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Vessel segmentation is a fundamental, yet not well-solved problem in medical image analysis, due to the complicated geometrical
and topological structures of human vessels. Unlike existing rule- and conventional learning-based techniques, which hardly
capture the location of tiny vessel structures and perceive their global spatial structures, we propose Simultaneous Self- and
Channel-attention Neural Network (termed SSCA-Net) to solve the multiscale structure-preserving vessel segmentation (MSVS)
problem. SSCA-Net differs from the conventional neural networks in modeling image global contexts, showing more power to
understand the global semantic information by both self- and channel-attention (SCA) mechanism and offering high
performance on segmenting vessels with multiscale structures (e.g., DSC: 96.21% and MIoU: 92.70% on the intracranial vessel
dataset). Specifically, the SCA module is designed and embedded in the feature decoding stage to learn SCA features at different
layers, in which the self-attention is used to obtain the position information of the feature itself, and the channel attention is
designed to guide the shallow features to obtain global feature information. To evaluate the effectiveness of our SSCA-Net, we
compare it with several state-of-the-art methods on three well-known vessel segmentation benchmark datasets. Qualitative and
quantitative results demonstrate clear improvements of our method over the state-of-the-art in terms of preserving vessel details
and global spatial structures.

1. Introduction

Vessel segmentation is aimed at automatically or semiauto-
matically detecting the boundaries (consisting of pixels) of
blood vessels within 2D or 3D medical images such as com-
puted tomography (CT) or magnetic resonance angiography
(MRA) images. As one of the most challenging tasks in
medical image segmentation (MIS), vessel segmentation can
deliver significant information about the shapes and volumes
of vessels, which are critical to the diagnosis and treatment of
vascular diseases [1, 2].

The most successful type of models for vessel segmenta-
tion is deep learning-based techniques, especially convolu-
tional neural network- (CNN-) based frameworks, which
have shown to be a powerful and robust tool in segmenting
homogeneous areas of medical images [3–11], as shown in

Figure 1. Although those methods had achieved state-of-
the-art performance for many segmentation tasks, it is also
faced with the following problems: they usually use a large
number of feature information, while these features may
have different importance for the segmentation task. Intui-
tively, maintaining lots of feature maps or complex network
structures can boost the segmentation performance. How-
ever, doing that is not optimal to both reduce network
overfitting and improve the segmentation accuracy. Besides,
due to the increase in the depth of CNN, it is easy to cause
the network to lose some spatial feature information and
channel feature information. To address these problems,
people began to use the attention mechanism.

Recent studies have validated that the attention-based
global features are important for semantic segmentation.
For instance, the pyramid attention network [12] exploits
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Figure 1: Continued.
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the impact of global contextual information on semantic seg-
mentation and uses global attention upsampling to replace
the bilinearly upsampling. However, these methods utilize
consecutive pooling and stride convolutional operations to
capture global feature information. As known, this kind of
operation can lead to the loss of location and spatial
information.

We argue that the attention mechanism is helpful for ves-
sel segmentation and assume that taking a more comprehen-
sive use of attention would boost the segmentation
performance. In this paper, we propose a novel module named
self-attention and channel-attention (SCA), which can be used
to connect low-level and high-level features, compared to the
standard U-Net, which uses simple skip connections to con-
nect low-level and high-level features. Our proposed SCA
block could capture wider and deeper semantic features by
infusing the attention mechanism. Additionally, we also use
squeeze and excitation pyramid pooling (SEPP) [13], which
can extract enriched feature representations in the samemulti-
scale pooling operations. It can better increase the resilience
and robustness of the network. Furthermore, to streamline
the network structure, we replace ResNet [14] block with the
ReLU Feature Unit (RFU). In summary, the RFU block is pro-
posed to reduce model parameters and optimize network
structure, followed by the SEPP block for further context
information with multiscale pooling operations. Integrating
the RFU block and the SEPP block with the backbone
encoder-decoder structure and use the SCA module as skip
connection structure, we develop an end-to-end vessel
segmentation neural network named SSCA-Net. The main
contributions of this work are summarized as follows:

(1) We propose an SCA block to get more abstract spatial
and channel features and preserve more multiscale
spatial information

(2) We propose novel building networks including a
multiscale spatial and feature attention module, a
novel multiscale feature fuse module, and a simple

feature extraction block that decreasing model
parameters

(3) We apply the proposed method to three different
datasets, namely, intracranial blood vessels, retinal
vessel data, and leg vessel data. Results show that
the proposed method outperforms the state-of-the-
art methods in these different tasks

The paper is organized as follows: Section 2 discusses
related work. The architectures of the proposed SSCA-Net
models are presented in Section 3. Section 4 explains experi-
ments, results, discussion, and ablation study. The conclu-
sion is discussed in Section 5.

2. Related Work

2.1. Traditional Deep Learning. Deep learning-based seman-
tic segmentation methods can be roughly divided into two
categories: FCN-based and U-Net-based. The FCN-based
methods are characterized by the direct use of high-level
semantic segmentation, which removes the last two full-
connect layers to classify each pixel. Due to solely using
high-level features, FCN-based methods perform not well
and even lead to less accuracy on some datasets. To address
this problem, a variety of improvements are proposed, e.g.,
combining FCN with graphical models likeMarkov Random
Fields (MRFs) [15] and Conditional Random Fields (CRFs)
[16, 17] to refine the segmentation prediction. Furthermore,
the U-Net-based methods have been proposed, which can
be characterized by using a skip connect to combine low-
level and high-level features to predict the segmentation. It
has become a popular neural network architecture and has
shown promising results on different medical image segmen-
tation tasks [7, 11, 18].

2.2. Context Aggregation. In recent years, various methods
have explored contextual information by many researchers,
which are more complicated than the U-Net, for example,

(g) (h)

Figure 1: Medical image segmentation results tested in the dataset of the intracranial artery. (a) Ground truth and the segmentation results of
(b) DeepASPP [10], (c) DeepLab V3+ [9], (d) ENet, (e) FCN8s [3], (f) RefineNet [11], (g) U-Net [6], and (h) ours, respectively. Our SSCA-Net
can perform the segmentation of intracranial arteries effectively while preserving multiscale structures of vessels, especially the tinny-scale
structures.
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the DeepLab series [9, 19, 20]. The DeepLab method intro-
duced the atrous convolution and atrous spatial pyramid
pooling (ASPP) [9] network structure. The latest DeepLab
V3+ [9] extended DeepLab by adding a decoder module
and using depth-wise separable convolution (Xception [21])
for better performance and efficiency. PSPNet [22] adopted
the pyramid pooling module to partition the feature map into
different scale regions. Yu et al. [23] developed a Context
Prior to distinguish the intraclass and interclass context
clearly. Lin et al. proposed a multipath refinement network,
which contains residual convolution unit, multiresolution
fusion, and chained residual pooling. Yang et al. [10] pro-
posed the densely connected atrous spatial pyramid pooling
(DenseASPP), which connects a set of atrous convolutional
layers densely. Furthermore, to improve the resilience of
the network, the pyramid structure of the space is applied
to semantic segmentation [24, 25].

2.3. Attention Model. The attention mechanism was first suc-
cessfully applied in natural language processing tasks, and
then, it was well extended to solve image processing tasks.
Zhao et al. [26] proposed the pointwise spatial attention
network to guide contextual information collection. The
squeeze-and-excitation (SE) networks [27] adopted a
channel-wise relationship attention mechanism to enhance
the representational power of the network. Woo et al. [28]
proposed Convolutional Block Attention Module (CBAM)
for feed-forward convolutional neural networks. CCNet
[29] utilized the self-attention mechanism to obtain contex-
tual information. Zhong et al. [30] proposed a novel
squeeze-and-attention network architecture for obtaining
an enhanced pixel-wise prediction. Bottleneck attention mod-

ule (BAM) [31] used a simple yet effective attention module,
which infers an attention map along channel and spatial. Ni
et al. [13] proposed a spatial and channel-based attention-
based convolutional neural network (GC-Net) to segment
medical image data. Our SSCA-Net network is different from
the methods mentioned above. The contextual information is
aggregated by both self-attention and channel-attention
modules.

