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Colorectal cancer is a high death rate cancer until now; from the clinical view, the diagnosis of the tumour region is critical for the
doctors. But with data accumulation, this task takes lots of time and labor with large variances between different doctors. With the
development of computer vision, detection and segmentation of the colorectal cancer region from CT or MRI image series are a
great challenge in the past decades, and there still have great demands on automatic diagnosis. In this paper, we proposed a novel
transfer learning protocol, called CST, that is, a union framework for colorectal cancer region detection and segmentation task
based on the transformer model, which effectively constructs the cancer region detection and its segmentation jointly. To make
a higher detection accuracy, we incorporate an autoencoder-based image-level decision approach that leverages the image-level
decision of a cancer slice. We also compared our framework with one-stage and two-stage object detection methods; the results
show that our proposed method achieves better results on detection and segmentation tasks. And this proposed framework
will give another pathway for colorectal cancer screen by way of artificial intelligence.

1. Introduction

Colorectal cancer is a common malignancy tumour world-
wide, which has ranked the third position as the most com-
mon cancer and the second cause of cancer-related deaths
worldwide. Also, the 2021 analysis observes that the diag-
nosed patients are rising in the crowd younger than 50 years
old [1]. In China, there are more than 480,000 new cases
with a higher than 30% death percentage in 2020, which
increases the incidence and mortality rates rank following
lung cancer [2]. In the early stages, occult blood examination
and medical images were employed for clinical detection and
diagnosis. These methods exhibited a productive approach
for the early colorectal cancer diagnosis and can improve
the survival of these patients [3]. However, mere blood
examination and colonoscopy inspection could not reveal
the biological morphology and tumour statutes [4, 5]. In
the past decades, imaging approaches such as computed
tomography (CT) and magnetic resonance imaging (MRI)

have become an effective way for colorectal cancer diagnosis;
doctors can get an overall scheme of the tumour region in a
comprehensive way without invasion [2, 6]. In addition,
medical imaging can get detailed information of the tumour
region without any physical cathartic cleansing, which has
become a prevalent screening guideline [7, 8].

Medical image processing and analysis have achieved
remarkable progress in the past several years, especially the
use of deep learning, but this field is still challenging for
the difficulty of acquisition and annotation in medical imag-
ing datasets [9, 10]. In this context, transfer learning is
another pathway for handling the lack of annotated medical
data with small-scale data training and becomes a common
protocol instead of traditional supervised learning [9, 10].
As an effective way, the transfer learning protocol in medical
image processing usually employed the ImageNet pretrained
deep architecture, e.g., ResNet, DenseNet, FCN, and U-Net
family, and then, these models are fine-tuned on small-
scale medical images to fit some certain tasks [11–15]. These
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fine-tuned models yield much better results than bottom-up
training strategy, especially when it confronts a small set of
image samples.

However, despite 3D or 2D medicine having the same
image structures, it is worth emphasizing that especially
in tasks of computer vision, these medical images have dis-
tinct interest with the natural image benchmark datasets.
In the case of medical data, most of the ROIs took part
in a small region in the whole image, resulting in sophisti-
cated yet hard example problems [16, 17]. Learning a med-
ical image analysis network transferred from the natural
scene usually leads to strong bias without considering the
characteristic of the medical image. Thus, all of the above
formations motivate developing a transfer learning proto-
col directly by a medical imaging dataset that can handle
subtle variances in these two datasets. In this situation,
ConvNets become a popular backbone in many medical
image and nature image processing protocols. But for the
3D image tasks, the traditional ConvNets cannot perform
long-range dependency modelling. In addition, applications
of pyramid ConvNets and some attention mechanisms can
facilitate the processing of these sequential image datasets
[18]. However, most of these methods have not focused
on long-range medical image pipeline on multitask tumour
region analysis.

Transformer models such as BERT and DERT have suc-
cessfully achieved the state of the art in nature language pro-
cessing and computer vision fields [19–22]. Due to its ability
to learn long-range dependencies from input tokens, the
self-attention mechanism can model the dependency among
the input tokens. The famous vision transformer (ViT) have
achieved comparable performance with the traditional deep
learning model such as the CNN model on image recogni-
tion tasks [23]. But all of these models have to be trained
on a large-scale dataset. DeiT (Data-efficient Image Trans-
formers) is the first transformer-based model adapted by
midsized datasets [24].

In this work, we propose a novel transfer learning proto-
col, called CST, which is a union framework for colorectal
cancer region detection and segmentation task based on
the transformer model, which effectively constructs the can-
cer region detection and its segmentation jointly. To make a
higher detection accuracy, we incorporate an autoencoder-
based image-level decision approach that leverages the
image-level decision of a cancer slice. First of all, we pretrain
an encoder-decoder architecture for cancer/normal image
slice representation that generates the encoding vectors of
the original input image slices as the image-level label. Then,
another transformer-based global to local architecture is pre-
trained by our colorectal medical image datasets for tumour
region detection and segmentation. To validate the effective-
ness of our proposed framework, we test the model output
on the collected colorectal cancer MRI image series and
achieved remarkable performances compared with other tra-
ditional methods.

