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Background. Small-cell lung cancer (SCLC) is a major cause of carcinoma-related deaths worldwide. The aim of this study was to
identify the key biomarkers and pathways in SCLC using biological analysis. Methods. Key genes involved in the development of
SCLC were identified by downloading three datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed
genes (DEGs) were screened using the GEO2R online analyzer; for the functional annotation and pathway enrichment analysis of
genes, Funrich software was used. Construction of protein-to-protein interaction (PPI) networks was accomplished using the
Search Tool for the Retrieval of Interacting Genes (STRING), and network visualization and module identification were
performed using Cytoscape. Results. A total of 268 DEGs were ultimately obtained. The enriched functions and pathways of
the upregulated DEGs included cell cycle, mitotic, and DNA replication, and the downregulated DEGs were enriched in
epithelial-to-mesenchymal transition, serotonin degradation, and noradrenaline. Analysis of significant modules demonstrated
that the upregulated genes are primarily concentrated in functions related to cell cycle and DNA replication. Kaplan-Meier
analysis of hub genes revealed that they may promote the carcinogenesis and progression of SCLC. The result of ONCOMINE
demonstrated that these 10 hub genes were significantly overexpressed in SCLC compared with normal samples. Conclusion.
Identification of the molecular functions and signaling pathways of participating DEGs can deepen the current understanding
of the molecular mechanisms of SCLC. The knowledge gained from this work may contribute to the development of treatment
options and improve the prognosis of SCLC in the future.

1. Background

Lung cancer is a major cause of carcinoma-related deaths
worldwide, and approximately 2.21 million new cases of this
disease are estimated in 2020 according to the latest WHO
data on lung cancer. Gene mutations and cell environment
changes may affect the formation, growth, and metastasis of
tumors [1]. Small-cell lung cancer (SCLC) is the main histo-
logical form of pulmonary carcinoma. Conventional treat-
ment methods include chemotherapy, radiotherapy, and
surgery. Chemotherapy is the most important treatment
method for SCLC, but issues such as high drug resistance
and recurrence rates limit its effectiveness. Because most
patients are usually at advanced stages of the disease at the
time of diagnosis, SCLC is often characterized by low survival

rates and poor quality of life. In fact, SCLC has a 5-year sur-
vival rate of <6% and high mortality; moreover, it is highly
invasive and prone to early hematogenesis and lymphatic
metastasis [2]. To date, no molecular targeted drugs have
yet been shown to significantly prolong patient survival [3].
More importantly, the molecular mechanisms underlying
the occurrence, development, invasion, and metastasis of
SCLC remain poorly understood. Thus, finding methods to
obtain a prognosis of SCLC and identify potential biomarkers
for targeted therapy is of great importance to improve the
clinical efficacy of lung cancer.

Advances in gene expression profile chip technology
over the last few decades have established a strong founda-
tion for the overall exploration of differentially expressed
genes (DEGs) in lung cancer and their biological functions.
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Studies have shown that the expression profiles of cancerous
tissues differ from those of neighboring noncancerous tis-
sues [4]. Given theoretical facts on cancer and medical data-
base as well as data mining technology in big data era, we
rationally speculated that DEGs may influence the occur-
rence and development of many diseases, including malig-
nancies. Although some RNA-sequencing (RNA-seq) are
insensitive to ribonuclease because of their unique structure,
different genes can exist in tissues and serum and possibly
even function as biomarkers for cancer. Microarray and bio-
informatics technologies show broad applications in disease
research, especially for identifying DEGs, mRNA, and
miRNA, as well as their elucidation of molecular mecha-
nisms [5–7]. Udhaya et al. used bioinformatics methods to
identify four DEGs and associated pathways in systemic
lupus erythematosus [8]. Many non-small-cell lung cancer
(NSCLC) gene expression profile studies have been
conducted using microarray technology, and numbers of
NSCLC-related DEGs have been identified [9]. Mao et al.
used bioinformatics methods to compare the differential
expressions of mRNA and microRNA between SCLC tissues
and normal lung tissues to explore the pathogenesis and
potential molecular markers of SCLC [10]. Due to the com-
plexity of the biological characteristics of SCLC, the key bio-
markers and specific targets for prognosis of SCLC remain
unclear. Therefore, it is necessary to explore more genetic
information and screen out potential or promising bio-
markers for prognosis of SCLC. Chen et al. identified 8
DEGs served as new biomarkers for prognosis of SCLC
[11]. However, due to the lack of SCLC-related gene chip
data, we need to integrate more chip database for research
and analysis of this disease. In the current study, three gene
expression profiles, i.e., GSE30219, GSE99316, and
GSE149507, were downloaded from public databases to
identify DEGs in SCLC and their related pathways. More-
over, Kaplan-Meier analysis was used to explore the rela-
tionship between prognosis and hub gene expression level,
and the Oncomine database was used to explore hub genes'
expressions between SCLC tissues and normal tissues. The
obtained data indicate that the identified DEGs may be used
as key biomarkers of SCLC. The related pathways also offer
insights into the pathogenesis of the disease.

