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Background. Non-small-cell lung cancer (NSCLC) is a prevalent malignancy with high mortality and poor prognosis. The
radiotherapy is one of the most common treatments of NSCLC, and the radiotherapy sensitivity of patients could affect the
individual prognosis of NSCLC. However, the prognostic signatures related to radiotherapy response still remain limited. Here,
we explored the radiosensitivity-associated genes and constructed the prognostically predictive model of NSCLC cases.
Methods. The NSCLC samples with radiotherapy records were obtained from The Cancer Genome Atlas database, and the
mRNA expression profiles of NSCLC patients from the GSE30219 and GSE31210 datasets were obtained from the Gene
Expression Omnibus database. The Weighted Gene Coexpression Network Analysis (WGCNA), univariate, least absolute
shrinkage and selection operator (LASSO), multivariate Cox regression analysis, and nomogram were conducted to identify
and validate the radiotherapy sensitivity-related signature. Results. WGCNA revealed that 365 genes were significantly
correlated with radiotherapy response. LASSO Cox regression analysis identified 8 genes, including FOLR3, SLC6A11, ALPP,
IGFN1, KCNJ12, RPS4XP22, HIST1H2BH, and BLACAT1. The overall survival (OS) of the low-risk group was better than
that of the high-risk group separated by the Risk Score based on these 8 genes for the NSCLC patients. Furthermore, the
immune infiltration analysis showed that monocytes and activated memory CD4 T cells had different relative proportions in
the low-risk group compared with the high-risk group. The Risk Score was correlated with immune checkpoints, including
CTLA4, PDL1, LAG3, and TIGIT. Conclusion. We identified 365 genes potentially correlated with the radiotherapy response of
NSCLC patients. The Risk Score model based on the identified 8 genes can predict the prognosis of NSCLC patients.

1. Introduction

Lung cancer serves as themost prevalentmalignancy and is the
leading cause of tumor-associatedmortality globally, according
to the latest annual statistics report of global cancer [1]. Non-
small-cell lung cancer (NSCLC) accounts for about 83% of
primary lung cancer [2]. NSCLC is a prevalent cancer typewith
high incidence and severe mortality [3]. Although great
advancements in surgical and therapeutic interventions have
been achieved, the prognosis of NSCLC cases remains poor,
and the recurrence rate of the subjects is high due to the treat-
ment resistance or tumor metastasis [4]. Therefore, the explo-
ration of prognostic biomarkers, especially those that are
closely correlated with the treatment response, will benefit the
selection and development of therapeutic strategy for NSCLC.

The therapeutic strategy of NSCLC involves various
treatment modalities, including surgery, systemic therapies,
and radiotherapy [5]. Radiotherapy is an essential modality
of NSCLC treatment, and 77% of NSCLC patients have an
evidence-based indication for radiotherapy, although it is
often under resistance or underutilized [6]. Consequently,
the radiotherapy response significantly affects the prognosis
and thereby determines the therapy decision of NSCLC
patients [7, 8]. The exploration of radiotherapy response-
related genetic factors is helpful for the NSCLC treatment
selection and development of the combinational therapeutic
strategy [9, 10]. Several researches have explored the radio-
therapy response of NSCLC through gene expression profil-
ing. Chen et al. found that PAF was upregulated in NSCLC
samples in comparison to the normal controls, which was
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associated with the poor prognosis of NSCLC patients, and
the radiosensitivity of NSCLC cells could be improved with
the decrease of PAF expression level [11]. Four microRNAs,
including hsa-miR-98-5p, hsa-miR-495-3p, hsa-miR-302e,
and hsa-miR-613, were identified as potential biomarkers
for NSCLC radiosensitivity based on the gene expression
profiles and tumor response criterion [12]. The elevated
expression level of miR-449a could enhance the DNA dam-
age and apoptosis induced by irradiation in NSCLC cell lines
and contributed to the radiosensitivity of NSCLC [13]. The
glutamine metabolism genes, including ME1 and GOT1,
were identified as novel indicators for NSCLC radioresis-
tance and predictive biomarkers in the radiation treatment
of NSCLC [14]. However, to our knowledge, few studies have
explored the prognostic value of radiotherapy response-related
genes in NSCLC via the integration of multiple genetic factors
and establishment of predictive model by machine learning.

