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Phosgene exposure can cause acute lung injury (ALI), for which there is no currently available effective treatment. Mesenchymal
stem cells (MSCs) which have been proven to have therapeutic potential and be helpful in the treatment of various diseases, but
the mechanisms underlying the function of MSCs against phosgene-induced ALI are still poorly explored. In this study, we
compared the expression profiles of mRNAs, lncRNAs, and circRNAs in the lung tissues from rats of three groups—air control
(group A), phosgene-exposed (group B), and phosgene + MSCs (group C). The results showed that 389 mRNAs, 198 lncRNAs,
and 56 circRNAs were differently expressed between groups A and B; 130 mRNAs, 107 lncRNAs, and 35 circRNAs between
groups A and C; and 41 mRNAs, 88 lncRNAs, and 18 circRNAs between groups B and C. GO and KEGG analyses indicated
that the differentially expressed RNAs were mainly involved in signal transduction, immune system processes, and cancers. In
addition, we used a database to predict target microRNAs (miRNAs) interacting with circRNAs and the R network software
package to construct a circRNA-targeted miRNA gene network map. Our study showed new insights into changes in the RNA
expression in ALI, contributing to explore the mechanisms underlying the therapeutic potential of MSCs in phosgene-induced ALI.

1. Introduction

Phosgene is an indispensable mass production, used as inter-
mediate in the manufacture of building blocks of various types
of plastics, medicine, dye, and other chemical products [1]. It
was reported that individuals accidentally exposed to phos-
gene at approximately >600mg/m3×min developed clinically
significant phosgene-induced ALI [2]. Short-term exposure
to phosgene leading to ALI and prolonged exposure would
cause the fatal acute respiratory distress syndrome [3–5].
Now, exploring the potential molecular therapeutic targets
for phosgene-induced ALI is needed.

Systemically, administered mesenchymal stem cells
(MSCs) have the ability to selectively target sites of tissue

injury or inflammation [6]. Exogenously administered MSCs
have been observed to ameliorate lung injury in various
animal models, including endotoxin-induced ALI [7],
lipopolysaccharide- (LPS-) induced lung injury [8], and
phosgene-induced ALI [9]. Several studies have demon-
strated that facilitation of MSC localization to injured tissue
sites can incrementally benefit ALI [10, 11]. Thus, facilitation
of MSC localization to target tissue sites represents a promis-
ing therapeutic strategy for ALI.

Most of the transcribed RNAs are identified as noncoding
RNAs, which may be fully responsible for the complex gene
expression in humans [12]. Recent years, mounting evidence
has shown that lncRNAs and circRNAs play important roles
in the regulation of the gene expression [13, 14]. lncRNAs
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are a new class of regulatory RNAs over 200 nucleotides in
length, and circRNAs are a class of ncRNAs that have stable
structures and are resistant to the absence of 5′ or 3′ ends
[15, 16]. Emerging evidence suggests the involvement of
lncRNAs and circRNAs in lung injury. For example, lncRNA
TUG1 alleviates sepsis-induced ALI [17], whereas cir-
cANKRD36 silencing can alleviate LPS-irritated human
embryonic lung fibroblast cell injury [18]. To date, the profiles
of ncRNAs, particularly circRNAs, and their roles in
phosgene-exposed ALI have not been completely elucidated.

In our study, we conducted transcriptome sequencing to
determine the expression profiles of mRNAs, lncRNAs, and
circRNAs in a phosgene-exposed ALI model. Furthermore,
we conducted GO and KEGG analyses and build the
circRNA-miRNA coexpression networks. Our study is aimed
at elucidating the molecular mechanisms of phosgene-
induced ALI after MSC treatment to identify biomarkers
and new therapeutic targets for lung injury.