2. Materials and Methods

2.1. Microarray Data. Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) was adopted to perform
gene chip screening. The target chip access criteria are as fol-
lows: (1) clinical SCLC specimens of the patients were
excluded from cell lines and animal experiments. (2) The
selected chip should contain SCLC and normal tissue sam-
ples. (3) Only mRNA chips that have been standardized
were employed. According to the screening criteria, several
datasets were screened out. We selected the datasets with
large numbers of samples as the research object. Three gene
profiles, i.e., GSE30219, GSE99316, and GSE149507, were
then obtained from the GEO database. The GSE30219 data-
set contained 21 SCLC and 14 normal tissue samples, the
GSE99316 dataset consisted of 23 SCLC and 42 normal

tissue samples, while the GSE149507 dataset consisted of
18 SCLC and 18 normal tissue samples.

2.2. Identifications of DEGs. We used the GEO2R (http://
www.ncbi.nlm.nih.gov/geo/geo2r) statistical tool to recalcu-
late and evaluate genes expressed differently in human SCLC
tissues and adjacent noncancerous lung tissues.

Benjamini and Hochberg (error detection rate) and t-test
methods were used in conjunction with GEO2R to calculate
FDR and P values, respectively, to identify DEGs. The DEGs
were confirmed by the following criteria: P < 0:05 and ∣log
FC ∣ >1. If logFC > 1, the gene expression is considered upreg-
ulated; if logFC < −1, the gene is considered downregulated.

2.3. Functional Enrichment Analysis of DEGs. Funrich
(http://www.funrich.org/), a stand-alone software tool used
mainly for functional enrichment and interaction network
analysis of genes and proteins, can help users load a custom-
ized database against which functional enrichment analysis
can be carried out. In our study, molecular function, biolog-
ical process, cell composition, and biological pathway was
applied to analyze the DEGs.

2.4. Construction of PPI Networks and Module Analysis.
Search Tool for the Retrieval of Interacting Genes version
11.0 (STRING; http://string-db.org) is an online tool that
could be used to identify the interactions of proteins and
obtain insights into the mechanisms of certain diseases. In
the present study, an overall score > 0:4 was set as the cut-
off point. Cytoscape version 3.7.1 software was used to
visualize the Protein–proteininteractions (PPI) networks.
Molecular Complex Detection version 1.6.1 (MCODE), a
Cytoscape plug-in, can confirm areas with dense connec-
tions to select a statistically significant model. Key modules
within the PPI networks were identified using MCODE
(MCODE score > 5, degree cut-off = 2, node score cut-off
= 0:2, max depth = 100, k‐score = 2). Enrichment analysis
of the DEGs in this module was subsequently conducted
using Funrich.

2.5. Selection and Analysis of Hub Genes. The top 10 genes in
significant modules were selected as hub genes. The cBio-
Portal online platform was employed to analyze the gene
networks obtained, as well as the relationships among coex-
pressed genes. Biological Networks Gene Oncology version
3.0.3, another Cytoscape plug-in, was used to assess the per-
formance and visualize the results of the bioprocess analysis
for the hub genes. The UCSC Cancer Genomics Browser
(http://genome-cancer.ucsc.edu) was also utilized to achieve
the hierarchical clustering of these genes. We used Kaplan-
Meier analysis to explore the relationship between prognosis
and hub gene expression level and draw the corresponding
survival curves. The ONCOMINE database was used to
analyze the expression of the hub gene between tumor and
normal tissues in clinical SCLC and the specific expression
at each stage by histogram.

