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Sortase A (SrtA) is an enzyme that catalyzes the attachment of proteins to the cell wall of Gram-positive bacterial membrane,
preventing the spread of pathogenic bacterial strains. Here, one class of oxadiazole compounds was distinguished as an
efficient inhibitor of SrtA via the “S. aureus Sortase A” substrate-based virtual screening. The current study on 3D-QSAR was
done by utilizing preparation of the structure in the Schrédinger software suite and an assessment of 120 derivatives with the
crystal structure of 1,2,4-oxadiazole which was extracted from the PDB data bank. The docking operation of the best
compound in terms of pMIC (pMIC =2.77) was done to determine the drug likeliness and binding form of 1,2,4-oxadiazole
derivatives as antibiotics in the active site. Using the kNN-MFA way, seven models of 3D-QSAR were created and amongst
them, and one model was selected as the best. The chosen model based on g* (pred_r?) and R® values related to the sixth
factor of PLS illustrates better and more acceptable external and internal predictions. Values of crossvalidation (pred_r?),
validation (¢%), and F were observed 0.5479, 0.6319, and 179.0, respectively, for a test group including 24 molecules and the
training group including 96 molecules. The external reliability outcomes showed that the acceptable and the selective 3D-
QSAR model had a high predictive potential (R* =0.9235) which was confirmed by the Y-randomization test. Besides, the
model applicability domain was described successfully to validate the estimation of the model.

1. Introduction

Sortase A (SrtA) is a polypeptide containing 206 amino
acids. This enzyme speeds up two consecutive reactions:
(a) transpeptidation and (b) thioesterification. SrtA is
involved in the bacterial adhesion process and acts by
attaching proteins holding LPXTG to lipid II [1-11]. SrtA
inhibitors do not influence bacterial growth, but instead,
they prevent the emergence of the virulence of pathogenic
bacterial strains, thereby hindering infections produced by
Staphylococcus aureus (S. aureus) or other bacteria of

Gram-positive strain. To the surface membrane protein of
S. aureus, sortase is attached which links it to the cell wall
via transpeptidation [6, 10, 12], and needing a C-terminal
regulates signal through a protected LPXTG motif [13-15].
S. aureus mutations with a deficiency of the srtA gene can-
not display and bind some surface proteins which results
in a disorder/disease such as animal infection [13, 16]. S.
aureus is an important anthropological bacterial pathogen
of Gram-positive strain that leads to common infections in
society. Regarding the resistance to antibiotics, and the
report of the Centers for Disease Control and Prevention
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(CDCQC) about resistance to methicillin of S. aureus (MRSA)
in 2013, S. aureus was distinguished as a critical and a persis-
tent threat [17-19].

The Gram-positive bacteria S. aureus is communal to
humans and exists on the mucosa and skin of 30% of
the population [20, 21]. It is a chief reason for hospital
infections, the most common and serious of which are
endocarditis and bacteremia endocarditis in hospitalized
patients [22-25]. This organism has created resistance to
a broad range of antibiotic medicine types [26]. Principal
commercial compounds of the antimicrobial class (such
as ciprofloxacin, ampicillin, and posaconazole) have lim-
ited performance against resistance microorganisms strains
[27-30]. The erratic usage of antibiotics is known as one
of the primary reasons for the increase in resistance of
bacteria. The growth of bacterial resistance has resulted
in a significant rise in mortality rates of individuals
around the world [31]. On this path, there is a serious
necessity to discover novel molecules with more effective
antibacterial features, as well as obvious synthetic routes.
This led to widespread research such as designing hetero-
cyclic derivatives (like 1,2,4-oxadiazoles) with antimicro-
bial properties to treat S. aureus infections [32-36].
These discovered antibiotics are active and exhibit gram-
positive activity, particularly against Staphylococcus
aureus, including vancomycin-resistant, methicillin-
resistant (MRSA), and linezolid-resistant by inhibiting srtA
[24, 35, 37]. 1,2,4-Oxadiazole heterocycle was first manu-
factured in 1884. They showed remarkable action in vitro
and in vivo and are orally bioavailable. The medicinal
chemistry literatures report diverse structures for the
1,2,4-oxadiazoles (Figure 1) [38, 39]. In the present article,
we represent 3D-QSAR investigations concerning 120 mol-
ecules of 1,2,4-oxadiazoles with antibacterial healing prop-
erties. This class of compounds (oxadiazoles) targets SrtA
of the cell wall and inhibits it [40]. The advancement of
antibiotics, especially of those that target cells of bacteria
and have a desirable characteristic of toleration and safety,
has largely helped population growth and has improved
the quality of life in the last 75 years.