3. Methodology

We propose a new framework that provides multiple modules
over which information from the feature encoder module and
decoder module is assimilated using a generic building block,
the SSCA-Net, as shown in Figure 2. We begin by describing
the SCA module in Section 3.1 followed by a detailed descrip-
tion of each SSCA-Net block in Section 3.2.

3.1. Self- and Channel-Attention (SCA) Module. As noted
previously, we aim to exploit attention features for prediction
with long-range residual connections. Hence, we propose an
SCA module, as shown in Figure 3. In the classic image seg-
mentation network model, multiple convolutional layers are
used to preserve the local neighborhood information of the
image. However, the modeling of long-range dependence of
images by convolutional neural networks is inefficient.
Therefore, we adapt the nonlocal (NL) model [32] to intro-
duce self-attention to the image semantic segmentation
framework.

Additionally, the upsampling portion of the image gener-
ation network typically uses a deconvolution network.
Besides, convolution kernel sizes and step sizes can cause
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Figure 2: Illustration of the proposed SSCA-Net. We use multiple times of ReLU Feature Unit (RFU) module as feature encoder. Then, the
feature maps are fed into a feature decoder module. It contains a self- and channel-attention (SCA) block and a squeeze and excitation pyramid
pooling (SEPP) block. Moreover, we adopt skip connection to connect the low-level feature maps and high-level feature maps.

4 BioMed Research International



deconvolution operations to generate checkerboard artifacts.
To avoid the checkerboard effect, we use bilinear interpola-
tion as an upsampling operation.

The image features from the previously hidden layer
x ∈ RH×W are first transformed into two feature spaces FðxÞ
and GðxÞ to calculate the attention.

F xð Þ =Wf x,
G xð Þ =WGx,

βi,j =
exp si,j

� �

∑N
i=1exp si,j

� � ,

si,j = F xið ÞG xj
� �

,

ð1Þ

where βi,j indicates the extent to which the model attends to

the ith location when synthesizing the jth region. Then, the
output of the attention layer is β = ðβ1, β2, β3 ⋯⋯βj ⋯⋯
βNÞ, where

βj = 〠
N

i=1
βj:iH xið Þ,

H xið Þ =WHxi:

ð2Þ

In the above formulation, Wf ∈ RH×H ,WG ∈ RH×H ,WH

∈ RH×H are the learned weight matrices, which are imple-
mented as 1 × 1 convolution. Finally, the features are again
element-wise multiplication operation with the feature xi.
In short, the operation is computed as follows:

μi = βjxi: ð3Þ

Also, the feature map should be aggregated in each chan-
nel. To this end, we take global average pooling on the atten-
tion layer feature map μi and produce a channel vector
Xc ∈ Rc×1×1. Then, Xc and Xlow perform the element-wise
multiplication operation and produce a multiplication vector
Xm ∈ RC×H×w. This last obtained feature vector Xm is com-
bined with a bilinearly interpolated feature vector Xhig.

Therefore, the final output is given by

yi = aver μið Þ ⊗ Xlowð Þ + upsame Xhig
� �

, ð4Þ

where aver is the global average pooling and upsame is the
upsampling operation. ⊗ denotes element-wise multiplica-
tion. Xlow and Xhig represent low-level feature maps and
high-level feature maps, respectively.

3.2. SSCA-Net Block. The architecture of SSCA-Net is illus-
trated in Figure 2. Our architecture is generic, and each
SSCA-Net block can be easily modified to accept an arbitrary
number of feature maps with arbitrary resolutions and
depths.

