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Ferroptosis is a mode of regulated cell death that depends on iron and plays pivotal roles in regulating various biological processes
in human cancers. However, the role of ferroptosis in gastric cancer (GC) remains unclear. In our study, a total of 2721
differentially expressed genes (DEGs) were filtered based on The Cancer Genome Atlas (TCGA) (n = 375) dataset. Weighted
gene coexpression network (WGCNA) analysis was then used and identified 7 modules, of which the blue module with the
most significant enrichment result was selected. By taking the intersections of the blue module and ferroptosis-related genes
(FRGs), we obtained 23 common genes. Functional analysis was performed to explore the biological function of the genes of
interest, and with univariate Cox regression (UCR) analysis, survival genes were screened to construct a prognostic model
based on 3 genes (SLC1A5, ANGPTL4, and CGAS), which could play a role in predicting the survival of GC patients. UCR
and multivariate Cox regression (MCR) analysis revealed that the prognostic index could be used as an independent prognostic
indicator and validated using another GSE84437 dataset. Notably, patients in the high-risk group had higher mutation
frequencies, such as TTN and TP53. TIMER analysis demonstrated that the risk score strongly correlated with macrophage
and CD4+ T cell infiltration. In addition, the high- and low-risk groups illustrated different distributions of different immune
statuses. Furthermore, the low-risk group had a higher immunophenoscore (IPS), which meant a better response to immune
checkpoint inhibitors (ICIs). Finally, gene set enrichment analysis (GSEA) revealed several significant pathways involved in
GC. In this study, a novel FRG signature was built that could predict GC prognosis and reflect the status of the tumor immune
microenvironment.

1. Introduction

As a major public health issue globally, gastric cancer (GC) is
the fourth leading cause of cancer-related death [1]. Because
early stages of GC are usually asymptomatic, patients are
diagnosed at an advanced stage, leading to poor survival
[2]. Moreover, among patients with GC who receive adjuvant
therapy, 50% experience local or distant disease recurrence
[3]. Hence, the identification of reliable diagnostic and prog-
nostic biomarkers is critical for GC, not only to improve
prognostication but also to provide novel therapeutic targets
for GC.

Ferroptosis is a newly characterized iron-dependent
form of nonapoptotic-regulated cell death [4] triggered by
lipid reactive oxygen species (ROS) [5]. Ferroptosis plays
an important role in various tumor cells, such as fibrosar-
coma, lung cancer, and prostate cancer cells [6–8]. In addi-
tion, several publications have reported that natural active
components alleviate multidrug resistance in cancer and
inhibit the progression of multiple tumors by inducing
ferroptosis [9]. These findings suggest ferroptosis as a new
player that regulates tumor-suppressive function. Neverthe-
less, prognostic models for FRGs have not been constructed
for the prediction of overall survival (OS) in GC patients.
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The present study performed comprehensive analyses
utilizing TCGA and GEO. We evaluated the prognostic
value of the FRGs and constructed a three-mRNA signature
that could effectively predict patient survival in TCGA
dataset and further validated this three-mRNA signature
in the GEO dataset. Furthermore, we conducted functional
studies on risk scores to elucidate the pathogenic mecha-
nisms and provide a scientific basis for clinical diagnosis
and treatment.

2. Materials and Methods

2.1. Patient Cohort and Data Preparation. RNA-seq tran-
scriptome data, somatic mutation data, copy number varia-
tion, and the corresponding clinicopathological data were
retrieved from TCGA database. (https://tcga-data.nci.nih
.gov/tcga/) and GEO database (http://www.ncbi.nlm. http://
nih.gov/geo/). TCGA data comprised 375 and 32 samples
of GC tissues and adjacent normal tissues, respectively. By
application of the GPL6947 platform (Illumina HumanHT-
12 V3.0), GSE84437 contained 433 samples of GC tissues
(Table 1). The FRGs were obtained from other research
[10], which downloaded FRGs from the FerrDb website
(http://www.zhounan.org/ferrdb/) and PubMed (https://
pubmed.ncbi.nlm.nih.gov/).