2.6. Statistical Analysis. P values and FDR were calculated
using GEO2R’s built-in t-test, Benjamini and Hochberg
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(false detection rate), and other methods to determine the
DEGs of SCLC patients and controls.

3. Results

3.1. Identification of DEGs. According to the inclusion cri-
teria, a total of two mRNA microarray datasets that met
the requirements were screened out, namely, GSE30219,
GSE99316, and GSE149507. A total of 2659 DEGs (1534 in
GSE30219, 1639 in GSE99316, and 614 in GSE149507)

(Table S1) were identified from the three datasets. GEO2R
analysis showed that 268 DEGs were expressed in the three
datasets; Venn diagram analysis of these genes is shown in
Figure 1, including 192 upregulated and 76 downregulated
genes in both SCLC and normal tissues (Table S2); the list
of DEGs were shown in Table 1.

3.2. Functional Enrichment Analyses of DEGs. The results of
GO (including three categories: biological processes (BP),
cellular components (CC), and molecular functions (MF))
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Figure 1: Identification of differentially expressed genes (DEGs) between SCLC and normal tissues. (a) Volcanic distribution map of DEGs
in GSE30219 dataset. (b) Volcanic distribution map of DEGs in dataset GSE99316. (c) Volcanic distribution map of DEGs in the GSE149507
dataset (green indicates low expression, red indicates high expression, and black indicates no difference). (d) A Venn diagram shows the
DEGs with three datasets overlapping.
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and biological pathway analyses of these DEGs are shown in
Figure 2 (Table S3, S4). The upregulated DEGs related to BP
included those for chromosome segregation, regulation of
nucleobase, nucleoside, nucleotide and nucleicacid
metabolism, cell cycle, and spindle assembly. Most of the
upregulated DEGs obtained were related to MF, including
motor activity and protein binding. The upregulated DEGs
related to CC were mainly located in kinetochore, nucleus,
microtubuls, nucleoplasm, chromosome, centrometric
region, and condensed chromosome kinetochore.

While the analysis of BP in downregulated DEGs were
most but not significantly concentrated in immune response,
cell communication, and cellular defense response, most of
the downregulated DEGs obtained were related to MF,
including extracellular matrix structual constituent, water
channel activity, and catalytic activity (there was no statisti-
cal significance). The downregulated DEGs related to CC
were mainly located in extracellular and cell surface.

Furthermore, biological pathway analysis was shown in
Figure 3; the upregulated DEGs were mainly enriched in cell
cycle, mitotic, DNA replication, mitotic M-M/G1 phases, M
phase, mitotic prometaphase, and mitotic G1-G1/S phases.
The downregulated DEGs were mainly enriched in
epithelial-to-mesenchymal transition, serotonin degrada-
tion, noradrenaline and adrenaline degradation, FOXA tran-
scription factor networks, and FOXA1 transcription factor
network.

3.3. Construction of PPI Networks and Significant Module
Analysis. Understanding interactions between DEGs that
may be related to the development of SCLC is necessary to
explore the underlying mechanisms in SCLC. PPI network
was detected by STRING, as shown in Figure 4. A total of

224 nodes and 5302 edges, with each node representing a
protein (gene) and each edge representing an interaction
relationship were obtained. Genes with the most significant
modules were screened by MCODE with score > 55
(Figure 4), and results indicated that the identified genes
were all upregulated genes (Figure 5). The results of biolog-
ical pathway analysis of significant module DEGs were
shown in Figure 6 (Table S5); results showed that DEGs in
significant module were mainly enriched in cell cycle,
mitotic, and cell replication.

3.4. Hub Gene Selection and Analysis. Identification of 10
hub genes (score ≥ 69:5) was conducted, and the results are
shown in Table 2. The hierarchical clustering results in
Figure 7 reveal that the identified hub genes could distin-
guish SCLC samples from normal ones.