In summary, our main contributions are as follows:

(i) We propose a novel framework for colorectal cancer
region detection and segmentation. Our framework

provides a more flexible pathway for tumour region
mining

(ii) We combine the traditional autoencoder and trans-
former architecture together for the multitask
framework for the final decision

(iii) We evaluate the proposed method on the colorectal
cancer MRI image dataset, and our method has
achieved a better result on tumour region detection
and segmentation

2. Related Works

Convolution neural networks with their excellent feature
representation ability have raised a revolution in the nature
language processing field, as well as the computer vision
and signal processing fields [25]. Position-sensitive tasks
such as semantic segmentation that contains several parts
of ROIs have been well represented by using convolutional
encoder-decoder architectures [26, 27]. The main aim of
convolutional operation is to catch local texture feature
information by the convolution kernel, and more layers
and stride kernel in the receptive field can extend the capture
range during downsampling; in this way, the model can cap-
ture global to local information explicitly. However, the size
and shape of these kernels are usually of fixed size and can-
not adapt to all the input range [28–30].

Recent advance in transformer-based architecture with a
self-attention mechanism and the ability of long-range
modelling has achieved the state of the art in natural lan-
guage processing and computer vision [31]. Vision trans-
former (ViT) can treat the whole image into several
patches and feed into the transformer pipeline as tokens.
The simple application of the transformer has shown excel-
lent results compared with the traditional CNN model [23].
However, the computation cost and large-scale dataset are
the fatal drawbacks to competing with the convolutional
neuronal network.

In the medical image processing paradigm, few anno-
tated clinical data cannot generate efficient models and have
to use the ImageNet pretrained model for the downstream
tasks [32]. In practice, most of the prevalent methods use
their pretrained weights for the medical ROI detection, such
as ResNet and DenseNet, and fine-tune the higher layers on
some special tasks. But most of these strategies is limited to
applying for new datasets [11–15]. In a word, the pretrained
model on ImageNet and other datasets by fully supervised
learning paradigm have to be severed with massive anno-
tated datasets to fit the downstream transfer learning. In
another way, a self-supervised learning framework can get
a suitable result by using few or no need of labelled datasets;
this has gained great attention in medical image analysis
recently [33, 34]. Furthermore, the self-supervised learning
paradigm has attracted great attention in the medical image
analysis field [35]. The critical challenge for self-supervised
learning is how to define a suitable proxy task from the unla-
belled data. But most of these proxy tasks have exhibited less
use on medical image-related tasks.
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3. Material and Methods

3.1. Dataset. We construct a novel dataset for this research,
which contains 375 cases of colorectal cancer tumour MRI
image datasets from 2013 to 2020, which contains 289
CRM negatives and 86 CRM positives. For segmentation
and detection tasks, we also collect 375 cases of colorectal
cancer negative samples as the negative samples for deep
architecture training. Our collaborator labels the image slices
with mask and bounding box separately as the final ground
truth. Then, the dataset was divided into training, testing,
and validation sets for the network training and evaluation.
The main aims of this dataset are to collect for colorectal
cancer region detection and segmentation, and to follow this
aim, we construct the framework in this manuscript to per-
form them and prepared for the clinical applications.
Figure 1 shows the details of the labelled tumour region
about CRM negative and positive, respectively.

3.2. Multitask Framework. The motivation of our work is to
construct a multitask framework that combines tumour
region detection and segmentation tasks. In this section,
we illustrate the overall framework of our proposed CST
framework as shown in Figure 2. Our framework is divided
into two pipelines, the tumour region detector and the
tumour segmentation pipeline. In the detection pipeline,
we first generate the region proposal of the input images,
and an encoder-decoder model is used for the position
encoder as the DETR input. In the segmentation pipeline,
we use image patches as the input and project to a sequence
of embedding for the transformer, and the class embedding
is used for the final mask prediction.

3.2.1. Detector Pipeline. In this part, we start from the region
proposals generated from an input medical image with H
and W in height and width as the initial image xrpn ∈
ℝ3×H0×W0 with 3 channels, H0 in height and W0 width of
the RPN. We choose a conventional CNN backbone to gen-
erate the lower resolution activation map f ∈ℝC×H×W ; typi-
cally, the values of C = 2048; H ′ and W ′ are resized as the
initial input of the setting H ′ =H/32,W ′ =W/32. Unfortu-
nately, the position encoding method in the original image
only reflects the location of the pixels in the column and
row, but the input position in our pipeline is from the ran-
dom selected RPNs, so in this part, we pretrained an autoen-
coder for the position representation and we added this
coding to the traditional position encoding with the anchor
position together.