2.2. Identification of DRGs. Differential expression of DRGs
between tumor and normal samples was assessed using the
R package limma [11]. The false discovery rate ðFDRÞ <
0:05 and ∣log 2ðfold changeÞ ∣ >0:5 were visualized on box-
plots and heatmaps using the “ggpubr” and “heatmap” pack-
ages, respectively.

2.3. Highly Coexpressed Gene Set–Gene Module. WGCNA
was conducted by the WGCNA package [12] in R software.
As a previous study showed that the WGCNA was sensitive
to batch effects and outlier samples, we performed hierarchi-
cal cluster analysis [13]. The module eigengene (ME), which
is considered representative of the gene expression profiles,
was calculated to identify clinically associated modules based
on DRGs. To identify the most tumor-related modules, we
conducted module-trait relationship calculations for each
module. Then, for genes in the significant tumor-related
modules, we calculated the Gene Significance and Gene
Module Membership (MM) within the genes, modules, and
clinical traits. Finally, we identified the genes in the GC-
related modules [14, 15].

2.4. Acquisition of Intersecting Genes. Overlapping genes
were identified as candidates for the subsequent analysis
and were oriented from the FRGs and WGCNA. The online
tool was Draw Venn Diagram (http://bioinformatics.psb
.ugent.be/webtools/Venn/). Coexpression analysis was per-
formed using the “Corrplot” package.

2.5. Function and Pathway Enrichment Analyses. The clus-
terProfiler package in R [16] was used to test the statistical
enrichment of functions. To assess functional categories,
we used Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses. A P value
of <0.05 and q value of <0.05 were set as the thresholds.

2.6. Construction of an FRG-Based Risk Score Model. The
candidate FRGs were analyzed using UCR analysis (P < 0:05).
The median values were defined as the cutoff values for high
and low FRG expression in Cox survival analysis. After identi-
fying the prognosis-related FRGs, we performed MCR analysis
to identify independent prognostic FRGs. Finally, the risk score
for each patient was calculated by taking the sum of the Cox
regression coefficient for each signature gene multiplied by its
corresponding expression value. The immunohistochemistry
staining of genes was examined by The Human Protein Atlas
(HPA) (https://www.proteinatlas.org/about/download). The
time-dependent receiver operating characteristic (ROC) curve
was plotted by the “survivalROC” R package.

2.7. Gene Set Enrichment Analysis (GSEA). GSEA was per-
formed using GSEA v4.0.3 software with 1000 permutations
and weighted enrichment statistics. The median risk score
was used as the cutoff point for high- or low-risk group clas-
sification [17].

2.8. Immune Infiltration Analysis. The infiltration level of
immune cells in GC was predicted using the TIMER data-
base [18]. Correlation analysis between six types of immune
cells and risk score was then conducted (https://cistrome
.shinyapps.io/timer/).

2.9. Exploring Relationships between Immune Components
and Risk Groups. We used the CIBERSORT algorithm to

Table 1: The clinical characteristics of the patients.

Items
Datasets

GSE84437 TCGA

Age

>65 150 (34.64%) 207 (55.05%)

≤65 283 (65.36%) 164 (43.62%)

NA — 4 (1.06%)

Gender
Female 137(31.64%) 134 (35.64%)

Man 296(68.36%) 241 (64.10%)

M

M0 — 330 (87.77%)

M1 — 25 (6.65%)

NA — 20 (5.32%)

N

N0 80 (18.48%) 111 (29.52%)

N1 188 (43.42%) 97 (25.80%)

N2 132 (30.48%) 75 (19.95%)

N3 33 (7.62%) 74 (19.68%)

NA — 18 (4.79%)

Stage

I 11 (2.54%) 19 (5.05%)

II 38 (8.78%) 80 (21.28%)

III 92 (21.25%) 168 (44.68%)

IV 292 (67.44%) 100 (26.60%)

NA — 8 (2.13%)

NA: not applicable.
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estimate data on tumor-infiltrating immune cells. Violin
plots were used to present the full distribution of the
data [19].