2. Materials and Methods

2.1. Experimental Animals and Sample Collection. All exper-
imental procedures involving animals were approved by the
Animal Care and Use Committee of Jinshan Hospital affili-
ated to Fudan University, China. A rat model of phosgene-
induced ALI was constructed as described previously [5].
The rats were divided into three groups—air control (group
A, n = 3), phosgene-exposed (group B, n = 3), and phosgene
+ MSCs (group C, n = 3). The rats in group A were exposed
to normal room air, whereas the rats in the groups B and C
were exposed to air comprising 8.33mg/L phosgene for
5min. Rats were intravenously injected with MSCs (106 cells
per rat) via the tail vein. The rats’ lung tissues were analyzed
to determine the degree of MSC localization after 48 h.

2.2. RNA Extraction, Library Construction, and Sequencing.
Total RNA was obtained from the lung tissues with the mir-
Vana miRNA Isolation Kit (Ambion, Inc. Austin, TX, USA)
according to the manufacturer’s instructions. RNA integrity
was assessed by the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, USA). RNA libraries were established through Tru-
Seq Stranded Total RNA with Ribo-Zero Gold (RS-122-2301,
Illumina, San Diego, CA, USA) and then were sequenced on
an Illumina sequencing platform (HiSeqTM 2500, Illumina,

San Diego, CA), and 150 bp/125 bp paired-end reads were
produced.

2.3. Reference Genome Mapping and Transcriptome
Assembly. Raw reads generated during high-throughput
sequencing were FASTQ format sequences. High quality
reads obtained can be used for subsequent analysis, and these
raw reads needed to be filtered further in terms of quality.
Trimmomatic software was first used to remove adapters,
after which low-quality bases, N-bases, and low-quality reads
were filtered out. Finally, we obtained high-quality clean
reads. The Q30 (Q score of 30) and GC contents of the clean
data were then measured. The samples were assessed by
genomic and gene alignment using HiSAT2 to align clean
reads to the reference genome of the experimental species.

2.4. Identification of lncRNAs. Candidate lncRNA sets were
subjected to the following rigorous screening steps for subse-
quent analysis. (1) The merged transcripts were compared
with a known reference gene model using Cuffcompare soft-
ware, and “I,” “u,” “x,” and “o” transcripts were retained. (2)
Transcripts of >200 bp and with ≥2 exons were selected. (3)
The obtained transcripts were predicted using CPC2, CNCI,
PLEK, and Pfam databases, and the transcripts from the
intersection of these four databases were screened to obtain
candidate lncRNAs. (4) The predicted lncRNA sequences
were compared to known lncRNA sequences through BLAST
software and were thus identified as known lncRNAs. For
species without known lncRNAs, the predicted lncRNA
sequences obtained were directly used for quantitative
analysis.

2.5. Identification of circRNAs. CIRI software is highly
sensitive and can be used to perform multiple screenings
to reduce false positives; therefore, it is an authoritative
software for circRNA prediction. In the present study,
the CIRI software was based on the new alignment algo-
rithm BWA-MEM comparison results, and the specific
prediction process was as follows: (1) SAM files were
obtained by the BWA-MEM comparison of clean reads
with the genome of the reference species. (2) Balanced
junction reads were detected based on xS/HyM (upstream)
or xMyS/H (downstream) paired chiastic clipping signals.
(3) Junction reads were filtered based on paired-end

Table 1: Summary of raw reads after quality control and mapping to the reference genome.

Sample Raw reads Clean reads Clean reads rate Q30 Mapped reads Mapping rate

A 1 96.20M 92.82M 96.49% 93.95% 89.86M 96.81%

A2 95.89M 93.19M 97.18% 94.62% 90.25M 96.85%

A3 96.92M 91.00M 93.89% 91.55% 87.97M 96.67%

P1 97.82M 95.15M 97.27% 94.86% 92.22M 96.93%

P2 99.13M 96.66M 97.51% 94.81% 93.52M 96.75%

P3 99.69M 97.15M 97.45% 94.88% 94.02M 96.78%

PM1 100.89M 98.35M 97.48% 94.74% 95.21M 96.80%

PM2 96.94M 94.31M 97.29% 94.72% 91.21M 96.71%

PM3 94.86M 90.64M 95.55% 92.94% 87.48M 96.51%
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Figure 1: Continued.
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mapping and GT/AG signals. (4) Junction reads were
detected based on a DM algorithm. After CIRI prediction
for each sample, a single circ-bed was obtained, and all
samples were merged into the circ-bed. Then, the number
of junction reads in different samples of each predicted
circRNA was counted, and the reads per million of each
circRNA were calculated.