For the transformer encoder, we use a 1 × 1 convolution
to reduce the dimension of the activation map into a d
-dimension vector; for the input of the transformer, the fea-
ture map is collapsed into a 1-dimension vector with a d ×
HW feature map. Each encoder layer is adopting the stan-
dard setting as is stated in the DETR [19–22]. For the trans-
former decoder, it follows the standard architecture of the
transformer, and the model can decode the tumour region
at each decoder layer. Each object/RPN is transformed into
an output embedding by the decoder. They are decoded into
bounding box coordinates and tumour/nontumour class

labels by the following feed forward network (FFN). The
FFN is a 3-layer perceptron with ReLU, hidden dimension
d, and a linear projection layer. It can predict the normalized
centre, height, and width of the tumour bounding box. In
addition, the tumour and nontumour class of the detected
bounding box is predicted by a SoftMax function.

The loss function of the tumour detection part is to opti-
mize the lowest cost:

bσ = arg min
σ∈℘N

〠
N

i

Lmatch yi, ŷσ ið Þ
� �

, ð1Þ

Lmatch yi, ŷσ ið Þ
� �
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� �

− p̂σ ið Þ cið Þ: ð2Þ

For efficient computing, we choose optimal assignment
with the Hungarian algorithm to accelerate the training pro-
cess. Here, we use Hungarian loss for all pairs matched, and
the object detector loss is defined like similarly loss; the total
Hungarian loss is defined as follows:
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where for the prediction with index σðiÞ, yi = ðci, biÞ is the
labelled ground truth, and we define the probability of the
tumour region; we define ci as p̂

bσðiÞðciÞ and the predicted

bounding box as b̂σðiÞ, λiou ∈ℝ and ℝL1 ∈ℝ.

3.2.2. Segmenter Pipeline. The segmenter part is based on full
transformer-based architecture for pixel-level class annota-
tion. As shown in the upper part of Figure 2, we model the
sequence of patches by using a transformer encoder and a
point-wise linear mapping or a mask transformer. The
whole pipeline is trained end-to-end with cross-entropy loss
per pixel.

In the encoder part, we first split the input image into a
sequence of identical size patches, and each patch is flattened
into a 1-dimension vector to produce a sequence of patch
embeddings. For the position information encoding, we treat
each patch as a separated part from the whole image and
finally add position information to the original patch posi-
tion. After that, the traditional transformer encoder is
employed for the sequential information encoding with a
multihead self-attention block. For the decoder part, it first
learns to map patch-level encodings from the encoder to
patch-level class scores; following that, these scores are
unsampled to pixel-level scores by bilinear interpolation.
The whole mask transformer is illustrated in the lower part
of Figure 2.

For the mask transformer, we use a set of K learnable
class embeddings in the decoder; in our pipeline, K is 2. Each
class embedding is randomly initialized and assigned to a
single class so as to generate the class mask. At last, the class
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Figure 2: Schematic diagram of the proposed multitask learning framework for colorectal cancer region mining frame.
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Figure 1: Examples of colorectal cancer in MRI images. (a1–a4, c1–c4) Are the original image slices from the MRI DICOM series; (b1–b4,
d1–d4) are the tumour region mask labelled by doctors.
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embeddings are processed jointly with patch encodings by
the decoder as depicted in Figure 2. The total loss function
is defined as follows:

Ltumour = −〠
n

i=1
ti log pið Þ, for k classes, ð5Þ

where ti is the ground truth label and pi is the softmax prob-
ability for the ith class.

In this way, we combine these loss functions to form an
end-to-end train protocol, for the total loss is defined as fol-
lows:

Ltotal = Lmatch + Ltumour: ð6Þ

Our proposed method employs a simple process to treat
the patch and tumour region segmentation jointly during
the decoding phase in the segmentator; in the whole frame-
work, we address tumour region detection and segmentation
jointly and combine them into a whole framework.

4. Results and Discussion

4.1. Implementation Details. In the tumour region detection
pipeline, we train DETR with AdamW optimizer with the
initial transformer’s learning rate to 10-4, the backbone’s to
10-5, and the weight decay to 10-4. We choose the trans-
former weights with Xavier in it and all backbone is
ImageNet pretrained ResNet50 model for the basic archi-
tecture [36, 37].