3.5. Prognostic Analysis of Hub Genes. Kaplan-Meier analysis
was conducted to analyze the relation between overall sur-
vival and the 10 hub genes identified earlier and predict
the association of these genes with lung cancer prognosis.
The median survival time of the group showing high expres-
sion of CHEK1, DTL, KIF14, MCM4, CENPU, NEK2
CDC20, KIF4A, and NCAPG2 was significantly shorter than
that of the group demonstrating low expression of these
genes, and the difference between groups was statistically
significant (P < 0:05) as shown in Figure 8.

3.6. Hub Gene Analysis. The ONCOMINE database could be
utilized to determine the expression of hub genes in normal
and SCLC tissues. The results in Figure 9 show that the hub
genes (except KIF4A) were significantly overexpressed in the
SCLC tissues of different studies.

Table 1: 268 DEG lists were identified and confirmed from three GEO datasets.

Regulation Number Genes

Upregulation 192

TPX2, GF2BP3, CCNB1, PCSK1, CXCL13, GINS1, ZIC2, ISL1, ANLN, BIRC5, KCNC1, KNTC1, CCNE1,
FOXM1, CDK1, RACGAP1, TOX3, CDC6, CENPU, CEL, AURKA, KIF14, MAD2L1, ZNF711, RNF182,

IGSF9, ELAVL2, KIF4A, MCM10, TYMS, DNA2, MELK, ZWINT, NDC80, PPM1E, OIP5, CCNA2, GTSE1,
POU3F2, NUF2, PTTG1, NRTN, MMP12, CDCA5, UBE2T, CKS2, FOXG1, ECT2, DEPDC1, KIF23, NOL4,
CENPE, SPAG5, TUBB2B, INSM1, HOXD10, CCNB2, PRC1, SRD5A1, CDT1, CENPW, CEP55, PLEKHG4B,
CCNE2, CDC45, PMAIP1, MCM2, MCM4, INHBE, SBK1, DLGAP5, RAD51AP1, SCG3, KIF1A, CKAP2L,
MKI67, CDCA2, CDCA8, EXO1, GRP, C12orf56, FZD3, NMU, RGS17, CENPK, LOC646903, UGT8, NEK2,
SOX2, GINS2, ESPL1, DONSON, AMER2, E2F8, MEX3B, DEPDC1B, CLGN, DSP, SOX4, ADAMDEC1,

UCHL1, EZH2, NUP62CL, CHEK1, NEIL3, KIF11, KIF18B, ASF1B, RIPPLY3, CDH2, KIFC1, FOXO6, DLX6,
NCAPG2, KIF2C, GNG4, FBXO5, C5orf34, HAGLROS, CDCA7, CDC20, RFC4, MIAT, BUB1, PBK, AP3B2,
SKA1, TRIP13, CDC7, NCAPH, ACYP1, SMC2, RMI1, ASPM, CDCA3, ATAD2, BRIP1, ELAVL4, STIL,
UBE2C, MND1, NELL1, RAB3B, HES6, POLE2, RRM2, TOP2A, FEN1, HELLS, FANCI, RAD54L, DLX5,

ZNF367, SPC25, KIF18A, DDC, KIF15, BUB1B, HJURP, DTL, FAM83D, CENPV, MEST, HMMR, NRCAM,
RIMS2, GMNN, KIF20A, ORC6, KCNMB2, SOX11, SIX1, HEPACAM2, ASCL1, PEX5L, SGO2, CDKN2A,
IGFBPL1, LHX2, ONECUT2, TTK, CDKN3, GAD1, NCAPG, RASSF6, CELF4, RMI2, RNF183, CENPF,

NUSAP1, ELAVL3, ST18

Downregulation 76

FIBIN, PPP1R14A, GHR, MAOA, GDF10, LAMP3, FCN1, HLF, FHL1, RRAD, SCN4B, SFTPD, PLAC9,
FHL5, GPM6A, NR3C2, EMCN, GPIHBP1, OGN, SCGB1A1, CA4, AQP3, LYVE1, ADAMTS8, NAPSA,