3.2.1. ReLU Feature Unit (RFU). The first part of each SSCA-
Net block consists of the RFU that is mainly for feature
learning. We do not use ResNet block in this task, since the
medical image is not included in the category of the pre-
trained model. And it can also prevent overfitting and reduce
both network parameters and training time. The RFU can
reduce the training time and accelerate network convergence.

Mathematically, the RFU block can be formulated as

RFU = ReLU BN Conv3×3 xð Þð Þð Þ, ð5Þ

where ReLU is an activation function and BN denotes the
batch normalization. Conv3×3 is the convolution operation
with the kernel size of 3.

Therefore, the feature encoder module network structure
can be expressed as follows:

layer0 = RFU xð Þ,
layer1 = maxpooling layer0ð Þ,
layeri = RFU layeri−1ð Þ,

ð6Þ

where i is the number of downsampling, e.g., it takes “4” in
the intracranial artery and the leg bone artery, and it takes
“3” on the retinal vessel set.

High-level 

F (x)

G (x)

H (x)

features

Low-level 
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Softmax
×
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×

× +

Figure 3: The designed self- and channel-attention (SCA) module for aggregating high-level features and low-level features. “⊗” denotes
spatial element-wise multiplication, and “⊕” denotes element-wise sum. The red lines represent the upsampling operators.
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3.2.2. Squeeze and Excitation Pyramid Pooling (SEPP). In
semantic segmentation, multiple convolutions and pooling
operations may lead to the reduction of the receptive field
of the network and the loss of information features in dif-
ferent layers. To overcome this limitation, atrous convolu-
tion (see Figure 4) and spatial pyramid model (see
Figure 5) are adopted for semantic segmentation. Due to
pyramid pooling, it can counteract the shrunken receptive
field by assembling multiscale context. For example, pyra-
mid scene parsing (PSP) [22] performs spatial pooling at
several grid scales and demonstrates outstanding perfor-
mance on several semantic segmentation benchmarks. In
the classic ASPP network, there are four parallel atrous con-
volutions with different atrous rates in the feature coding
stage. Different from [9], we combine the SE operation into
the residual block in ASPP to readjust the dynamic channel
characteristics.

In this case, the SEPP module is also different from GC-
Net [13]. Here, the SEPP module (see Figure 5) has four cas-
caded branches with the gradual increment of the number of
atrous convolution and SE network structure. Since a large
receptive field can acquire much contextual information, we

present 4 dilated convolutions whose dilation scales are 1,
6, 12, and 12 in SEPP. In each branch, we apply 1 × 1 convo-
lution for rectified linear activation after each atrous convolu-
tion and SE network.

Mathematically, the SEPP block can be formulated as

SEPP = Cat
Conv1×1, SE Conv1×1 xð Þf gð Þ,

Conv1×1, SE Conv3×3,dy xð Þ
n o� �

2
4

3
5 y ∈ 6,12,12½ �,

SE = sigmoid ReLU aver xð Þð Þð Þ,
ð7Þ

where Conv1×1 denotes the 1 × 1 convolutions and
Conv3×3,dx denotes the dilation convolutions with the kernel
size of 3 × 3 and the dilation scale is x. Catð∗Þ is a
concatenating operation, and x is the input feature map.
Sigmoid is the full connection with the sigmoid activation
function. ReLU is the full connection with the ReLU activa-
tion function.
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Figure 4: The illustrations of atrous convolution.
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Figure 5: Illustration of (a) atrous spatial pyramid pooling (ASPP) and (b) squeeze and excitation pyramid pooling (SEPP).
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Figure 6: The effectiveness of postprocessing. (a, c) Some nonvessel areas have been removed after postprocessing, compared to the results of
(b, d) before postprocessing. (e, f) The 3D results before and after postprocessing, respectively.
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Figure 7: Continued.
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Therefore, the feature decoder module network structure
can be expressed as follows:

layer0 = SCA SEPP Convi+1ð Þ, Convið Þ,
layer1 = BN Conv1×1 layer0ð Þð Þ,
layerx = SCA layerx−1, Convi−x+1ð Þ,

ð8Þ

where x is the number of upsampling and i is the number of
downsampling, which should be equal to x. We use BN to
reduce internal covariate shift [33] and Conv1×1 to reduce
feature dimensions and complexity of training. SCAð∗Þ and
SEPPð∗Þ represent the SCA module and the SEPP module,
respectively.