2.10. Immunophenoscore Analysis. The immunophenoscore
computed a score based on the gene expression values of
immune-related genes into four classes: (1) effector cells,
(2) immunosuppressive cells, (3) MHC molecules, and (4)
selected immunomodulators [20], through which machine
learning can derive the immunophenoscore of a patient
without bias. The immunophenoscores of GC patients were
obtained from TCIA (https://tcia.at/).

2.11. Statistical Analysis. For the analysis of differences
between two groups, Student’s t-test was performed. A
Kaplan–Meier survival analysis was performed to estimate
the survival curve. Pearson’s correlation analyses were used
to gauge the degree of correlation between certain variables.
Statistical analyses were performed using the statistical soft-
ware R (version 4.0.2). A value less than 0.05 (P < 0:05) was
considered significant.

3. Results

3.1. Identification of DEGs. After analysis, there were a total
of 2721 DEGs between GC (n = 375) and normal samples
(n = 32), including 1658 downregulated DEGs and 1063
upregulated DEGs. The heatmap (Figure 1(a)) and volcano
plots (Figure 1(b)) are shown in Figure 1.

3.2. Identification of Significant Gene Modules by WGCNA.
Overall, 2721 DEGs and 407 samples were selected after gene
and sample screening and preprocessing. We used a power
calculation of β = 3 (scale-free R2 = 0:895) (Figures 2(a) and
2(b)). There were 7 modules according to the network result
(i.e., blue, black, red, brown, green, turquoise, and yellow
modules). Among these 7 modules, the red (r = 0:42; P =
3e − 19), blue (r = 0:58; P = 2e − 37), and black (r = 0:36;
P = 1e − 13) modules showed positive relationships with
GC (Figures 2(c) and 2(d)). Furthermore, the genes in
the turquoise and green modules showed strong negative
correlations with GC (brown: r = −0:39; P = 3e − 16, green:
r = −0:4; P = 1e − 16, turquoise: r = −0:45; P = 1e − 21, and
yellow: r = −0:31; P = 9e − 11) (Figures 2(c) and 2(d)).
Finally, we identified the blue module as the key module, in
which there were 655 genes. Next, we compared the coex-
pressed genes in the blue module with the FRGs, and then a
set of 23 shared genes was obtained (Figure 3(a)). Further-
more, there was a strong correlation among the FRGs
(Figure 3(b)).

3.3. Functional Enrichment Analysis. To better understand
the signaling pathways and functions of FRGs in ferropto-
sis, functional enrichment of the 23 genes was performed,
and FRGs were enriched in iron-related pathways, such as
the regulation of cell aging, cell cycle arrest, and NF-kappaB
binding. KEGG pathway analysis of the FRGs showed that
genes were involved in ferroptosis, including cellular senes-
cence, the p53 signaling pathway, phenylalanine metabolism,
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Figure 1: Differentially expressed genes (DEGs) obtained. (a) The heatmap of DEG expression level in GC samples. (b) The volcano plot of
DEGs in GC. Red and blue indicate upregulation and downregulation, respectively. N: normal sample; T: tumor tissues.
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the HIF-1 signaling pathway, and the cell cycle (Figures 4(a)
and 4(b)).

