joint movement,
and/or cosmic problems [2]. Therapies including surgery,
radiotherapy, antimetabolic agents, and compression ther-
apy are used as treatments for keloid. However, it is still
challenging to cure keloid because of its high recurrence
rate [3].

Many researchers have investigated the pathophysiology
of keloids from different standpoints, including cytokines,
hypoxia, and genetics [4]. However, no definitive conclu-

sion has been derived yet. It is believed that genetics plays
a significant part in keloid formation, due to the varying
occurrence rate of keloid between ethnicities and families
[4]. The incidence of keloid ranges between 0.15% in east
Asians and 6~16% in Africans [5, 6]. Besides, family mem-
bers of keloid patients have a greater possibility to suffer
keloids than individuals with a negative family history.
The severity of keloids and the number of anatomical sites
where keloids appear are also linked to family history [7].
In spite of a seemingly obvious genetic predisposition for
this disease, genes related to keloid pathogenesis are still
unknown. Some chromosomal regions were found to possi-
bly contain genes related to family keloids [8], including
2q23 in Japanese and 7p11 in African American popula-
tions [9]. Some human leukocyte antigen (HLA) genes have
also been demonstrated to correlate with keloid formation
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[10]. Other studies have attributed the development of
keloids to genetic polymorphisms and mutations [9, 10].

In recent years, there has been an increase in the number
of publicly available transcriptome data with respect to
keloids; some studies have examined the transcriptome data
in keloids and adjacent nonlesional (NL) skin in African
Americans and Japanese, respectively [11, 12]. In this study,
our objective was to identify the differentially expressed
genes (DEGs) correlated with keloids and the pathways they
participate in, which would give vital insights into the poten-
tial pathogenesis in keloids. Meanwhile, the hub genes and
their interaction with miRNAs would be demonstrated for
a more comprehensive understanding of the potential regula-
tory network in keloids.

2. Materials and Methods

2.1. Microarray Data Download and Preprocessing. We
downloaded GSE92566 and GSE90051 microarray data from
NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/). GSE92566
contains gene expression data for 7 African American sam-
ples: 1 newly formed keloid, 3 keloid lesions, and 3 adjacent
nonlesion samples using Affymetrix Human Genome U133
Plus 2.0 Array. GSE90051 documented transcriptional profil-
ing from 7 Japanese patients with keloids by Agilent-014850
Whole Human Genome Microarray 4x44K G4112F. Raw
data of both datasets were preprocessed using R software.
Specifically, we implemented the robust multiarray average
(RMA) algorithm in oligo package [13] and preprocessing
pipeline in Limma package [14] for GSE92566 and
GSE90051, respectively, based on their platforms. The anno-
tation for the probes and clinical trait information were
downloaded using the GEOquery package [15]. GSE92566
and GSE90051 were treated as discovery and validation data-
sets, respectively, since the platform GSE90051 used only
gives the normalized log10 ratio between test and reference
while GSE92566 contains the expression value of each probe.

2.2. Identification of DEGs. Firstly, we excluded the newly
formed keloid sample in GSE92566 to achieve better consis-
tency in the data. We used the Limma package to identify the
differentially expressed probes in the keloids compared with
the normal tissue samples [16]. The authors chose the largest
value of log2 fold change for each unique probe name and
thus for each gene. The Benjamini-Hochberg (BH) method
was used to execute the multiple testing correction for acces-
sing the adjusted p value [17]. Absolute log2 fold changes
greater than 1.5 and adjusted p value less than 0.05 were
selected as the threshold values and separated the upregu-
lated genes and downregulated genes. The significant DEGs
were illustrated using R package “pheatmap” [18]. A list of
DEGs was documented for the following analysis.

2.3. Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathway, and Reactome Enrichment
Analysis.GO analysis has been a popular method to elucidate
potential biological processes (BP), molecular functions
(MF), and cellular components (CC) associated with the
genes. The KEGG pathway database contains information

about the mechanism of networking between molecules or
genes. It complements the majority of the current molecular
biology databases with further information, including infor-
mation on individual genes [19]. Biological pathways
enriched in the target genes were also interrogated with the
Reactome pathway database. We performed the enrichment
analysis in Metascape (http://metascape.org/), a gene anno-
tation and analysis resource [20]. The threshold for p value
was set at 0.01, and the minimum enrichment score was 1.5.