Combining several biomarkers into a single model will
substantially enhance the prognostic value [15–17]. The
discovery of prognostic biomarkers and signatures requires
multiple practical bioinformatic methods. The least absolute
shrinkage and selection operator method (LASSO) is a stan-
dard method for the regression of high-dimensional predic-

tors [18, 19]. LASSO has been broadly applied to the Cox
proportionate hazard regression model for the prognostic
analysis of high-dimensional data [20]. Besides, the
Weighted Gene Coexpression Network Analysis (WGCNA)
is a helpful tool to investigate the relationship between gene
expression and clinical traits in many malignancies includ-
ing NSCLC [21]. In addition, the nomogram is a prevalently
utilized tool in oncology, which is able to build a particular
probability by integrating different determinant and prog-
nostic variables according to corresponding clinical features
[22]. However, the application of these bioinformatic tools
in the exploration of prognostic signature related to radio-
therapy response of NSCLC patients is still limited.

In this study, we were interested in integrating the anal-
ysis of mRNA expression profiling data of NSCLC samples
that have undergone radiotherapy and bioinformatics to
identify the prognostic value of radiotherapy sensitivity-
associated genes in NSCLC. A total of 365 genes potentially
correlated with the radiotherapy response of NSCLC
patients were identified, and 8 genes were selected for the
Risk Score model. The Risk Score model as well as the
nomogram model based on the Risk Score and smoking sta-
tus could reliably predict the prognosis of NSCLC patients.

Table 1: Clinicopathological characteristics of NSCLC patients from TCGA database.

Characteristics
LUAD patients

(N = 500)
LUSC patients
(N = 493)

No. % No. %

Age
≤median 247 49.40% 276 55.98%

>median 253 50.60% 217 44.02%

Smoke
Yes 342 68.40% 418 84.79%

No 158 31.60% 75 15.21%

Sex
Female 270 54.00% 128 25.96%

Male 230 46.00% 365 74.04%

Race

White 286 57.20% 348 70.59%

Black or African American 52 10.40% 29 5.88%

Asian 7 1.40% 9 1.83%

American Indian or Alaska Native 1 0.20% 0 0.00%

Unknown 54 10.80% 107 21.70%

Pathologic stage

i 268 53.60% 241 48.88%

ii 119 23.80% 158 32.05%

iii 80 16.00% 83 16.84%

iv 25 5.00% 7 1.42%

Unknown 8 1.60% 4 0.81%

Survival time
Long (>5 years) 52 10.40% 84 17.04%

Short (<5 years) 448 89.60% 409 82.96%

Radiotherapy

Yes 62 12.40% 65 13.18%

No 65 13.00% 77 15.62%

Unknown 373 74.60% 351 71.20%

Chemotherapy

Yes 136 27.20% 109 22.11%

No 78 15.60% 79 16.02%

Unknown 286 57.20% 305 61.87%

OS status
Dead 182 36.40% 211 42.80%

Alive 318 63.60% 282 57.20%
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Figure 1: Continued.
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2. Materials and Methods

2.1. Data Collection. The mRNA expression profiling data of
493 lung squamous cell carcinoma (LUSC) samples and 500
lung adenocarcinoma (LUAD) samples with complete sur-
vival information were obtained from The Cancer Genome
Atlas database (TCGA, https://tcga-data.nci.nih.gov/tcga/).
The detailed clinical information of the samples is shown
in Table 1.

The mRNA expression profiling data of the GSE30219
dataset contained 307 NSCLC patients, in which 274
patients had complete survival information. The mRNA
expression profiling data of the GSE31210 dataset contained
246 NSCLC patients, in which 226 patients had complete
survival information. The expression of genes was analyzed
using the Affymetrix Human Genome U133 Plus 2.0 Array
platform. The samples with incomplete survival information
were excluded, while samples with complete survival infor-
mation were retained for further analysis.