ADIRF, SRPX, RNASE1, SFTPC, FXYD1, FOSB, RSPO3, CX3CR1, WFDC1, BMP5, AOX1, CFD, RNASE4,
CHRDL1, DPP4, MUC1, CD36, SERPINA1, TNNC1, ABCA8, STEAP4, AOC3, FCER1A, ZBTB16, ASPA,
FGFR2, EDNRB, C7, DPT, MFAP4, SCARA5, MAOB, PTGDS, CDO1, ADAMTS1, S1PR1, NEXN, CA2,
SFTPB, ANPEP, AQP1, RBMS3, ADH1B, NEDD9, CXCL5, FABP4, FAM107A, GPX3, SCGB3A2, GPAT3,

FBLN5
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Figure 2: Continued.
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4. Discussion

SCLC, a subtype of lung cancer, is the sixth most common
cause of all cancer-related deaths worldwide and has signif-
icant clinical and pathological features, including early
metastasis and poor prognosis. The survival time of patients
in advanced stages of the disease is less than 1 year, and the
2-year survival rate is only approximately 5% [12]. The high
drug resistance and recurrence rates of SCLC are mainly
attributed to the high mutation rate of genes involved in this
malignancy and genomic instability. Studies have shown
that the mutation frequencies of P53 and RB1 in SCLC are
85% and 57%, respectively. Thus, mutations of P53 and
RB1 indicate poor prognosis [13]. The molecular mecha-
nisms of SCLC remain unclear, and identification of poten-
tial key genes that can serve as biomarkers is an urgent
undertaking. Bioinformatics may be used to explore gene-
level changes in SCLC and identify potential biomarkers.

In our study, three datasets, GSE30219, GSE99316, and
GSE149507, were applied to screen for DEGs between SCLC
and normal adjacent tissues, and a total of 268 DEGs were
obtained. GO and KEGG enrichment analyses were per-
formed on these 268 DEGs, and results indicated that the
upregulated DEGs were mainly enriched in cell cycle,
mitotic, DNA replication, mitotic M-M/G1 phases, M phase,
mitotic prometaphase, and mitotic G1-G1/S phases and the
downregulated DEGs were mainly enriched in epithelial-

to-mesenchymal transition, serotonin degradation, nor-
adrenaline and adrenaline degradation, FOXA transcription
factor networks, and FOXA1 transcription factor network.
Mutations in tumor cells often result in changes in the cell
cycle leading to unrestricted growth compared with that of
normal cells. Zhang et al. found that cell cycle inhibitors
could be used in SCLC to interfere with the cell cycle, induce
DNA replication stress and genomic instability, and trigger
immune response signal [14, 15]. These studies showed
consistency with the finding that dysregulation of the cell
cycle promotes tumorigenesis and progression.

In the analysis of significant module genes, it was found
that all 112 genes in cluster 1 were upregulated, and we
selected the top 10 genes as hub genes. Genes with a score
> 75 were selected as hub genes. CDC20, CENPU, CHEK1,
DTL, KIF4A, KIF14, MCM4, NCAPG2, NEK2, and FOXM1
were all located in core nodes in the PPI network, which
means these 10 genes may be critical therapeutic targets
for SCLC.

CDC20, a homolog of Saccharomyces cerevisiae cellular
division cycle 20 protein, serves as an activator of the
anaphase-promoting complex, which performs an essential
function in governing cell cycle progression for cell division
[16]. CDC20 is highly overexpressed in NSCLC patients
[17], and downregulation of CDC20 expression can slow
down the growth and colony formation rate of lung cancer
cells [18]. According to GO analysis results, CDC20 is
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Figure 2: Functional annotation and path enrichment analysis. (a) BP enriched upregulated DEGs. (b) BP enriched downregulated DEGs.
(c) MF enriched upregulated DEGs. (d) MF enriched downregulated DEGs. (e) CC enriched upregulated DEGs. (f) CC enriched
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mainly involved in the biological process of cell cycle; there
is evidence that CDC20 regulates the cell cycle progression
of cell division by targeting several key degradation sub-
strates [18]. Therefore, our results are consistent with
previous studies, suggesting that CDC20 may be a key factor
in the onset and progression of SCLC.