In the tumour segmentation pipeline, the architecture is
based on the vision transformer (ViT), and the head size of
the multihead self-attention block is fixed to 64, other
parameters are set as the default of the ViT model, and the
input patches are with the same size [23, 24]. The segmenta-
tion model is pretrained on ImageNet; ViT is pretrained on
ImageNet with random cropping. Following that, we fine-
tune the pretrained models for the tumour region segmenta-
tion task and the pixel-wise cross-entropy loss without
weight rebalancing. In the training phase, the SGD optimizer
with a base learning rate 0.0001 and weight decay 0 is set in
the initial training paradigm.

Here, we choose the standard evaluation method of
tumour detection and segmentation. The Jaccard index is
used for evaluating the ground truth bounding box and the
predicted bounding box variances, and formally, the IoU
measures the overlap between the ground truth box and
the predicted box over their union. The total IoU is defined
as follows:

IoUtruth
pred =

truth ∩ pred
truth ∪ pred

: ð7Þ

For comparisons with other methods, the results of our
framework and other methods are reported in terms of
recall, precision, and f1-measure values as follows:

Recall =
TP

TP + FN
, ð8Þ

Precision =
TP

TP + FP
, ð9Þ

Ground truth Faster-R-CNN Yolo V3 Ours

Figure 3: Tumour region detection results and its comparison results.
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F1 =
2PR
P + R

: ð10Þ

Our framework is performed on the environment of
Ubuntu 14.04 with Inter Core i9 platform, 32GB RAM,
and 2080Ti GPU×2 and is based on the PyTorch platform,
CUDA v10.0, cuDNN v8.0.

4.2. Experiment Results. For themodel training, we first divide
the two pipelines separated, and training them individually, it
takes about 72 hours and 103 hours for the detector and seg-
mentator. For the restriction of our GPUs, we have not
extended other comparisons with other transformer-based
methods.

For tumour detection, we divide the dataset into training
and validation sets. For the same baseline, these methods
cover the one-stage and two-stage object detection pipelines.
The most prevalent method Faster-RCNN and Yolo-V3 are
chosen as the test bed for the final comparisons. Figure 3
shows the detection results of the three methods, our pro-
posed pipeline can cover most of the tumour regions, and
the bounding box can converge to the tumour boundary
accurately. The Faster-RCNN model is a popular two-stage
object detection method, which can catch the tumour region,
but it is affected by the changes of the background; this is
largely because the tumour regions have the same texture
as other organs. The Yolo-v3 is a popular two-stage object
detection method and has been employed for many object
detection and location tasks. We have evaluated this method
on this dataset, the results are shown in column 3 of
Figure 3, it shows that Yolo-v3 has detected the tumour
region, but the result exhibits that this method usually covers
the tumour region and the neighbour organs together and

this is largely affected by the distinct boundary of these
regions.

For the tumour segmentation, we have the same separa-
tion of dataset like the detection pipeline. We set the U-Net
and FCN as the baseline for the comparison, the U-Net is a
specific method for medical image analysis, and FCN have
been greatly used in the nature image segmentation; for this
reason, we have listed the comparison result with these two
methods and to exhibit our framework’s advantages. In this
part, the U-Net model has better results than the FCN model,
and it can catch the tumour region in high contract images but
less in low contract slices. The FCN model usually needs an
intensive training protocol on large image data, but in this
program, the dataset is less than those, so it cannot get better
results. Compared with these two methods, our proposed
method has achieved an excellent result on the image segmen-
tation tasks. And the results are shown in Figure 4.

Original image Ground truth U-net FCN Our method

Figure 4: Basic rocket ship design. The rocket ship is propelled with three thrusters and features a single viewing window. The nose cone is
detachable upon impact.

Table 2: Tumour region segmentation accuracy covered by the
study.

Methods CRM+ (%) CRM- (%) Average (%) Total (%)

U-Net 82.1 81.7 81.9 81.8

FCN 67.2 66.4 66.8 66.5

Ours 91.2 90.6 90.9 91.1

Table 1: Tumour region detection results covered by the study.

Methods CRM+ (%) CRM- (%) Average (%) Total (%)

Faster-RCNN 67.1 62.3 64.7 65.6

Yolo-v3 43.4 37.6 40.5 41.2

Ours 87.5 89.1 88.3 88.6
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For a better comparison, we also compared the accuracy
of these two methods, and our proposed framework also
achieves a better result on the dataset (see Tables 1 and 2).

5. Conclusions

In this paper, we propose a novel transfer learning frame-
work, CST. We combine the colorectal cancer region detec-
tion and segmentation task jointly and fine-tuned a
transformer-based model to perform these tasks. For higher
accuracy, we incorporate image-level information into the
final cancer region detection, the results demonstrate that
the proposed framework can handle these tasks well, and
the comparison results have shown that our method has
achieved better accuracy than the traditional methods such
as CNN. In this way, the proposed framework explores a
new protocol for colorectal cancer information mining. In
future works, we mainly focus on how to use few samples
to achieve a better result.
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