2.2. WGCNA. WGCNA was performed by the WGCNA R
package in the NSCLC samples with a clear record of radio-
therapy response from TCGA database [23]. The hierarchi-
cal cluster was conducted based on the gene expression of
the sample. The modules were identified using the dynamic
cut tree method, and the genes with high similarity were
classified into the same module. The module eigengene
(ME) value of each module and the correlation coefficient
of the ME value with the phenotype, including age (contin-

uous phenotype), gender (binary classification phenotype),
and the patient’s response to radiotherapy (continuous phe-
notype), were calculated. The minimum number of genes
was set as 50 for each module, and the height was set as 0.25.

2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Analysis. GO and KEGG pathway
analyses were performed by using clusterProfiler package of
R [24]. The GO included molecular function (MF), biologi-
cal process (BP), and cellular component. P < 0:05 was
regarded as statistically significant.

2.4. LASSO Cox Regression Analysis. The correlation of gene
expression with overall survival (OS) of NSCLC patients was
evaluated by univariate Cox regression, in which the thresh-
old was P < 0:05. The LASSO Cox regression analysis was
performed to further optimize the genes associated with
the prognosis of NSCLC using the glmnet R package [25].
The Risk Score was calculated based on the selected genes
using the following formula:

Risk Score = 〠
n

i=1
Coef i ∗ xi: ð1Þ

Coef i was the risk coefficient of each factor calculated by
the LASSO Cox model, and Xi was the mRNA expression
value of the selected genes. Herein, we standardized the
expression values of the selected genes to the data with the
average value of 0 and standard deviation of 1. The optimal
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Figure 1: WGCNA and functional enrichment analysis. (a) The cluster analysis was performed in 27 NSCLC samples with clear record of
radiotherapy response from TCGA database. (b) Selection of the soft threshold. The red line was the correlation coefficient, and the power
value of β = 5 was selected as the soft threshold to construct a scale-free network. The left panel showed the scale-free fit index (y-axis) as a
function of the soft threshold power (x-axis). The right panel displayed the mean connectivity (degree, y-axis) as a function of the soft
threshold power (x-axis). (c) The clustering dendrograms of genes were shown, with assigned module colors. The gray module contained
the genes that could not be clustered into other modules. (d) The correlation of the modules with the clinical traits, including age, stage,
and radiotherapy, was shown in the heat map, with corresponding correlation coefficient and P value. (e) The top 20 significantly
enriched GO terms. The y-axis was the GO terms, and the x-axis was the gene numbers. (f) The top 20 significant enriched KEGG
pathways. The y-axis was the KEGG pathways, and the x-axis was the gene number.
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cutoff value of Risk Score was identified by survival R pack-
age, survminer R package, and two-sided log-rank test [26].
Then, the samples were separated into a low-risk group
and high-risk group based on the cutoff value.

2.5. Survival Analysis. The OS was analyzed by the survival
and survminer R packages based on the Kaplan-Meier
method [26], and the difference in the OS of distinct groups
was evaluated by the two-sided log-rank test. To further
evaluate whether the Risk Score was an independent signa-
ture, we performed the multivariate Cox regression analysis,
containing age, TNM stage, gender, smoking status, and the
Risk Score for the LUSC samples that have undergone radio-
therapy from TCGA.

2.6. Analysis of Immune Infiltration. The immune infiltra-
tion of 22 immune cells in the samples was analyzed by
using CIBERSORT software combined with the LM22 fea-
ture matrix [27]. The sum of the proportions of all estimated
immune cell types in each sample is equal to 1.

2.7. Nomogram Construction. A concise nomogram for
survival prediction of the NSCLC patients was established
using the rms R package based on the independent factors
identified by multivariate Cox regression analysis [28]. The
calibration curve of the nomogram was obtained, and the
relationship between the predicted probability of nomogram

and the actual incidence rate was observed. P < 0:05 was
considered statistically significant.