2.6. Differential Screening Analysis and Functional Analysis.
The estimate size factor function of the DESeq (2012) R
package was performed to normalize the counts, and the
nbinomTest function was carried out to statistical P values
and fold change values to compare differences among
transcripts. Differential transcripts with P values of ≤0.05
and a fold change of ≥2 were chosen, and all genes were
mapped to GO terms through the GO analysis. Differential
RNA GO (http://www.geneontology.org/) and KEGG
(https://www.genome.jp) analyses were carried out through
the hypergeometric distribution test.

2.7. CeRNA Network Construction. Based on differentially
expressed circRNA data, we used a database to predict target
miRNAs interacting with circRNAs. For the enrichment
results of total differences in circRNAs, the top 300
miRNA–circRNA interaction pairs with small P values were
extracted in order of the P value, and the R package network
was performed to establish a circRNA-targeted miRNA
network map.

3. Results

3.1. Summary of Raw Sequence Reads. After removing low-
quality sequences, a total of 277.01, 288.96, and 283.3 million
clean reads with Q30 (Q score of 30) of >91.55% were
obtained from groups A, B, and C, respectively (Table 1).
About 96% of the reads were aligned to the reference genome
(Table 1).

3.2. The Profiles of Differentially Expressed of mRNAs,
lncRNAs, and circRNAs. A total of 22,601 mRNAs, 10,187
lncRNAs, and 7,231 circRNAs were identified in the three
groups. In order to compare the distributions of RNA
intensities among all the samples, we used a box and
whisker plot to visualize the distribution of each dataset.
These plots showed no statistical difference in the
circRNA, lncRNA, and mRNA distributions in the samples
(Figures 1(a), 2(a), and 3(a). The correlation coefficients of
the circRNA, lncRNA, and mRNA profiles among three
biological replicates of the nine samples were 0.255–
0.980, 0.936–0.988, and 0.931–0.997, respectively
(Figures 1(b), 2(b), and 3(b). A total of 109 circRNAs,
393 lncRNAs, and 560 mRNAs were shown to be differen-
tially expressed with a fold change of ≥2.0, P value of
<0.05, and false discovery rate (FDR) of <0.05 in the three
groups (Figures 1(c), 2(c), and 3(c), Tables S1–S9).
According to the dysregulated circRNAs relation with
protein-coding genes, they were divided into four
categories—exonic (94.03%), intergenic (1.6%), intronic
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Figure 1: Differentially expressed circRNAs in the lung tissues of three groups of rats. (a) A box and whisker plot of circRNAs showing the
distribution of RNA intensities in all samples. (b) Heat maps of correlation coefficients for all samples. (c) Volcano plots showing variation in
the circRNA expression. The vertical lines correspond to the 2-fold change, and the horizontal line represents a P value of 0.05. (d) Type and
proportion of circRNAs. (e) Hierarchical clustering of all differentially expressed circRNAs in the lung tissues of rats in groups A and B. (f)
Hierarchical clustering of all differentially expressed circRNAs in the lung tissues of rats in groups B and C. (g) Differentially expressed genes
were analyzed using DEGseq software based on the fragments per kilobase of the transcript per million mapped reads (FPKM) method (≥2-
fold change with P <0.05). The number of differentially expressed circRNAs was observed.
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(1%), and antisense (3.37%) (Figure 1(d)). However, the
majority (56.26%) of lncRNAs were antisense, whereas
24.31% were intergenic, 11.08% were intronic, and only
8.35% were exonic (Figure 2(d)). Compared with that
observed in group A, 27 circRNAs, 133 lncRNAs, and 233
mRNA expressions were increased and 29 circRNAs, 65
lncRNAs, and 156 mRNA expressions were reduced in
group B (Figures 1(e)–1(g), 2(e)–2(g), and 3(d)–3(f)).
Compared with that observed in group B, 9 circRNAs, 55
lncRNAs, and 14 mRNAs were upregulated; and 9
circRNAs, 33 lncRNAs, and 27 mRNAs were downregulated
in group C (Figures 1(e)–1(g), 2(e)–(g), and 3(d)–3(f)).