2.4. Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA) on the Selected Modules. GSEA
[21] was used to associate the potential gene signature sets
comparing the keloid versus skin tissue. The expression pro-
file of GSE92566 was ranked in order of log fold change, and
GSEA was performed using the Rpackage XGR [22] with the
KEGG databases and 20,000 permutations. In addition, we
used GSVA implemented in the R package GSVA [23] to
explore differences between the keloid and normal skin in
biological pathways. GSVA defines a set of genes based on a
list of biological pathways or function terms. We chose the
“h.all.v7.0.symbols.gmt” downloaded from “http://software
.broadinstitute.org/gsea/index.jsp.” Each gene set’s value rep-
resents the up- or downregulation of the specific term in that
sample. Systematic expression change of genes in the same
terms or similar processes indicates the variation in the activ-
ity of a specific pathway as a whole.

2.5. Protein-Protein Interaction (PPI) Network and Hub
Gene Identification and Validation. PPI enrichment analy-
sis was carried out using the following databases: BioGRID
[24], InWeb_IM [25], and OmniPath [26] in Metascape
(http://metascape.org/). Molecular Complex Detection [27]
(MCODE) was used to screen the densely connected network
with the default parameters in the whole PPI network. For
each MCODE component, pathway and process enrichment
analysis has been applied. The three functional description
terms with best-scoring p value have been retained. The

GSE92566 data preprocessing

Differentially expressed genes

GSVA GSE AGO, KEGG, 
Reactome enrichment analysis

Hub gene identified

miRNA-gene network Validation in GSE90051

Figure 1: Flow chart of the analysis process of the present study.
GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and
Genomes; GSVA: gene set variation analysis; GSEA: gene set
enrichment analysis.
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genes within each component were selected as hub genes. To
further confirm the hub genes we discovered, the expression
levels of hub genes were verified in the validation dataset,
GSE90051.

2.6. The Construction of the miRNA-Hub Gene Network. The
interactions of miRNA-hub genes were predicted using the
miRNet [28] web-based platform. By uploading the list of
gene IDs of interest, users can map genes to their miRNAs
according to the miRTarBase v8.0 [29], TarBase v8.0 [30],
and miRecords [31]. The results were presented as each
row representing the interaction between one miRNA and
its target and visualized in Cytoscape 3.7.2 software [32].
The interactions between two genes were acquired from the
STRING database [33]. We implemented the yFiles Layout
Algorithms app (“https://www.yworks.com/products/yfiles-
layout-algorithms-for-cytoscape”) to construct a circular lay-
out. In the network, a node represents a gene or a miRNA;
the undirected link between two nodes is an edge.

3. Results

3.1. Identification of DEGs and Function Enrichment Analysis.
The analysis workflow has been outlined in Figure 1. After
downloading and normalizing the GSE92566 and GSE90051,
we identified the DEGs between keloid and normal skin in
GSE92566 (Figure 2). 117 downregulated DEGs and 204
upregulated DEGs were identified. For upregulated and
downregulated DEGs, the GO enrichment analysis, enriched
pathways in KEGG, and Reactome database results have
been highlighted. As shown in Figure 3, the upregulated
DEGs seem to be involved in the extracellular matrix and
structure organization, collagen formation, skeletal system,
and bone development in BP and function primarily in
extracellular constituent and binding processes in MF, while
the downregulated DEGs participated in cornification, regu-
lation of ion transport, and PPAR signaling pathway.

3.2. GSEA and GSVA for DEGs. The GSEA and GSVA were
performed to explore the potential mechanisms by which

Tissue

12

10

8

6

4

Tissue
Keloid
Skin

Figure 2: Heatmap for expression profile of differentially expressed genes between the keloid and skin in GSE92566.
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the DEGs could be involved in keloid pathogenesis (Figures 4
and 5). We have reported the first six enriched gene sets in
the GSEA results sorted by the p value (Figure 4). Downreg-
ulated DEGs were enriched in the peroxisome and
proliferator-activated receptor (PPAR) signaling pathway,
while upregulated ones were enriched in natural killer cell-
mediated cytotoxicity, TGF-β signaling pathway, ECM-
receptor interaction, and focal adhesion. Meanwhile, the
GSVA results presented 10 downregulated gene sets in keloid
tissue compared with normal skin, e.g., xenobiotic metabo-
lism, UV response up, KRAS signaling up, and adipogenesis.
Upregulated pathways included TNFA signaling via NFKB,
the notch signaling, and inflammatory response (Figure 5).