2.8. Statistical Analysis. The OS derived from Kaplan-Meier-
based survival analysis of distinct groups was compared by
the two-sided log-rank test. The difference in the immune
cell infiltration of the samples was analyzed by the Wilcoxon
rank-sum test with the threshold of P < 0:05. The statistical
analysis was performed by R software (version v3.5.2).

3. Results

3.1. WGCNA and Functional Enrichment Analysis. To evalu-
ate the correlation of potential genes with radiotherapy
response of NSCLC patients, 27 NSCLC samples with clear
record of radiotherapy response from TCGA database
(Table S1) were used to establish the coexpression module
by WGCNA. The cluster analysis showed that there were
no outliers in the samples (Figure 1(a)). Besides, the power
value of β = 5 (scale-free R2 = 0:90) was selected as the soft
threshold to construct a scale-free network (Figure 1(b)). A
total of 16 modules were identified through the average
linkage hierarchical clustering (Figure 1(c)). The correlation
of the modules with clinical traits, including age, stage, and
radiotherapy, was analyzed. The red module, which
contained 365 genes (Table S2), showed the highest
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Figure 2: Construction and validation of the prognosis model for NSCLC. (a) A total of 29 genes were identified by univariate Cox
regression analysis in 65 samples who have undergone radiotherapy from the LUSC dataset of TCGA. HR represented hazard ratio, and
95% CI represented 95% confidence interval. (b) The optimal lambda value was selected in the LASSO Cox regression analysis. (c, d)
The LUSC samples and LUAD samples that have undergone radiotherapy from TCGA were separated into high-risk and low-risk
groups based on the best cutoff point (0.2153), respectively. (c) The OS analysis was performed in the LUSC dataset. (d) The OS analysis
was conducted in the LUAD dataset. The P value was assessed by the two-sided log-rank test. (e, f) All the samples with or without
radiotherapy from TCGA cohort including LUSC and LUAD samples and GEO cohort including GSE30219 and GSE31210 were
separated into high-risk and low-risk groups. (e) The OS analysis was conducted in the TCGA cohort. (f) The OS analysis was
performed in the GEO cohort. The P value was assessed by the two-sided log-rank test.
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correlation with radiotherapy (correlation coefficient = 0:51,
P = 0:006) (Figure 1(d)), and this module was selected for
further analysis.

Then, the GO and KEGG pathway analyses were per-
formed. Multiple GO terms, including synapse organization,
and KEGG pathways, including amphetamine addiction,
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Figure 3: Multivariate Cox regression analysis of the signature and nomogram construction. (a) The multivariate Cox regression analysis,
containing age, TNM stage, gender, smoking status, and the Risk Score, was performed in the LUSC samples that have undergone
radiotherapy from TCGA. Compared with the reference samples, the samples with hazard ratio larger than 1 represented a higher risk of
death, and the samples with hazard ratio less than 1 represented a lower risk of death. (b) The nomogram model based on Risk Score
and smoking status was constructed to predict 1-year, 3-year, and 5-year OS of NSCLC patients. (c–e) The calibration curves of the
nomogram for the estimation of survival rates at 1 year, 3 years, and 5 years were shown, respectively. The x-axis represented the
predicted survival rate of the nomogram, and the y-axis represented the actual survival rate.
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risk group of NSCLC patients with radiotherapy.
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were markedly enriched based on the 365 genes (Table S3
and S4), and the top 20 remarkable GO terms and KEGG
pathways are demonstrated in Figures 1(e) and 1(f). The
results implied that these cellular processes might be
related to the radiotherapy response of NSCLC patients.