3.3. GO Analysis. In order to investigate the functions of the
abnormally expressed circRNAs, lncRNAs, and mRNAs, GO
annotation enrichment analyses were carried out. GO analy-
sis classified differently expressed genes on the basis of three
aspects (biological processes (BP), cellular components (CC),
and molecular functions (MF)). Of the genes with aberrant
mRNA targets between groups A and B, 1,558 were related
to BP, 273 with CC, and 732 with MF (Figure 4(a),
Table S10). Of the genes with aberrant mRNA targets
between groups B and C, 289 were related to BP, 51 with
CC, and 68 with MF such as channel regulation
(Figure 5(a), Table S13). Of the dysregulated lncRNAs
between groups A and B, 913 were related to BP, 182 with
CC, and 250 with MF (Figure 4(b), Table S11); of those
between groups B and C, 435 were related to BP, 120 with
CC, and 126 with MF (Figure 5(b), Table S14). Of the

dysregulated circRNAs between groups A and B, 296 were
associated with BP, 87 with CC, and 101 with MF
(Figure 4(c), Table S12); of those between groups B and C,
113 were associated with BP, 49 with CC, and 57 with MF
(Figure 5(c), Table S15). GO analysis showed that aberrant
lncRNA targets are mainly associated with regulation of
the interleukin-4-mediated signaling pathway, symbiont-
containing vacuole membranes, and STAT family protein
binding. Differentially expressed circRNA genes were found
to mainly participate in immune system processes, lysosome
activity, and enzyme inhibitor activity (Figures 4 and 5).

3.4. KEGG Pathway Analysis. To further explore the biologi-
cal functions of the identified genes in the present study,
obviously, enriched pathways were confirmed through com-
paring them to the KEGG database (Figures 6 and 7). The 462
differentially expressed mRNAs between groups A and B were
annotated to 35 metabolic pathways. Among these pathways,
the “immune system” included the most aberrant mRNAs
(69), followed by “infectious diseases” (66), “signal transduc-
tion” (39), “signaling molecules and interaction” (37), and
“cancers” (30) (Figure 6(a), Table S16). The 272 differentially
expressed lncRNAs between groups A and B were annotated
to 31 metabolic pathways. Among these pathways, “infectious
diseases” included the most aberrant lncRNAs (30), followed
by “cancers” (26), “signal transduction” (26), and “immune
system” (24) (Figure 6(b), Table S17). The 36 differentially
expressed circRNAs between groups A and B were annotated
to 19 metabolic pathways. Among these pathways, “signal
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Figure 2: Differentially expressed lncRNAs in the lung tissues of rats in the three groups. (a) A box and whisker plot of lncRNAs showing the
distributions of RNA intensities in all samples. (b) Heat map of correlation coefficients for all samples. (c) Volcano plots showing variation in
the lncRNA expression. The vertical lines correspond to 2-fold change, and the horizontal line represents a P value of 0.05. (d) Type and
proportion of lncRNAs. (e) Hierarchical clustering of all differentially expressed lncRNAs in the lung tissues of rats in groups A and B. (f)
Hierarchical clustering of all differentially expressed lncRNAs in the lung tissues of rats in groups B and C. (g) Differentially expressed
genes were analyzed using DEGseq software based on the FPKM method (≥2-fold change with P <0.05). The number of differentially
expressed lncRNAs was observed.
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Figure 3: Differentially expressed mRNAs in the lung tissues of rats in the three groups. (a) A box and whisker plot of mRNAs showing the
distributions of RNA intensities in all samples. (b) Heat map of correlation coefficients for all samples. (c) Volcano plots showing variation in
the mRNA expression. The vertical lines correspond to 2-fold change, and the horizontal line represents a P value of 0.05. (d) Hierarchical
clustering of all differentially expressed mRNAs in the lung tissues of rats in groups A and B. (e) Hierarchical clustering of all differentially
expressed mRNAs in the lung tissues of rats in groups B and C. (f) Differentially expressed genes were analyzed using DEGseq software
based on the FPKM method (≥2-fold change with P <0.05). The number of differentially expressed mRNAs was observed.
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transduction” included the most aberrant circRNAs (6),
followed by “carbohydrate metabolism” (3), “infectious
diseases” (3), “cardiovascular diseases” (3), and “cancers” (3)
(Figure 6(c), Table S18).