2. Materials and Methods

2.1. Data Set. A collection containing 120 compounds hav-
ing 1,2,4-oxadiazole as antimicrobials was taken from the
available literature [24] and was employed in the present
study. All structures were extracted from Chembl
(https://www.ebi.ac.uk/chembldb). The chosen compounds
for the set of data shared a similar evaluation method with
notable changes in their strength profiles and their struc-
tures. The compounds incorporated in the collection of
datasets have antibiotics potencies with MIC values vary-
ing from 2 to 500ug/ml which were changed to M
(molar). These were then converted to pMICs according
to the following equation [41-44].

pMIC = -log,, [MIC].

The ligand 3D-formula of compounds was produced
utilizing the Maestro v2015-2 and afterwards corrected
using the LigPrep. Partial charges of atoms were attrib-
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uted, and potential ionization was calculated at a neutral
medium. The force field of OPLS_2005 was utilized for
minimization to the conformer creation with the low
energy of ligand. The minimization of energy was done
for every compound (ligand) to reach an RMSD cutoft
of 0.01 A. Then, the final structures were used for model-
ing investigation. Additionally, all the 120 molecules were
aligned in the method of alignment (Figure 2) relying on
Maestro through choosing a common structure minimum
as “template” and the most efficient one (compound 89)
as the “Reference Molecule” (Figure 3). Of the 120 mole-
cules recognized in this investigation, a training group,
including 96 molecules and a test group, including 24
molecules was created in Maestro [45-48].

2.2. Model Validation and Statistical Analysis. A high q* only
indicates a good internal validation in the training group,
but it does not show a high prediction capability of the cre-
ated models; hence, an external validation was necessary.
The proved capability from generated models of 3D-QSAR
was confirmed by computing the biological activities of com-
pounds that applied as a test set and not inserted in the
training set (Suppl. Table 1). In the present investigation,
eighty percent of the molecules from the data set was
accidentally chosen as training set models based on the
atom field which were created of PLS factors (one until
seven), and the obtained models were approved after
predicting the activity of the test group ligand. The value
of the model’s prediction was assessed through the leave-
one-out (LOO). The ¢* (predictive correlation coefficient)
was determined by utilizing Equation (1) [49].

2
2 _ Z (Ypredicted - Yobserved)

q =1 >
z ( Yobserved - Ymean)

(1)

In the above equation, each of the three indices including
Y Y predicted> @0d Y demonstrates the mean values

predicted and observed of the pMIC feature, respectively.
The (Y predicted ~ Y spserveq) index  displays PRESS  (the
predictive residual sum of squares). The r_pred” index
related to the predictive correlation coefficient
(r_pred® > 0.6) [50] is calculated for the test group and is
characterized through Equation (2).

, _ (SD-PRESS 5
Tored = ~— s (2)

mean’ observed>

In Equation (2), the SD index shows the squared
deviation sum for molecules amongst the test group
biological activities and training group mean activities [51].
Also, the PRESS index indicates the squared deviation
summation amongst actual and predicted activity values
for molecules individually in the test group. Based on
previous studies [52], If R? is bigger than 0.6, and R*cv (Q*
) is bigger than 0.5, 3D-QSAR models are acceptable. The
regression model action composed was assessed using the
RMSE index. For the data group, RMSE is computed as
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FiGure 1: Examples of diverse structure for the 1,2,4-oxadiazole compounds.

Aligned compounds

Template

FIGURE 2: 3D-QSAR structure superposition and alignment of the
series (Strick model).

Equation (3) [53].

30— yN)?
RMSE = M (3)

The 3D-QSAR model with the sixth component of the
PLS factor was considered as the best for 1,2,4-oxadiazole
derivatives. This model was approved for its precision in
the ligand activity estimate in the training group [51].
Scatter plots for experimental and predicted activities of
ligands showed a notable linear correlation. In Figures 4(a)
and 4(b), the average difference of values of predicted and

experimental for training and test groups is exposed,
respectively.

2.3. Applicability Domain. APD can be determined using
resemblance measures relying on the Euclidean distances
between the entire compounds test and training. A compar-
ison between the distance of the test compounds and their
nearest neighbor to a predefined threshold in the training
group is done, and the prediction is considered inaccurate
when the interval is higher than that. The determination of
APD was done based on the displayed formula, as follows.