3.4. Construction of the Three-Gene-Based GC Prognostic
Model. Then, UCR analysis of the screening results, includ-
ing 23 FRGs, led to the identification of 5 FRGs as potential
prognostic indicators of GC overall survival (OS), including
ANGPTL4, SMPD1, MYB, SLC1A5, and CGAS (Figure 5).
After primary filtering, we further shrunk the scope of gene
screening. Three genes were identified: SLC1A5, ANGPTL4,
and CGAS. To establish an optimal prognostic gene model,
MCR analysis was performed on the three genes. The risk
score was calculated by the following formula: risk score =
½0:1497 ×mRNA expression level of ANGPTL4� + ½−0:1806
×mRNA expression level of SLC1A5� + ½−0:2385 × mRNA
expression level of CGAS�. After calculating the risk score,
we divided 370 patients into the high-risk (n = 185) and
low-risk (n = 185) groups using the median risk score as
the cutoff. The patients in the high-risk group had worse
OS than those in the low-risk group (Figure 6(a)). As the
risk score rose, the patients had a shorter survival time
and more deaths (Figures 6(b) and 6(c)). The risk heatmap
showed the differences of three genes (SLC1A5, ANGPTL4,
and CGAS) (Figure 6(d)). We used the GEO group for
further external validation of this 3-gene-based signature.
We got the same result as above (Figures 6(e)–6(h)). Next,
the reliability and stability of the three gene-based models
were further confirmed.

3.5. Assessment of Three FRG Signatures as Independent
Prognostic Factors in GC Patients. To further confirm
whether the newly generated risk score was an independent
risk factor in GC patients, we employed UCR and MCR

analyses, which showed that T stage, N stage, metastasis,
and risk score were independent prognostic factors for OS
in GC (P < 0:001) (Figures 7(b) and 7(c)). To evaluate the
diagnostic performance of the risk model in GC, ROC
curves were constructed. The area under the ROC curve
(AUC) of the risk score (0.611) was much higher than the
AUC of age (0.571), sex (0.539), T stage (0.572), N stage
(0.590), and metastasis status (0.547) (Figure 7(a)). All
results illustrated that the three FRG signatures were inde-
pendent prognostic factors in GC.

3.6. Validation of the Prognostic Performance of the FRG
Signature in GC. To further assess outcome prediction, we
combined the validation datasets (total of 433 patients) to
evaluate the robustness of the three-gene signature. The
results revealed the ROC curve AUC = 0:676 for validation
datasets (Figure 7(d)), which is similar to the one in TCGA
dataset. Cox regression analyses indicated that the risk score
of the signature could be a powerful indicator of GC patient
clinical outcome (Figures 7(e) and 7(f)). Interestingly, TTN
[21], TP53 [22], MUC16 [23], and ARID1A [24] were the
top mutations in both cohorts and were involved in various
biological processes. In addition, the frequencies of all
mutated genes were higher in the high-risk group (96.74%)
(Figure 8(a)) than in the low-risk group (84.75%)
(Figure 8(b)), suggesting that somatic mutation was posi-
tively correlated with risk scores. Further analysis of 3 signa-
ture genes revealed that CNV mutations were prevalent.
SLC1A5 showed widespread CNV amplification. In contrast,
ANGPTL4 and CGAS had prevalent CNV deletions
(Figure 8(d)). The locations of CNV alterations of 3 signa-
ture genes on chromosomes are shown in Figure 8(c).
Finally, the protein expression of SLC1A5, ANGPTL4, and
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CGAS was validated using the immunostaining results from
the HPA database. As demonstrated in Figure 8(c), the
SLC1A5 protein was highly expressed in GC tissue, while
ANGPTL4 and CGAS were downregulated in GC.

3.7. Association between the Expression of 3 Signature Genes
and Immune Markers. Considering that ferroptosis was
strongly associated with immune status, the correlations
between the expression of 3 signature genes and immune
markers were further explored in GC using TCGA and
GEO datasets, including CD8+ T cells, T cells (general),
and B cells. The expression level of CGAS showed a signifi-
cant positive association with the level of most immune
markers in T cells (general), natural killer cells, dendritic
cells, Tregs, and T cell exhaustion (Figure 9(a)). Nonetheless,
SLC1A5 and ANGPTL4 expression negatively correlated
with immune markers, including B cells, T cells (general),
and dendritic cells. Further reexamination using the GEO
database revealed consistent results (Figure 9(b)).