Centromeric protein U (CENPU), also known as myelo-
dysplastic/myeloid leukemia factor 1 Interaction protein

(MLF1IP) [19], is an important component of spindle recov-
ery after injury. CENPU is reported to be abnormally high
expressed in various human tumor tissues and is involved
in tumor progression, such as prostate cancer, breast cancer,
bladder cancer, and ovarian cancer, and its overexpression
has been shown to predict poor prognosis [20–22]. A study
has demonstrated that CENPU regulated the proliferation
and migration of lung adenocarcinoma cells through the
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PI3K/AKT pathway [23]; however, there are no data on the
carcinogenic effect and clinical significance of CENPU in
SCLC. Unfortunately, the biological process related to
CENPU was not screened in our study (the result is

unknown). In pathway analysis, CENPU was found to be
involved in the PLK pathway in addition to the pathways
related to cell cycle, DNA replication, and mitosis, which
has not been verified by basic experiments.

CHEK1, an evolutionarily conserved serine/threonine
kinase, has been shown to regulate cell cycle checkpoints,
coordinating cellular activity involved in DNA repair, and
cell cycle arrest [24]. A growing number of studies have
found that CHEK1 is highly expressed in multiple cancer
species [25–27] and is considered a potential target for can-
cer treatment. At present, there is little evidence on the rela-
tionship between CHEK1 and SCLC. Gali-Muhtasib et al.
[27] found that CHEK1 was significantly overexpressed in
SCLC compared with NSCLC samples and inhibited CHEK1
or ATR could induce genotoxic stress and apoptosis.
Through our analysis, it was found that the biological pro-
cess CHEK1 was mainly involved in was the cell cycle, and
its related pathways included ATR and ATM signaling
pathways in addition to the cell cycle [28, 29], of which
is consistent with the reported CHEK signaling pathway.
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Figure 6: Enrichment of biological pathway analysis of DEGs in a significant module.

Table 2: Top 10 hub DEGs with high score.

Gene symbol Score Type MCODE cluster

CDC20 69.5 Upregulated Cluster 1

CENPU 69.7 Upregulated Cluster 1

CHEK1 70.2 Upregulated Cluster 1

DTL 70.2 Upregulated Cluster 1

KIF4A 69.5 Upregulated Cluster 1

KIF14 70.1 Upregulated Cluster 1

MCM4 69.9 Upregulated Cluster 1

NCAPG2 69.7 Upregulated Cluster 1

NEK2 69.6 Upregulated Cluster 1

FOXM1 69.5 Upregulated Cluster 1
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It is worth noting that CHEK1-mediated inactivation of
Cyclin B is implicated in our analysis, which requires fur-
ther verification.

Until now, DTL was thought to be involved in the regu-
lation of cell cycle and DNA replication to influence tumor
progression [30]. Notably, previous studies have shown that
DTL expression is elevated in many cancers [31, 32], and the
abnormal expression of DTL is also associated with poor
prognosis [33]. However, systematic studies of the function
of DTL in tumors remain to be evaluated.

KIF4A is one of the members of the kinesin superfamily.
KIF4A is involved in a variety of cellular activities and plays
a critical role in biological processes such as mitotic spindle
formation and DNA damage repair [34]. Our analysis shows
that KIF4A is involved in biological processes of regulation
of nucleobase, nucleoside, nucleotide, and nucleic acid
metabolism, which is consistent with the previous study
[35]. A large number of studies have confirmed that KIF4A
is overexpressed in colorectal cancer, liver cancer, and lung
cancer [36–38] and is an independent prognostic risk factor
[38]. It can also be seen from the analysis results of the GEO
database that KIF4A is highly expressed in SCLC tissues, and
its high expression is related to poor prognosis of patients,
which proves that KIF4A can be used as a potential target
for the treatment of SCLC.

Like KIF4A, KIF14 is a member of the driver superfam-
ily. KIF14 is widely believed to play a role in tumorigenesis.
The overexpression of KIF14 may lead to rapid and error-
prone mitosis [39] and is involved in the progression of a

variety of malignancies, such as retinoblastoma and gastric
cancer [40, 41], providing evidence that KIF14 may be an
oncogene in the progression of a variety of cancers, while in
the study of lung adenocarcinoma, it was found that KIF14
was underexpressed in 30% of cancer tissue samples [42],
and the decreased expression of KIF14 was significantly corre-
lated with the overall survival rate of lung cancer patients [43].
However, it can be seen from our analysis that KIF14 is highly
expressed in SCLC cancer tissues, reminding us that we can
distinguish lung adenocarcinoma from SCLC by the level of
KIF14 expression. KIF14 is mainly involved in cell growth
and/or maintenance biological processes. However, it is a pity
that themain signaling pathway of KIF14’s major involvement
in SCLC process has not been found, and further research
needs to be carried out by future researchers.