APD = (d) + Z5. (4)

8 and d were calculated in a series of steps: first, the
mean of Euclidean distances among all training compound
pairs was estimated. Then, the collection of distances lower
than the median was determined. § and d were finally mea-
sured as the standard deviation and mean of distances that
included in this set. The value equals 0.5 was selected for Z
, which was the experimental cutoff in this study. For the
applicability domain calculation, we utilized “AD using stan-
dardization approach” in DTC Lab (https://dtclab.webs
.com/software-tools) [54-56].

Y-Randomization Test

The procedure of Y-randomization guarantees the valid-
ity of a 3D-QSAR model [57]. The dependent changeable


https://dtclab.webs.com/software-tools
https://dtclab.webs.com/software-tools

BioMed Research International

Dy

FIGURE 3: (b) Structure of compound 89 with the best active. (a) Structure of compound 120 with the lowest active.
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FIGURE 4: Scatter plot of the observed activity versus predicted activity of (a) training group compounds (y = 0.92x + 0.34, R? = 0.92) and (b)
test group compounds with the best fit line (y = 0.68x + 1.54, R* = 0.65).

vector is altered accidentally, and a novel 3D-QSAR model is
produced. The strategy is repeated several times and if the
recently produced 3D-QSAR models show low R? and Q?
values, the accurateness of the original model is con-
firmed [58].

2.4. Docking Studies. One most frequent tool for drug design
is molecular docking, which employs a mode of association
between binding sites of a suitable target with small mole-
cules. Polypeptide structure, SrtA (accession number:
2KID), was acquired from the PDB data bank. Here, small-
molecule docking in its active site and its analysis was done
via Molecular Operation Environment (MOE) software
(http://www.chemcomp.com) for selecting out the most
active compound in terms of pMIC (pMIC = 2.77) with SrtA
polypeptide. Before docking, the preparation of the ligand
was done, and the 2D structure of ligand was set up by Che-
moffice 12.0 which was further changed to 3D format by
Hyper Chem?7 software and was optimized employing PM3
semiempirical tool. Also, removal of crystallographic water
molecules was done followed by association with pH 7 (for
suitable ionization for both alkaline and acidic amino acids)
and finally, hydrogen bonds were added. Utilizing the man-

ual recommended parameters of the MOE energy minimiza-
tion with a gradient of 0.05 and MMFF94X ff (force field),
the energy of the retrieved protein molecule was calculated.
The docking was done with force field as a filtration method
via the triangle matcher placement, and the scoring function
of the London DG algorithm in combination and the best
conformation was analyzed in more details with the LigX
module in MOE software. Docking was accomplished for
the best compound (compound 89) with the lowest MIC
(Figure 5(a)) utilizing the default setting of MOE-Dock
[12]. In the last section of the docking process, the selected
ligand conformation was further investigated for its interac-
tions of binding. The hydrophilic and hydrophobic field
map for compound 89 was also formed (Figure 6(a)). The
2D pictures of the docked conformation of compound 89
are exhibited in Figure 6(b). The compound position in the
protein active site is illustrated in Figure 6(c) [59-65].

3. Results and Discussion

3.1. 3D-QSAR Model. The 3D-QSAR model was created uti-
lizing PLS regression statistics with the grid spacing 1 A. The
seven PLS factors were requested from the program, and the
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F1GURE 5: The visualizing of the 3D-QSAR model in the field of unfavorable and favorable effects of hydrogen bond donor (HBD) in: (a)
ligand 89 and (b) ligand 120. The visualizing of the 3D-QSAR model in the field of unfavorable and favorable effects of interaction in (c)
ligand 89 and (d) ligand 120. The visualizing of the 3D-QSAR model in the field of unfavorable and favorable effects of electron-
withdrawing groups in (e) ligand 89 and (f) ligand 120 in two different dimensions, (positive coefficient color: dark blue, negative
coefficient color: red, most active compound is 89 (pMIC = 5.617), and least active compound is 120 (pMIC = 2.771)).

best model was observed for the sixth PLS factor owing to its
high statistical importance and predictability. (Table 1) The
fractions of field and parameters of statistical measured in
QSAR-based Gaussian are organized in Table 2.