3.3. PPI Network, Hub Gene Identification, and Validation in
GSE90051. After downloading the PPI results, the MCODE-
identified hub genes are illustrated in Figure 6, and the under-
lying functions are explained in Table 1. We found 32 hub

genes in GSE92566 and 9 of which were detected differentially
expressed in GSE90051 (Figure 7). Notably, the collagen-
related genes (COL5A1, COL5A2, LEPRE1, and SERPINH1)
and elastic fiber-formation-related genes (LOX, STC2,
EFEMP2, and MFAP2) were highlighted as upregulated in
the network, while keratinization-related genes (KI, KRT7,
and KRT18) were downregulated.

3.4. The Construction of the miRNA-Hub Gene Network. The
interactions between the miRNAs and genes were verified at
least in two databases. As shown in Figure 8, the upregulated
hub genes are illustrated as red circles while downregulated
ones were outlined as blue circles. SERPINH1, COL5A1,
COL5A2, LOX, and BGN were the top 5 most connected
hub genes in the network, in which the collagen-related
hub genes and elastic fiber-formation-related hub genes play
a central role. Meanwhile, hsa-miR-29a-3p, hsa-miR-29b-3p,
hsa-miR-29c-3p, hsa-miR-767-5p, and hsa-miR-484, all

0 5 10
–log10 (p)

15 20 25

R-HSA-1474244: Extracellular matrix organization

GO:0001501: Skeletal system development
M5885: Naba matrisome associated
M5884: Naba core matrisome
GO:0001503: Ossification
GO:0032963: Collagen metabolic process
GO:0001568: Blood vessel development
GO:0048598: Embryonic morphogenesis
R-HSA-2243919: Crosslinking of collagen fibrils
GO:0090287: Regulation of cellular response to growth factor stimulus
GO:0061035: Regulation of cartilage development
GO:0048729: Tissue morphogenesis
GO:0051146: Striated muscle cell differentiation
GO:0090596: Sensory organ morphogenesis
R-HSA-1566948: Elastic fibre formation
GO:0061564: Axon development
GO:0007507: Heart development
R-HSA-3781865: Diseases of glycosylation
GO:0040036: Regulation of fibroblast growth factor receptor signaling pathway

R-HSA-1474290: Collagen formation

(a)

0 2 4 6 8 10
–log10 (p)

GO:0070268: Cornification

hsa03320: PPAR signaling pathway
GO:0008610: Lipid biosynthetic process 
GO:0048871: Multicellular organismal homeostasis
hsa04970: Salivary secretion
GO:0045444: Fat cell differentiation
GO:0003012: Muscle system process
GO:0046541: Saliva secretion
GO:0042044: Fluid transport
GO:0032868: Response to insulin
GO:0006694: Steroid biosynthetic process
GO:0006820: Anion transport
GO:0015850: Organic hydroxy compound transport
GO:0048545: Response to steroid hormone
GO:0048240: Sperm capaciation
M5883: Naba secreted factors
GO:0055067: Monovalent inorganic cation homeostasis
hsa04270: Vascular smooth muscle contraction
GO:0098662: Inorganic cation transmembrane transport

GO:0043269: Regulation of ion transport

(b)

Figure 3: The top 20 functional and pathway enrichment results for a) upregulated and b) downregulated differentially expressed genes
between the keloids and skin.
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Figure 4: GSEA of expression data from GSE92566 in keloid, as compared to normal skin. The Y-axis is the enrichment score of each gene.
The X-axis represents the order of the gene in the dataset. GSEA: gene set enrichment analysis.
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associated with both collagen-related and elastic fiber-
formation-related hub genes, emerged as the most connected
miRNAs.

4. Discussion

Our study detected 117 downregulated DEGs and 204 upreg-
ulated DEGs between normal skin tissue and keloids and
explored their related biological functions and pathways.
We also built the network of the miRNA-hub genes, with

the expression of hub genes validated. This research provides
insights into the underlying pathophysiology of keloid.

The abnormal deposition of collagen within the wound is
a characteristic feature of keloids [34]. In our study, the
upregulated hub genes were found to be highly centered
around collagen-related genes, including serpin peptidase
inhibitor clade H, member 1 (SERPINH1); collagen, type V,
alpha 1 (COL5A1); collagen, type V, alpha 2 (COL5A2);
and prolyl 3-hydroxylase 1 (LEPRE1). SERPINH1 codes for
Hsp47, an essential molecular chaperone located in the endo-
plasmic reticulum for the maturation of collagen, especially
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Figure 6: PPI network analysis of (a) upregulated and (b) downregulated differentially expressed genes and the modules identified by
MCODE. PPI: protein-protein interaction; MCODE: molecular complex detection.
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Table 1: Enriched terms for upregulated and downregulated networks detected by MCODE.