3.2. Construction andValidation of PrognosisModel.Given that
the radiotherapy response of patients is closely associated with
prognosis, we further constructed the prognostic model based
on the identified genes, inwhich the LUSC samples fromTCGA
served as the training dataset, and the LUAD samples from
TCGA, GSE30219, and GSE31210 cohorts from GEO database
served as the validation datasets. A total of 65 samples that have
undergone radiotherapy from the TCGA-LUSC dataset were
subjected to univariate Cox regression analysis, in which the
expression of the identified 365 genes served as the continuous
variable. Our data revealed that 29 genes were significantly asso-
ciatedwith theOS of the samples (P < 0:05) (Figure 2(a)). These
significant genes were selected for LASSOCox regression analy-
sis, and the model achieved the best performance with 8 genes,
including FOLR3, SLC6A11, ALPP, IGFN1, KCNJ12,
RPS4XP22, HIST1H2BH, and BLACAT1 (Figure 2(b)). The
expressions of these 8 genes in samples with different radiother-
apy response status were analyzed (Figure S1). The Risk Score
model was then established: Risk Score = 0:015771657 ∗
expression value of FOLR3 + 0:060997544 ∗ expression value
of SLC6A11 + 0:026587925 ∗ expression value of ALPP +
0:036075351 ∗ expression value of IGFN1 + 0:156648675 ∗
expression value of KCNJ12 − 0:002265927 ∗ expression value
of RPS4XP22 − 0:116358137 ∗ expression value of HIST1H2
BH + 0:011770327 ∗ expression value of BLACAT1. The
LUSC and LUAD samples that have undergone radiotherapy
from TCGA were separated to high-risk and low-risk groups
based on the best cutoff point (0.2153), respectively. The
survival analysis revealed that the OS of the low-risk group was
better than that of the high-risk group (Figures 2(c) and 2(d)).
Next, all samples with or without radiotherapy from TCGA
cohort including the LUSC and LUAD samples and GEO
cohort including GSE30219 and GSE31210 datasets were
separated into the high-risk and low-risk groups, respectively.
The survival analysis demonstrated that the OS of the low-risk
group was better than that of the high-risk group (Figures 2(e)
and 2(f)). Together, these data suggested that the Risk Score
model based on the identified 8 genes could reliably predict the
prognosis of NSCLC patients with or without radiotherapy.

3.3. Multivariate Cox Regression Analysis of the Signature.
To further evaluate whether the Risk Score was an indepen-
dent signature, we performed the multivariate Cox regres-
sion analysis for the LUSC samples that have undergone
radiotherapy from TCGA, and multiple factors containing
age, TNM stage, gender, smoking status, and the Risk Score
were incorporated. Our data confirmed that the Risk Score
and smoking were significant independent risk factors in
the system (HR = 9:98; 95% CI [4.38-22.76]; P < 0:001)
(Figure 3(a)), suggesting that Risk Score could indepen-
dently predict the prognosis of NSCLC patients who have
undergone radiotherapy.

3.4. Nomogram Construction. Next, we constructed a nomo-
gram model based on the independent prognostic signa-
tures, including the Risk Score and smoking status
(Figure 3(b)). The results showed that the nomogram pre-
sented good performance in predicting the 1-year, 3-year,
and 5-year OS of NSCLC patients who have undergone
radiotherapy (Figures 3(c)–3(e)).

3.5. Immune Landscape between the Low- and High-Risk
NSCLC Patients. Then, the immune infiltration of 22
immune cells in 65 LUSC patients who have undergone
radiotherapy from TCGA was analyzed using CIBERSORT
software combined with the LM22 feature matrix
(Figure 4(a)). The significant difference of monocytes and
activated memory CD4 T cells was identified in the low-
risk group compared with the high-risk group (Figure 4(b)).

The expression of immune checkpoints has become a
biomarker for the immunotherapy selection of NSCLC
patients [29–31]. Therefore, we analyzed the correlation
between the Risk Score and the key immune checkpoints,
including CTLA4, PDL1, LAG3, and TIGIT. Our data
showed that the Risk Score was significantly correlated with
these immune checkpoints (Figure 4(c)). Meanwhile, the
expression of TIGIT in the high-risk group of NSCLC
patients with radiotherapy was significantly higher than that
in the low-risk group (P < 0:05) (Figure 4(d)), implying that
immunosuppressive microenvironment might contribute to
the poor prognosis of NSCLC patients with radiotherapy.