3.2. Model Validation. Validation of a common pharmaco-
phore model and its prediction relying on active compounds
were distinguished by Q_,*> =0.5479 (Table 1). The training
group R* was 0.9235, which revealed the importance of this
model. The produced model stability differs from 0.994 to
0.674. The value of F was observed to be 179.0. Moreover,
a P value equal to 1.95e-047 and Pearson r equals 0.8050
showed an assurance of a higher degree in the model. The
standard deviation and the root-mean-square error were
equal to 0.2291 and 0.48, respectively, which depicts the
strength of the created model in the test for the estimation
of the unrecognized compounds. The values of measured
pMIC related to the ligands which were included in the pre-
dicted group are summarized in Suppl. Table 1. R* values
greater than 0.5 as seen amongst the experimental and
predicted values produced in the suitable model could
show the inhibitory activity that was not included in the
progression procedure. [66, 67]. These outcomes suggest
that this method can analyze the QSAR model and the
ligand-receptor interactions and could be employed in the
design of new imidazole inhibitors. Scatter plots, given in
Figures 3(a) and 3(b), showed a moderate distinction

between the values of two groups, experimental and
predicted, and striking linear correlation.

3.3. Applicability Domain. Reports of model constraints by
the APD are critical. This shows an important aspect
because the user can not only creatively and easily design
new compounds but also they can be warned for the estima-
tion validity as to when the structure features cannot be
provided via the model. Therefore, after selecting the best
model, the ADP of the model showed that the predicted
model was valid. In the applicability domain, the compound
was completely put inside the range. Indeed, all ligands were
in the applicability domain and hence can be assumed as
acceptable.

Y-Randomization Test

Further confirmation of the model was done via Y-ran-
domization. Ten accidental changes of the Y vector were
done, and the low values of R*> and Q* were calculated.
The range of the R?> and Q* values were 0.34 to 0.57 and
-0.45 to -0.65, respectively. It needs to be mentioned that
every Y vector random stage was followed by the perfect
training method to improve the new QSAR model, involving
the choice of the most proper descriptors [68].

3.4. 3D-QSAR Contour Map Analysis. Contour plot interpre-
tation was done to detect the influence of spatial arrange-
ment on the structural characteristics like hydrophobic,
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FIGURE 6: (a) The display of the image related to hydrophobic and hydrophilic fields for compound 89 into the active site (2KID). (b) The
2D pictures of the docked conformation of compound 89. (c) The positioning of the compound 89 in the protein active site.

ionic, electrostatic, H-bond acceptor, and H-bond donor
locations on oxadiazole inhibitory effects. The positive con-
tribution appeared in blue-colored cubes, and the negative
contribution was visible in red. Figures 5(a)-5(f) are shown
for the identification of the acceptable and unacceptable
important interactions in two different dimensions, which
resulted in the use of the QSAR model. HBD nature compar-
ison of compound 89 (the best activity, Figure 5(a)) and the

compound 120 (the least activity, Figure 5(b)) displays unac-
ceptable and acceptable regions as red and blue cubes,
respectively. Hydrogen bond donor maps showed that unfa-
vorable locations placed next to the nitrogen atom of amide
present on one side of the oxadiazole (Figure 5(a)) are an
HBD group which is in the inappropriate place, whereas
for the most active molecule, unfavorable regions lay near
the sulfur atom which is not an HBD group (Figure 5(b)).
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TaBLE 1: PLS statistical parameters of the model QSAR model.
PLS SD R? F Stability RMSE Q? Pearson-R
1 0.4285 0.7171 238.3 1.62e-027 0.994 0.45 0.6744 0.8302
2 0.3774 0.7830 167.8 1.41e-031 0.971 0.48 0.6323 0.8012
3 0.3254 0.8403 161.4 1.57e-036 0.907 0.44 0.6900 0.8342
4 0.2808 0.8824 170.7 2.1e-041 0.835 0.43 0.7056 0.8462
5 0.2503 0.9076 176.8 5.91e-045 0.773 0.45 0.6772 0.8314
6 0.2291 0.9235 179.0 1.95e-047 0.722 0.48 0.6319 0.8050
7 0.2070 0.9382 190.9 2.31e-050 0.674 0.49 0.6134 0.7970

SD: standard deviation of regression; R?: regression coefficient; F: variance ratio (ratio of the model variance to the observed activity variance); P: significance
level of variance ratio; Q*: Crossvalidated correlation coefficient for the test group; RMSE: the RMS error in the test group predictions; Pearson-R: correlation

among the predicted and observed activity for the test group.