MCM4 is a microchromosomal maintenance (MCM)
protein complex, which is involved in cell cycle and cell rep-
lication. In cancer cells, abnormal expression of members of
the MCM family has been reported in a wide range of can-
cers, and knockout of these genes can inhibit malignant phe-
notypes of cancer cells. Recent studies by Sanada et al. [44]
have shown that siRNA-mediated MCM4 knockdown atten-
uates the invasiveness of lung adenocarcinoma cells. In addi-
tion, their team also confirmed that siRNA-mediated MCM4
knockdown enhanced the sensitivity of SCLC cells to cis-
platin [45], suggesting that MCM4 could be used as a thera-
peutic target for SCLC.

The non-SMC lectin II complex subunit G2 (NCAPG2),
a component of the lectin II complex, interacts with PLK1 to

Gene expression RNAseq-illuminaHiSeq
CHEK1, DTL, KIF14, MCM4, NCAPG2, NEK2, FOXM1, KIF4A, CDC20 
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Figure 7: UCSC was utilized for constructing the hierarchical clustering of hub genes. The pink bands represent normal samples and the
blue bands represent SCLC samples. The red markers indicate upregulated gene expression. Blue markers indicate downregulated genes.
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regulate correct chromosome separation. Similar to our
results, NCAPG2 is highly expressed in a variety of cancers,
such as liver cancer and NSCLC [46, 47]. According to our
analysis, its overexpression leads to a short survival time,
which is consistent with the results of previous studies in other
cancer type [47]. At the same time, we also confirmed that
NACPG2 affects tumor process by participating in cell growth,
and Meng et al. also proposed the conclusion that NCAPG2
can affect cell proliferation in their study [46]. These findings
confirm that NCAPG2 is both an oncogene of SCLC and a
biomarker that predicts poor prognosis in patients.

Never in mitosis- (NIMA-) related kinase 2 (NEK2) is a
member of the serine/threonine kinase family, mainly
involved in regulating the cell cycle progression and micro-
tubule organization and stabilization [47]. Recent reports
have consistently identified high expression of NEK2 in var-
ious cancer types, including breast cancer, cervical cancer,
liver cancer, and lung cancer [48–52]. In addition, NEK2
overexpression was enhanced in advanced lung adenocarci-
noma, suggesting a role for NEK2 in tumor progression
[53]. In terms of overall survival, patients with high NEK2
expression in NSCLC and its subtypes of lung adenocarci-
noma have a poor prognosis [54, 55]. However, there are
few related studies on NEK in SCLC, and further clinical
studies and basic researches are needed. Therefore, the
expression of NEK2 may be helpful in determining tumor
progression and disease prognosis.

Forkhead Box M1 (FOXM1) is a member of the Fork-
head family of proteins and is involved in cell cycle regula-
tion. FOXM1 expression was low in quiescent cells but

elevated in most tumors, including liver cancer and gastric
cancer [56, 57]. Moreover, Hu et al. [58] found that FOXM1
and KIF4A proteins were upregulated in clinical liver cancer
tissue samples, which was positively correlated with poor
prognosis of patients with hepatocellular carcinoma. Cur-
rently, there are few studies on the biological function and
clinical significance of FOXM1 in SCLC. Notably, Liang
et al. [59] found that FOXM1 knockout inhibited SCLC for-
mation in mouse models through increased levels of neuro-
endocrine markers Ascl1 and Cgrp and decreased levels of
Yap1. In addition, this study also confirmed that SCLC with
high FOXM1 expression was significantly associated with
reduced clinical stage, extracthoracic metastasis, and OS
with shorter progression-free survival. These evidences sup-
port the application of FOXM1 as a prognostic biomarker
and potential molecular target for SCLC.