4. Discussion

NSCLC is the predominant type of lung cancer with high
mortality and poor prognosis [32]. Radiotherapy plays a
key role in both curative and palliative treatments of NSCLC
[33]. Increasing evidence has revealed that the genetic factors
are closely associated with the radiotherapy response of
NSCLC patients. For example, it has been reported that the
abnormal expression of RAD50 is correlated with the poor
clinical outcome during radiotherapy for NSCLC [34].
Potentially functional ATG16L2 variants foretell radiation
outcomes and pneumonitis in NSCLC patients after radio-
therapy [35]. The expression of UNC5A is associated with
the prognosis of radiotherapy and clinicopathologic features
in NSCLC patients [36]. However, few studies have explored
the prognostic value of radiotherapy response-related genes
in NSCLC through integrating multiple significant genes
and establishing predictive models via machine learning.

In this study, we performed WGCNA for the NSCLC
samples with a clear record of radiotherapy response from
TCGA database and identified 16 modules. The red module,
which contained 365 genes, was observed to have the highest
correlation with radiotherapy response. A univariate Cox
regression analysis was performed on the 65 samples that
have undergone radiotherapy from TCGA-LUSC dataset,
and the result revealed that 29 genes were significantly
associated with the OS of the samples. LASSO Cox
regression analysis demonstrated that 8 genes, including
FOLR3, SLC6A11, ALPP, IGFN1, KCNJ12, RPS4XP22,
HIST1H2BH, and BLACAT1, were closely associated with
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the prognosis of NSCLC patients. Among the 8 genes,
FOLR3 is reported to correlate with an enhanced likelihood
of NSCLC progression at midtreatment radiological evalua-
tion [37]. BLACAT1 contributes to the modulation of pro-
gression, epithelial-mesenchymal transition, and metastasis
of NSCLC by targeting Wnt/β-catenin signaling [38].
SLC6A11 is a member of the solute carrier family 6 [39].
Although there is no direct research on the role of SLC6A11
in NSCLC, another member of this family, SLC6A10P, is
found to be overexpressed in NSCLC tissues compared with
the normal lung tissues, serving as a predictor of poor prog-
nosis in NSCLC [40]. In addition, SLC6A15 shows high
mRNA expression and protein levels in NSCLC cell lines,
being considered a potential metabolic target for NSCLC
[41]. There have not been studies in regard to the effects of
the remaining 5 genes on NSCLC, but most of them are
proved to be associated with other cancers. ALPP encodes
an alkaline phosphatase, and its increased expression has
been observed in several cancers, including breast cancer
and intratubular germ cell neoplasia [42, 43]. Frequent
IGFN1 mutation is detected in metastatic breast cancer,
the disease which leads to the poor prognosis of patients
[44]. KCNJ12 shows high frequency of single-nucleotide
polymorphisms in head and neck squamous cell carcinomas
[45] and is adopted for stratifying the stage of colorectal can-
cer [46]. HIST1H2BH is related to the survival outcome of
cervical cancer patients, which could be used for prognosis
prediction [47]. However, the association of these genes with
NSCLC still needs further study.

Importantly, the OS of the low-risk group was better
than that of the high-risk group separated by the Risk Score
based on these 8 genes in the NSCLC patients with or with-
out radiotherapy. The multivariate Cox regression analysis
further confirmed that the Risk Score, along with the smok-
ing status, was an independent predictive signature in the
system. The nomogram model based on the Risk Score
showed good performance in predicting the survival of
NSCLC patients. These data suggest that the Risk Score
model based on the identified 8 genes can reliably predict
the prognosis of NSCLC patients with or without radiother-
apy. Several prognostic models for NSCLC have been previ-
ously established. Ganti et al. recruited 1467 patients (≥70
years old) with advanced NSCLC and incorporated the fac-
tors including gender, inferior performance status, weight
loss, and metastasis status into the predictive model for the
prognosis of older patients with advanced NSCLC [48]. Park
et al. constructed an iSEND model, which consisted of
immunotherapy, sex, Eastern Cooperative Oncology Group
performance status, neutrophil-to-lymphocyte ratio (NLR),
and delta NLR, to predict the prognosis of patients with
NSCLC who have been treated with nivolumab [49]. Laar
investigated the genetic signatures to predict the prognosis
and chemotherapy benefit of NSCLC patients through the
application of 160-gene and 37-gene signatures, respectively
[50]. Compared with these three models, our research estab-
lished the predictive model for NSCLC prognosis using a
signature with less genes and could be more applicable for
NSCLC, which was not affected by the stage and treatment
of NSCLC patients.