4. Experiments

4.1. Experimental Settings. To show the effectiveness of our
approach, we carry out comprehensive experiments on three
datasets: intracranial blood vessel dataset, Digital Retinal
Images for Vessel Extraction (DRIVE) [34], and leg arteries.
The segmentation quality is measured by the dice similarity
coefficient (DSC) [13], mean intersection-over-union (MIoU)
score [35], the sensitivity (Sen), and the accuracy (Acc) [36].
We also introduce the area under the receiver operation charac-
teristic curve (AUC) to measure segmentation performance on
DRIVE. We apply simple data augmentation during training
on the intracranial blood vessel dataset and leg arteries, includ-
ing affine transformation, rotation, and vertical flip operations.
We also performed data augmentation on DRIVE, including
gray-scale conversion, standardization, contrast-limited adap-
tive histogram equalization, and gamma adjustment.

4.1.1. Intracranial Blood Vessel Dataset. We first present our
results on the intracranial blood vessel dataset in this work
courtesy of a local hospital in Shenzhen, China. The imaging
modality of the dataset is computed tomography angiography
(CTA). There are 4326 CTA images of intracranial blood ves-
sels with a dimension of 512 × 512 in the original dataset.

During the training, 20% of images are used as the validation
set, while the remainder 80% as the training set. We also use
two new patient data as the test data which are not included
in the training and validation set.

4.1.2. DRIVE. The second application is retinal vessel detec-
tion. The DRIVE dataset has been obtained from a diabetic

(g) (h)

Figure 7: Medical image segmentation results tested in the dataset of the intracranial artery. (a) Ground truth and the segmentation results of
(b) DeepASPP [10], (c) DeepLab V3+ [9], (d) ENet, (e) FCN8s [3], (f) RefineNet [11], (g) U-Net [6], and (h) ours, respectively. Our SSCA-Net
can perform segmentation of intracranial arteries effectively while preserving more vessel tinny-scale structures.

Table 1: Comparison with the state-of-the-art methods on the
intracranial blood vessel training dataset.

Method DSC (%) MIoU (%)

U-Net [6] 87.32 86.48

FCN8s [3] 84.23 67.72

FCN16s [3] 76.14 66.53

DenseASPP [10] 84.38 81.80

DeepLab V3+ [9] 90.70 87.83

RefineNet [11] 91.68 76.72

GC-Net [13] 96.35 91.89

SSCA-Net 96.21 92.70

Table 2: Performance comparison of the competing methods on
retina vessel data using different performance metrics.

Method Sen (%) Acc (%) AUC (%)

Azzopadi et al. [42] 76.55 94.42 96.14

Roychowdhury et al. [43] 72.50 95.20 96.72

Zhao et al. [44] 74.20 95.40 86.20

U-Net [6] 73.44 95.23 97.44

DeepVessel [40] 76.03 95.23 97.52

HED [41] 73.64 94.34 97.23

Li et al. [45] 75.69 95.27 97.38

Melinscak et al. [46] — 94.66 97.49

CE-Net [36] 83.09 95.45 97.79

GC-Net [13] 78.44 95.51 97.77

SSCA-Net 83.52 96.14 98.20
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retinopathy screening program in the Netherlands which
contains 40 photographs. These are equally divided into 20
images for training and the other 20 images for testing. Due
to the limited amount of data, we use subimages for training.
Each 128 × 128 patch is obtained by randomly selecting its
center inside the full image.