According to the Oncomine analysis results, the 10 hub
genes identified in this work were able to distinguish SCLC
samples from normal ones, thus suggesting their potential
use as diagnostic biomarkers. We used Kaplan-Meier analy-
sis to obtain the relations between these hub genes and lung
cancer prognosis and found that the median survival time of
the group with high expression of CDC20, CENPU, CHEK1,
DTL, KIF14, MCM4, NCAPG2, NEK2, and FOXM1 is sig-
nificantly shorter than that of the group with low expression
of these genes. This finding suggests that the overexpression
of these genes could predict the poor prognosis of patients
with SCLC.

At present, several scholars have studied the GEO data-
base of SCLC and obtained a certain number of DEGs. Liao
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Figure 8: Kaplan-Meier curve analysis of the influence of hub genes on the prognosis of lung cancer patients. The statistical difference was
considered significant if P < 0:05.
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et al. [60] screened out 5 highly expressed hub genes
(NDC80, BUB1B, PLK1, CDC20, and MAD2L1) from 4
datasets (GSE60052, GSE43346, GSE15240, and GSE6044),
and the cell cycle pathway was considered to be the main
pathway for the diagnosis and treatment of SCLC of these
five hub genes. Mao et al. [9] studied two databases, namely,
GSE6044 and GSE19945, and finally identified 32 miRNAs
and 32 regulated genes by using the bioinformatics platform
“miRNAWalk.” It was suggested that bioinformatics analysis
may contribute to a better understanding of the roles of
DEGs, DEM, and miRNA genes in cell proliferation and sig-
nal transduction, and their related hub genes can be used as
biomarkers for diagnosis and prognosis of SCLC, as well as
potential drug targets. Wen et al. [61] studied two databases
(GSE11969 and GSE6044) and finally confirmed 10 hub
genes (TOP2A, PCNA, RFC4, CHEK1, TYMS, MCM2,
CDC20, CDKN3, MCM3, and CDC6). At the same time,
the signaling pathways of these 10 hub genes were also ana-
lyzed to provide molecular targets and diagnostic markers
for the treatment and early diagnosis of SCLC. In the latest
study, Chen et al. [11] studied 3 databases, namely,
GSE40275, GSE99316, and GSE6052, and used GEO2R anal-
ysis tool to filter DEGs and Funrich for functional annota-
tion; then, 8 hub genes (CDC20, BUB1, TOP2A, RRM2,
CCNA2, UBE2C, MAD2L1, and BUB1B) were identified
by the PPI network, module analysis, and mRNA expression
level verification of hub genes in the ONCOMINE database.
RT-qPCR was also used in clinical samples to verify that
these hub genes may become prognostic markers or thera-
peutic targets for SCLC.

At present, the sample size of SCLC mRNA tissue in
GEO database is relatively limited. GSE6044 and
GSE60052 have been studied for several times. We need to
analyze more datasets in the database (with a large enough
sample size) to expand the number of DEGs. Therefore,
new datasets GSE30219, GSE9316, and GSE149507 were
selected for analysis in this study. Our innovation lies in
the prognostic analysis, namely, the survival curve analysis,
of the newly screened 10 hub genes, which improves the
clinical application value of hub genes. But there are limita-
tions to our study. Firstly, the data used in this study were all
from public databases, but the quality of the data could not
be evaluated. Secondly, the sample size of relevant data is
relatively small. Third, it has not been validated in clinical
samples. Therefore, a lot of valuable biological information
may be ignored in our research. Finally, all 10 hub genes
are overexpressed in SCLC, but the related mechanisms have
not been fully clarified. Therefore, more molecular evidence
is needed. In addition, current SCLC studies lack prognostic
data of these hub genes, such as survival curves, which limits
the clinical application value of hub genes. In this paper, the
expression levels of 8 pivotal genes were analyzed. Whether
these hub genes can be used as biomarkers or therapeutic
targets for SCLC needs further study.

5. Conclusion

In summary, we aimed to find DEGs associated with the
carcinogenesis and progression of SCLC. The DEGs we
obtained revealed a significant function in the occurrence
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Figure 9: ONCOMINE analysis of hub gene expression in SCLC vs. adjacent tissue.
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and metastasis of SCLC. This work provides new molecular
targets at the genetic level, as well as new insights into preci-
sion SCLC treatment. Further experiments are necessary to
verify the results.
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