3.8. Immune Profile and Response to Immune Checkpoint
Inhibitors (ICIs) in Risk Groups. The correlations between
risk scores and immune status were further explored using
CIBERSORT and TIMER to evaluate the immune cell
features. The risk score was positively associated with mac-

rophages (r = 0:366; P = 6:846e − 13) and CD4+ T cells
(r = 0:135; P = 0:010) (Figure 10). The results showed strong
correlations between the ferroptosis-related risk model and
the immunity of GC. As shown in Figure 11(a), monocytes,
M2 macrophages, activated dendritic cells, resting mast cells,
and neutrophils were upregulated in the high-risk group,
while CD8+ T cells, activated CD4+ memory T cells, follicu-
lar helper T cells, and M2 macrophages were significantly
downregulated (P < 0:05). Recent studies have revealed the
role of the IPS in predicting the response to ICIs in mela-
noma patients based on high preexisting immunogenic
potential [20]. Next, we investigated the relationship
between IPS and the 3-FRG risk signature (Figure 11(b)).
The results showed that IPS was significantly higher in the
low-risk group than in the high-risk group (P < 0:05).
Low-risk patients with the 3-FRG signature may have a
better opportunity for ICI application. Moreover, the risk
score was positively associated with macrophages (r = 0:366;
P = 6:846e − 13) and CD4+ T cells (r = 0:135; P = 0:010)
(Figure 10). The results showed strong correlations between
the ferroptosis-related risk model and the immunity of GC.

3.9. Evaluation of Pathways within Both High- and Low-Risk
TCGA Cohorts. GSEA was performed to identify gene sets
differentially expressed in high- and low-risk groups from
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Figure 7: Prognostic value of risk subgroups in TCGA and GEO datasets. ROC curve (a), UCR (b), and MCR (c) analyses of the risk score
and other clinical indices in the TCGA cohort. ROC curve (d), UCR (e), and MCR (f) analyses of the risk score and other clinical indices in
the GEO cohort.
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the MSigDB databases (c2.cp.kegg.v6.2.symbols.gmt). The
cell cycle, P53, MAPK, ubiquitin-mediated proteolysis, and
TGF-β signaling pathways were among the most signifi-
cantly correlated enriched pathways (Figure 12; Table 2).

4. Discussion

Ferroptosis is an oxidative form of regulated cell death
associated with the accumulation of lipid ROS because of
enhanced lipid peroxidation [25, 26]. Increasing evidence
suggests that ferroptosis plays a powerful role in enabling
malignant features of tumors [27]. However, few studies
have reported ferroptosis-related research in GC, and sys-
tematic analysis has not yet been elucidated.

In the present study, 23 differentially expressed FRGs
between GC tissue and normal tissue were revealed by
WGCNA and limma, and 5 FRGs of them were of prog-
nostic value. Three gene prognostic models (SLC1A5,
ANGPTL4, and CGAS) were constructed in TCGA dataset
and validated in the GEO test set.

Solute carrier family 1 member 5 (SLC1A5), also referred
to as ASCT2, is a sodium channel that acts as a high-affinity
glutamine transporter in tumor cells [28]. Inhibition of
SLC1A5 impedes glutamine uptake, leading to disturbance
of mTORC1 signaling and activation of autophagy and
cancer cell growth [29, 30]. Increased SLC1A5 expression
has been documented in melanoma [31], neuroblastoma
[32], and GC [33]. Previous research has shown that miR-
137 suppresses ferroptosis by targeting the glutamine trans-
porter SLC1A5 and decreases the antitumor activity of
erastin in melanoma [34]. Angiopoietin-like 4 (ANGPTL4)
is a member of the angiopoietin family, the members of
which act as regulators of lipid and glucose metabolism
[35]. ANGPTL4 is overexpressed in several types of cancers
and is associated with poor clinical outcome [36, 37].
ANGPTL4 expression is related to cancer cell aggressiveness
and migration [38, 39]. For instance, the expression of
ANGPTL4 could be induced by TGFβ, which could facilitate
lung metastasis [38]. In addition, ANGPTL4 induces ROS
accumulation and induces subsequent ferroptosis [40]. In