The 31 differently expressed mRNAs between groups B
and C were annotated to 19 pathways. Most of these mRNAs
were clustered in the “endocrine system” category (5),
followed by “signal transduction” (3), “endocrine and meta-
bolic diseases” (3), “environmental adaptation” (3), and
“energy metabolism” (2) (Figure 7(a), Table S19). The 59
differently expressed lncRNAs between groups B and C
were annotated to 23 metabolic pathways. Among these
pathways, “signal transduction,” “infectious diseases,” and
“endocrine system” included the most aberrant lncRNAs
(6), followed by “cell growth and death” (4) and “cellular
community: eukaryotes” (4) (Figure 7(b), Table S20). The
20 differently expressed circRNAs between groups B and C
were annotated to 16 metabolic pathways. Among these
pathways, “transport and catabolism,” “cancers,” “immune
diseases,” and “carbohydrate metabolism” included the
most aberrant lncRNAs (2) (Figure 7(c), Table S21).

3.5. Coexpression of circRNAs and miRNAs. To investigate the
underlying mechanisms of circRNA and phosgene-induced
lung injury based on differentially expressed circRNA data,
we used a database to predict target miRNAs interacting with
circRNAs. The enrichment results of the total differences in

circRNAs revealed that the top 300 miRNA–circRNA interac-
tion pairs with small P values were extracted in order of the P
value, and the R network software package was performed to
establish a circRNA-targeted miRNA gene network map
(Figures 8 and 9, Table S22). First, 18 significantly
differentially expressed circRNAs were selected between
groups A and B (Figure 8). Some of these circRNAs
comprise multiple miRNA binding sites, whereas some share
miRNA response elements. For example, circRNA-3871
comprises binding sites for miR-339-5p, miR-320-3p, miR-
346, and miR-345-3p, and circRNA-2246 comprises binding
sites for miR-149-5p, miR-296-3p, and miR-3593-5p. Both
circRNA-3871 and circRNA-2246 target miR-1956-5p
(Figure 8). Similarly, four significantly differentially expressed
circRNAs were selected between groups B and C (Figure 9).
Of these circRNAs, circRNA-3868 comprises binding sites for
miR-877, miR-357, and miR-874-3p, and circRNA-3235
comprises binding sites for miR-210-5p, miR-3594-5p, and
miR-320-5p. Both circRNA-4464 and circRNA-3112 target
miR-3541 (Figure 9). These results suggest that circRNAs
serve as efficient miRNA sponges in ALI.

4. Discussion

In the present study, we used transcriptome sequencing to
compare the expression profiles of mRNAs, lncRNAs, and
circRNAs in the lung tissues of rats in the air control,
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Figure 4: GO analyses of differentially expressed mRNAs, lncRNA targets, and circRNA genes between groups A and B. (a) Enrichment of
biological processes, cellular components, and molecular functions in differentially expressed mRNAs. (b) Enrichment of biological processes,
cellular components, and molecular functions in differentially expressed lncRNAs. (c) Enrichment of biological processes, cellular
components, and molecular functions in differentially expressed circRNAs.
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Figure 5: Continued.
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phosgene-exposed, and phosgene + MSC groups. Further-
more, we conducted GO and KEGG analyses and con-
structed regulation networks. Our study is aimed at
elucidating the molecular mechanisms of phosgene-induced
ALI after MSC treatment to identify biomarkers and new
therapeutic targets for lung injury.