Enriched terms for upregulated network detected by MCODE
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receptor signaling
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signaling events
R-HSA-373076

Class A/1
(rhodopsin-like

receptors)

MCODE_2 R-HSA-1650814
Collagen biosynthesis
and modifying enzymes

R-HSA-1474290 Collagen formation R-HSA-1474244
Extracellular matrix

organization
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type 1 collagen [35]. Previous studies have shown the rela-
tionship between the overexpression of SERPINH1 and
many kinds of cancers [36–38]. They have also indicated that
SERPINH1 takes an important part in collagen-associated
diseases, such as osteogenesis imperfecta [39] and vocal fold
mucosal fibrosis [40]. Importantly, Kishimoto et al. used
siRNA against SERPINH1 in vitro and rat models with vocal
fold mucosal fibrosis, resulting in reduced collagen formation
in both naive and scar vocal fold fibroblast and reversing the
collagen formation in fibrotic mucosa [40]. Similarly, we
detected the upregulation of SERPINH1 in our study. This
reflected possible similar pathogenesis between keloids and
vocal fold mucosal fibrosis with the participation of
SERPINH1.

Interestingly, in the earlier studies, SERPINH1 is also
relative to the hsa-miR-29 miRNA family [41, 42]. In our
miRNA-hub gene network, hsa-miR-29a-3p, hsa-miR-29b-
3p, and hsa-miR-29c-3p also play a central role in connecting
most of the upregulated hub genes. The hsa-miR-29 family,
also called the antitumor miR-29 family, is associated with
the regulation of fibrinogen. A study conducted by Fort
et al. indicated that the overexpression of the hsa-miR-29
family in transfected cells can decrease the transcript levels

of all 5 fibrinogens [43]. Meanwhile, another study reported
lower levels of the miR-29 family in keloid compared with
normal fibroblasts, which lead to increased expression of col-
lagen [44]. Our study shows a similar relationship between
the miR-29 family and keloid and provides convincing evi-
dence for potential correlative therapies [45].

Shih and Bayat gave a comprehensive summary of whole-
genome microarray analysis regarding keloid fibroblasts or
tissues [9]. They determined that only 25 common dysregu-
lated genes were in keloids in 7 studies where collagen, type
I, alpha 1 (COL1A1); collagen, type I, alpha 2 (COL1A2);
collagen, type V, alpha 2 (COL5A2); and collagen, type VI,
alpha 1 (COL6A1) were systematically upregulated. Simi-
larly, in our study, the upregulated hub genes also highly
centered around COL5A1 and COL5A2. It has been proved
that the mutation of COL5A1 and COL5A2 leads to Ehlers-
Danlos syndrome, a connective tissue disorder [46, 47].
Our study provides a novel mechanism insight whereby the
dysregulation of COL5A1 and COL5A2 might be involved
in the keloid pathogenesis.

According to the GO and GSEA results, the pathways
related to peroxisome and PPAR were enriched with down-
regulated DEGs. With troglitazone, a widely used PPAR-γ
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agonist, Zhu et al. demonstrated its inhibitory role in collagen
synthesis in human keloid fibroblasts by suppressing the
effect on TGF-β1 signaling through the upregulation of
miR-92b [48, 49]. It is believed that fibroblasts play a central
part in keloid generation through collagen formation and
deposition, ECM synthesis [50], and TGF-β signaling path-
way [51, 52]. The latter two gene sets were enriched in our
results as well. The restoration of these downregulated path-
ways by tuning the other key pathways such as PPAR could
provide possible therapeutic effects to keloids.

The present study has some limitations. Firstly, the com-
paratively small number of samples from two datasets and
limited transcriptome data in a time-series pattern might
undermine the results of our study. Secondly, our results
are based on pure public data with unavoidable biases, such
as age and gender differences. Additionally, further in vivo
and in vitro experimental exploration and validation are
required. Moreover, transcriptome analysis for keloid, using
microarray or not, has identified differentially expressed
micro-RNAs [53] during keloid formation and long noncod-
ing RNAs (lncRNAs) [54] between earlobe keloid and
normal tissue. DEGs in fibroblast and keratinocytes between
keloid and normal were also identified [55, 56]. With an
increase in the amount of data, a more systematic bioinfor-
matic analysis could provide insights into the pathophysiol-
ogy of keloids.

5. Conclusions

In conclusion, with the analysis of gene expression data from
GSE92566 and GSE90051, DEGs between keloids and nor-
mal skin tissue were identified and functionally annotated.
The biological pathways enriched in the DEGs and related
miRNAs were illustrated which provided potential therapeu-
tic choices for keloid treatment.
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