TABLE 2: Seven factors of PLS were calculated for the QSAR model.

# factors H-bond donor Hydrophobic/nonpolar Negative ionic Positive ionic Electron-withdrawing
1 0.028420 0.709533 0.030517 0.031581 0.156872
2 0.029319 0.646792 0.039072 0.039833 0.190441
3 0.028610 0.647774 0.045189 0.045139 0.200709
4 0.029662 0.668252 0.038533 0.037152 0.195964
5 0.029213 0.666539 0.039458 0.037827 0.195301
6 0.029931 0.669972 0.037575 0.035876 0.194004
7 0.032992 0.677689 0.033050 0.032073 0.191071

Also, the hydrogen of the hydroxyl group on p-hydroxyphe-
nyl, present on the other side of the oxadiazole near the
desirable region, is available for two compounds—categor-
ized as active and the least active.

Compounds such as ligand 89 with p-CF,-phenylthio
hydrophobic substituent had higher potency values than com-
pounds without substitute mentioned such as ligand 120,
because of the presence of favorable hydrophobic regions in
that position (Figures 5(c) and 5(d)), which was confirmed
by the results obtained from previous CoMFA studies [69].
For less active ligands such as compound 120, the hydrophilic
group (amid) fell into the favorable hydrophobic envelope that
is not suitable for the hydrophilic groups. Comparison
between the effects of the electron-withdrawing moieties of
the best compound 89 with an electron p-CF3-phenylthio
group and the least active compound 120 with the acetamido
group was shown in Figures 5(f) and 5(e).

3.5. Docking Studies. The MOE-Dock program was utilized
to check the stability of the models created in this study with
the sortase A polypeptide receiver (PDB code 2KID). Studies
of docking showed that interactions were commanded by
aromaticity and hydrophobicity due to the position of phe-
nol moiety (Figures 6(a)-6(c)). The best compound
(pMIC =5.617) was connected into the binding cavity of
polypeptide SrtA with high affinity and created interactions
in association with the oxygen of phenol with the Gly192
residue in one side of the ligand, while two rings on the other
side of the oxadiazole have two interactions arene-cation
with Arg 197 residue. The scores of docking studies of the
best compound were -11.12 kcal/mol. Therefore, the com-

pound 89 had a three-point attachment with the protein
binding cavity. The interactions were present in the region
containing Gly 192 and Arg 197 residues (Figure 6(b)). In
general, oxygen is bound to hydrogen of hydroxyl in the
acidic part of Gly 192 residue that showed only one hydro-
gen bond. This subject is visible by analyzing the hydrophilic
and hydrophobic regions of compound 89 (Figure 6(a)). 3D-
QSAR contour map analysis studies confirm this and
showed that the compounds like ligand 89 are placed in a
hydrophobic envelope (Figure 6(c)).

4. Conclusions

Using model prediction by 3D-QSAR studies of 120 analogs
of 1,2,4-oxadiazoles and docking, we provided insights into
the critical features needed for the design of inhibitors of
SrtA. 3D-QSAR modeling was performed to provide a struc-
tural network for the comprehension of structure-activity
relationships of the ligands present in the study. Studies of
molecular docking were done to create desirable poses that
bind to these compounds. The gets scores in VS (virtual
screening) of compounds gave us chemically important
points for the design and improvement of novel oxadiazoles
as sortase inhibitors. The most active compound (89) of
1,2,4-oxadiazoles used in this study had four rings, named
A, B, C, and D. HBD moieties in the A ring were essential
for antibacterial activity. The aniline, phenol, and some het-
erocyclic compounds with hydrogen-bonding ability, such
as pyrazoles, were allowed. These findings are in line with
previous results. In line with previous explanations on the
3D-QSAR map analysis section, a hydrophobic substituent



was seen essential for the activity in the D ring region [24,

69].

In general, by 3D-QSAR, we attempted to study the

structural diversity in the ring D antibacterial activity in a
1,2,4-oxadiazoles region (Figure 1). Finally, our findings sug-
gest that the 1,2,4-oxadiazoles are inhibitors of sortase A and
act against S. aureus, further holding great promising poten-
tial as future therapeutics for treating hospital infections.
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Regression coeflicient

Q% Crossvalidation correlation coefficient

APD:  Applicability domain

PLS:  Partial least square
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HBD: Hydrogen-bond donor.
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