Previous studies on gene regulation have focused on
protein-coding genes. However, in recent years, with the dis-
covery of many ncRNAs, such as microRNAs, lncRNAs, and
circRNAs, this view has changed [19]. The roles of lncRNAs
in the progression and treatment of lung diseases have been
reported. For example, MALAT1 was reportedly related to
acute respiratory distress syndrome related to lung injury
[20], downregulation of SNHG14 had protective effects
against LPS-induced ALI [21], and CASC2 improved ALI
by reducing lung epithelial cell apoptosis [22]. A potential
relationship between lung injury and circRNAs has been
demonstrated [18], revealing that circRNAs might have an
important role in lung injury. In this study, we analyzed the
abnormal expression profiles of lncRNAs, circRNAs, and
mRNAs for the first time in phosgene-induced ALI after
MSC treatment.

We determined the expression profiles of mRNAs,
lncRNAs, and circRNAs using transcriptome sequencing. A
total of 22,601 mRNAs, 10,187 lncRNAs, and 7,231 cir-
cRNAs were identified, and a total of 109 circRNAs, 393
lncRNAs, and 560 mRNAs were observed to be differentially

expressed in the three groups with a fold change of ≥2.0, P
value of <0.05, and FDR of <0.05. The majority (56.26%) of
the lncRNAs were antisense, and approximately 94.03% of
the circRNAs were exonic. Compared with that observed in
group A, 27 circRNAs, 133 lncRNAs, and 233 mRNAs were
increased, and 29 circRNAs, 65 lncRNAs, and 156 mRNAs
were decreased in group B. Compared with that observed in
group B, 9 circRNAs, 55 lncRNAs, and 14 mRNAs were
upregulated, and 9 circRNAs, 33 lncRNAs, and 27 mRNAs
were reduced in group C. In our study, we found that fatty
acid-binding protein 4 (Fabp4) mRNA and lncRNA plasma-
cytoma variant translocation 1 (PVT1) were downregulated
in group C than that in group B. Previous studies have shown
that Fabp4 and PVT1 were reported to be participated in the
immune response. For example, Fabp4 inhibitors suppress
inflammation and oxidative stress in murine and cell models
of acute lung injury [23], and suppression of Fabp4 protects
against rhabdomyolysis-induced acute kidney injury [24].
In chronic obstructive pulmonary disease patients, the
PVT1 expression positively correlated with the GOLD stage
and levels of TNF-α, IL-6, IL-8, and IL-17 [25]; PVT1 exacer-
bates the inflammation and cell-barrier injury during asthma
by regulating miR-149 [26]. These findings suggested that
Fabp4 and PVT1 might play the role in the therapeutic
potential of MSCs in phosgene-induced ALI, and we will
research the potential role of them in the phosgene-induced
ALI in the following research. The differentially expressed
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Figure 5: GO analyses of differentially expressed mRNAs, lncRNA targets, and circRNA genes between groups B and C. (a) Enrichment of
biological processes, cellular components, and molecular functions in differentially expressed mRNAs. (b) Enrichment of biological processes,
cellular components, and molecular functions in differentially expressed lncRNAs. (c) Enrichment of biological processes, cellular
components, and molecular functions in differentially expressed circRNAs.
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Figure 6: Continued.
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lncRNAs, mRNAs, and circRNAmay play roles in phosgene-
induced ALI and may prove to be important in the treatment
of ALI using MSCs.