4.1.3. Leg Arteries. The next application is the leg artery seg-
mentation task. The imaging modality of the leg blood vessel
dataset is CTA from a local hospital in Shenzhen, China.
There are 6545 CTA images of leg blood vessels with a
dimension of 512 × 512 in the original dataset. During the
training, 20% of images are used as the validation set, while
the remainder 80% as the training set. In addition, we use
two new patient data as the test data which are not included
in the training and validation set.

4.1.4. Training Details. In the training stage, we use the
ADAM [37] optimizer with the initial learning rate of 1e–3,
β1 = 0:5, and β2 = 0:999, and the initial rate lr = 1e‐3. The
initial learning rate is multiplied by ð1 − ðepoch − 1/
totalepochÞpowerÞ where the power is set to 0.9. The maxi-
mum number of epochs is 200. In this work, the loss function
is the same as GC-Net. The implementation is based on the
public Keras [38] platform with TensorFlow [39] as backend.
The training and testing bed is an Ubuntu 16.04 system.

4.2. Test on the Intracranial Blood Vessel Dataset. The 3D
reconstruction of segmented vessels (consisting of 2D CT
slices) can validate the segmentation quality by visually dem-
onstrating their spatial information. It can be observed in

Figure 6 that there are some noises on the surface as isolated
objects, arising from the misclassifications.

It is known that the entire intracranial arteries are inter-
connected. However, the missegmented noise is not con-
nected to the entire blood vessel. As shown in Figure 6,
there are some unconnected noises near each blood vessel.
Therefore, we removed some areas or noises, accounting for
less than 0.03% of the entire blood vessel.

Postprocessing is not performed to better explain the
effect of SSCA-Net, as shown in Figure 7. As pointed out in
the yellow circles, some segmented areas are either noise or
real vessels. We can see some more small-scale structures
produced by our SSCA-Net, in terms of ground truths. After
postprocessing, we can see more clearly. This is because the
ground truth is manually labeled, and some of the vessels
are too small; the marker does not notice. This result also
demonstrates that the SSCA-Net can effectively perform
semantic segmentation.

(a) (b) (c) (d)

Figure 8: Visualization results on the DRIVE dataset. (a) Test image, (b) ground truth, and results of (c) U-Net and (d) SSCA-Net, respectively.

Table 3: Comparisons with state-of-the-arts on leg blood vessel
training dataset.

Method DSC (%) MIoU (%)

U-Net [6] 91.25 76.26

FCN8s [3] 88.52 80.11

FCN16s [3] 83.41 65.12

RefineNet [11] 95.21 91.85

DeepASPP [10] 88.36 87.02

DeepLab V3+ [9] 92.05 90.57

SSCA-Net 97.21 94.42
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(a) Ground truth (b) DeepASPP

(c) DeepLab V3+ (d) ENet

(e) FCN8s (f) RefineNet

Figure 9: Continued.
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Numerical results of our SSCA-Net and the state-of-the-
art semantic segmentation solutions on intracranial blood
vessel datasets are summarized in Table 1. These results are
obtained under the same experimental conditions and the
same data pretreatment. The DSC score of segmentation
accuracy increased from 76.14% to 96.21%, and the accuracy
of MIoU increased from 66.53% to 92.70%. In particular, as
we can see in Figures 1 and 7, SSCA-Net produces more mul-
tiscale structures than other methods. The reason is that the
SCA module and the SEPP module can well preserve the
information of medical images.

4.3. Test on Retinal Vessel Segmentation. We have compared
the proposed SSCA-Net with CNN-based algorithms [6,
13, 40, 41] and some classical methods [42–46]. Table 2
shows the comparison of our method to those methods.
From the comparison, the SSCA-Net achieved 98.20%,
83.52%, and 96.14% in AUC, Sen, and Acc, respectively,
which are better than the other methods. Comparing with
the CE-Net, the AUC increases from 97.79% to 98.20%,
and that the sensitivity score increases from 83.09% to
83.52% while the accuracy increases from 95.45% to
96.14%, which shows that the SSCA-Net is beneficial for
retina vessel detection. We show some examples for visual
comparisons in Figure 8.