The combination of radiotherapy and immunotherapy
improves the treatment effect on NSCLC, due to the fact that
the immune microenvironment plays a crucial role in the
development of NSCLC and the radiotherapy response of
NSCLC patients [51, 52]. It has been reported that the
lymphocyte-monocyte ratio serves as a biomarker to predict
the prognosis of NSCLC with radiotherapy [53]. The mem-
ory CD4+ T cells in NSCLC patients are the predictor of
radiotherapy response [54]. Moreover, immune checkpoints
participate in the modulation of NSCLC progression and the
expression of immune checkpoints is associated with the
radiotherapy sensitivity of NSCLC patients. Our immune
infiltration analysis revealed increased relative proportions
of infiltrating monocytes and activated memory CD4 T cells
in the high-risk group with inferior prognosis compared
with the low-risk group with superior prognosis separated
by the Risk Score based on these 8 genes in the NSCLC
patients who have undergone radiotherapy. It has been
known that the monocytes could produce tissue factor in
NSCLC, which enhances the proliferative and metastatic
capacities of tumor cells, increases the degree of malignancy,
and is related to the reduced survival rate of NSCLC patients
[55, 56]. Thus, it is speculated that the increased monocyte
proportion may contribute to poor prognosis of NSCLC by
generating tumor factor. Moreover, the elevated memory
CD4 T cells in the high-risk group with inferior prognosis
is consistent with the previous study of Liu et al., which
demonstrates that the increased memory CD4 T cells are
correlated with the poor prognosis of NSCLC patients after
radiotherapy [57]. However, the underlying mechanism
between monocytes, activated memory CD4 T cells, and
the prognosis of NSCLC patients still needs further investi-
gation. The Risk Score was remarkably correlated with the
immune checkpoints, including CTLA4, PDL1, LAG3, and
TIGIT. The expression of TIGIT in the high-risk group of
NSCLC patients with radiotherapy was significantly higher
than that in the low-risk group. These data suggest that the
immunosuppressive microenvironment may contribute to
the poor prognosis of NSCLC patients after radiotherapy.

In conclusion, this study identified 365 genes potentially
correlated with the radiotherapy response of NSCLC
patients. The Risk Score model based on the identified 8
genes, including FOLR3, SLC6A11, ALPP, IGFN1, KCNJ12,
RPS4XP22, HIST1H2BH, and BLACAT1, can reliably pre-
dict the prognosis of NSCLC patients with or without radio-
therapy. Our finding provides a valuable prognostic model,
benefiting the prognosis prediction of NSCLC patients.

However, there are some limitations in our study: (1) the
365 genes related to radiotherapy response in the red mod-
ule could not be further distinguished as radiosensitive genes
and radioresistant genes based on current information; (2)
due to the lack of samples, the performance of the prognos-
tically predictive model has not been validated with the clin-
ical samples from our institute; and (3) in contrast to the
other predictive models for the prognosis of NSCLC
patients, only 27 NSCLC samples have clear record of radio-
therapy response and are used to screen the radiotherapy
response-related module, from which the 8 genes of the
prognostic signature are derived. Further studies with larger
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sample size and more detailed radiotherapy response infor-
mation are necessarily required. We will also be devoted to
collecting more clinical samples from our institute for the
validation of our results.
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