GO and KEGG analysis indicated that the main mech-
anisms of lung injury included single-organism processes,
drug metabolism, and immune system processes. We also
found that the lncRNA TCONS_00026162 (GO: 0060487)
was associated with lung epithelial cell differentiation,
TCONS_00026162 (GO: 0060441) was associated with epi-
thelial tube branching involved in lung morphogenesis,
TCONS_00026162 (GO: 0030324) was associated with lung
development, and XR_001839103.1 and XR_593920.2 (GO:
0055114) were associated with the oxidation–reduction
process. Meanwhile, circRNA_4627 (GO: 2000791 and
GO: 0048286) was associated with the negative regulation
of MSC proliferation involved in lung development and
lung alveolus development, circRNA_5485 (GO: 0055114)
was associated with the oxidation–reduction process, and
circRNA_4178 (GO: 0002526) was associated with the
acute inflammatory response. Lung epithelial cell differenti-
ation has been reported to play key roles in various models
of lung injury [27, 28]. Melittin exerts beneficial function
on paraquat-induced lung injury by regulating oxidative
stress and apoptosis [29]. Cordycepin suppresses LPS-
caused ALI by preventing inflammation and oxidative

stress [30]. Puerarin prevents LPS-induced ALI via inhibi-
tion of the inflammatory response [31]. These results sug-
gest that the above mentioned lncRNAs and circRNAs
may be involved in ALI.

Increasing evidence shows that natural endogenous cir-
cRNAs are inherently resistant to exonucleolytic RNA decay,
and that they contain selectively conserved miRNA target
sites. Therefore, circRNAs can function as efficient miRNA
sponges, interacting with miRNA to regulate the gene expres-
sion [14, 32]. For example, the circRNA PVT1 facilitates
osteosarcoma metastasis through regulation of the miR-
526b/FOXC2 axis [33], and circRNA-33186 participated in
the pathogenesis of osteoarthritis through functioning as a
sponge of miR-127-5p [34]. In the present study, the poten-
tial target miRNAs were predicted, and the R network soft-
ware package was used to establish a circRNA-targeted
miRNA gene network map. circRNA-3871 contains binding
sites for miR-339, miR-320-3p, miR-346, and miR-345-3p,
and circRNA-2246 comprises binding sites for miR-149-5p,
miR-296-3p, and miR-3593-5p. Compared with that observed
in group A, the circRNA-3871 expression was upregulated in
group B, and its target miRNA—miR-339—reportedly attenu-
ates inflammation and inhibits pulmonary microvascular endo-
thelial cell apoptosis in mice with severe acute pancreatitis-
associated ALI [35]. Meanwhile, the circRNA-3235 expression
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Figure 6: KEGG pathway classification of identified genes. The abscissa represents the annotated genes in the KEGG database; the ordinate
represents categories in the KEGG database. (a) KEGG pathway classification of mRNAs that were differently expressed between groups A
and B. (b) KEGG pathway classification of lncRNAs that were differently expressed between groups A and B. (c) KEGG pathway
classification of circRNAs that were differently expressed between groups A and B.
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classification of circRNAs that were differently expressed between groups B and C.
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was lower in group B than that in group C, and the expression
of its target miR-320 was increased in ALI induced by
cardiopulmonary bypass [36]. These findings suggest that
circRNA-3871 functions as a miR-339 sponge and circRNA-
3235 functions as a miR-320 sponge. Both these circRNAs
may participate in phosgene-induced ALI progression and
prove to be important in the treatment of ALI using MSCs. In
our next study, we will verify this conjecture further.

In conclusion, we compared the expression profiles of
mRNAs, lncRNAs, and circRNAs in the lung tissues of rats
in three groups. Furthermore, we conducted GO and KEGG
analyses and constructed coexpression networks. In addition,
we used a database to predict target miRNAs interacting with
circRNAs and the R network software package to establish a
circRNA-targeted miRNA gene network map. Our study is
aimed at elucidating the molecular mechanisms of phosgene-
induced ALI after MSC treatment to identify biomarkers and
new therapeutic targets for lung injury.
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miRNA, respectively.
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