addition, ANGPTL4 expression induces the resistance of
ovarian cancer to carboplatin through ANGPTL4 [41].
Cyclic GMP-AMP synthase (CGAS) is a cytosolic DNA sen-
sor that activates innate immune responses. cGAS catalyzes
the synthesis of cGAMP, which functions as a second mes-
senger that binds and activates the adaptor protein stimula-
tor of interferon genes (STING) to induce type I interferons
(IFNs) and other immune modulatory molecules [42]. The
expression of cGAS, which produces cGAMP for STING
activation, facilitates the activation of antitumor CD8+ T cell
responses [43]. Furthermore, 8-hydroxy-2′-deoxyguanosine
(8-OHG) functions as a damage-associated molecular pat-
tern (DAMP) during ferroptotic cell death to trigger
STING1-dependent macrophage polarization, supporting
pancreatic cancer initiation and progression [44]. These
results indicate that the three genes were closely related to
tumor ferroptosis.

Considering the pivotal role of ferroptosis in the progres-
sion of tumor-invading immunity, immune cell infiltrations
between low- and high-risk cohorts have also been discussed.
A recent investigation documented that resting memory CD4
T cells are one of the most enriched tumor-invasive immune
cells in GC samples [45]. Studies have reported follicular
helper T cells in tertiary lymphoid structures of numerous
tumors, implying that they participate in generating effective
and sustained antitumor immune responses [46]. M1 mac-
rophages are linked to antitumor activity, whereas M2
macrophages are associated with cancer progression and
metastasis [45]. Herein, the high-risk group had an ele-
vated level of M2 macrophages. In contrast, the patients
in the low-risk group had elevated proportions of M1 macro-
phages. According to the IPS program, the results showed
that IPS was significantly higher in the low-risk group, which
indicated that low-risk patients with the 3-FRG signature had
a better opportunity for ICI application. The GSEA collection
found that the cell cycle, P53, MAPK, ubiquitin-mediated
proteolysis, and TGF-β signaling pathways were most
enriched. Recent studies have demonstrated the significant
role played by p53 in the regulation of glucose metabolism,
reactive oxygen species (ROS) responses, and ferroptosis
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Figure 8: Genomic mutation profiles of different risk groups and genes. (a) Low-risk group and (b) high-risk group. The CNV mutation
frequency (d) and location on chromosomes (c) of three genes. (e) The expression level of three genes in GC tissues.
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Figure 9: Correlation analysis between three genes and markers of immune cells in TCGA (a) and GEO (b) datasets.
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Figure 10: Correlation analysis between risk scores and immune cell infiltrations.
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Figure 11: (a) Relative proportion of immune infiltration in high- and low-risk patients of the TCGA cohort. (b) Difference analysis of IPS
between the low- and high-risk groups of the 3-gene model. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:005.
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[47]. Acetylation-defective p53 mutants were shown to pro-
mote ferroptosis, an iron-dependent, oxidative, and nonapop-
totic form of cell death [47]. TGF-β1 is the most important
cytokine of epithelial-to-mesenchymal transition (EMT), and
tumor cells in a high state of oxidative stress have been
reported to typically exhibit EMT, under which tumor cells
may resist apoptotic cell death and increase their sensitivity
to ferroptosis [48]. The mitogen-activated protein kinase
(MAPK) signaling pathway has also been found to be involved
in ferroptosis initiation [49]. Inhibiting MAPK signaling pro-
tects lung cancer cells against ferroptosis [50]. These GSEA
results gave a detailed description of the ways and methods
by which the three-gene signature participates in GC progres-
sion, which may benefit future medicine research.

The limitation of this study is that all data were obtained
from public databases, and the adjacent normal samples
were relatively small; there was a lack of experimental valida-
tion or a large sample size.

5. Conclusions

Our study found a novel, robust FRG signature for GC. The
three-FRG signature can effectively evaluate GC patient
prognosis and reflect the immune status. The three-FRG sig-
nature might be involved in the regulation of the immune-
associated signaling pathway and might provide promising
targets for improving prognosis and the responsiveness of
GC to immunotherapy.
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