4.4. Test on Leg Arteries. We have compared our SSCA-Net
with the state-of-the-art algorithms as shown in Table 3.
Our proposed method achieves the performance, which the
DSC score is 97.21% and the MIoU score is 94.42%. Compar-
ing with the FCN16s, the DSC score increases from 83.41% to
97.21% by 16.5%, and the MIoU score increases from 65.12%
to 94.42%, which shows that the skip connected is beneficial
for semantic segmentation. Besides, comparing with U-Net,
the DSC score increases from 91.25% to 97.21%, and the
MIoU score increases from 76.26% to 94.42%, which shows
that the proposed SCA and SEPP blocks are beneficial for
leg vessel segmentation as well. We also compared some of
the existing excellent methods, and the results show that

SSCA-Net can perform blood vessel segmentation more
effectively. We show some examples for visual comparisons
in Figure 9.

4.5. Discussion and Ablation Study. To verify the efficacy of
different modules in our method, we conduct the ablation
study. We also give several design choices and show their
influences on the results.

Backbone. The modified U-Net without the pretrained
ResNet50 and with the SCA block.

Backbone+ASPP. The network with the SCA block but
without the SEPP block and replaces it with ASPP.

ResNet50+SCA. The network with the pretrained
ResNet50 and SCA.

ResNet50+SCA+SEPP. The network with the pretrained
ResNet50, SCA, and SEPP.

ResNet50+SCA+ASPP. The network with the pretrained
ResNet50, SCA, and ASPP.

4.5.1. Analysis of Pretrained Weight. Recent work [47] points
out that ImageNet pretraining is no better than the origi-
nal feature encoder in terms of model training accuracy.
We do ablation learning on two datasets because the two
datasets contain a large amount of data, which can better
verify the potential of the network. On the intracranial
arterial blood vessel dataset and the leg arterial blood
vessel dataset, we can see that ResNet50+SCA+SEPP has
increased from 95.79% and 96.78% to 96.21% and
97.21% in DSC and MIoU increased from 91.70% and
93.75% to 92.70% and 94.42%. The results in Figures 10
and 11 and Tables 4 and 5 have demonstrated the effec-
tiveness of without pretraining weights which is not worse
than using weights.

4.5.2. Analysis of SEPP and SCA

(1) SEPP. In Tables 4 and 5, we validated the effect of incor-
porating SE into the improved ASPP module. Considering
the characteristics of the network, we designed two experi-
ments. One is the use of pretraining weights, and the other

(g) U-Net (h) Ours

Figure 9: Comparative visualization of 3D results achieved on the test dataset 1 and test dataset 2. Compared to the ground truth, all the state-
of-the-art methods (DeepASPP, DeepLab V3+, ENet, FCN8s, RefineNet, and U-Net) miss fine features (e.g., small vessels in the rectangle),
whereas the proposed method preserves fine vessels well.
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is without the use of pretraining weights. The results can be
seen on the two arterial blood vessel data. It demonstrates
that the receptive field plays a significant role in semantic seg-
mentation. It can be seen in Tables 4 and 5 that the network
structure using the SEPP module has improved in both the
DSC and MIoU evaluation standards compared to the use
of ASPP and networks that do not use similar structures. This

is because medical images contain very little information
compared to natural images, and it is easy to cause informa-
tion loss when using a large number of convolution and pool-
ing operations.

(2) SCA. Similarly, we apply experiments to verify the
effectiveness of the SCA module. In this paper, if the

(a) (b)

(c) (d)

(e) (f)

Figure 10: Medical image segmentation results tested in the dataset of leg artery. (a) Backbone, (b) Backbone+ASPP, (c) ResNet50+SCA
+ASPP, (d) ResNet50+SCA, (e) ResNet50+SCA+SEPP, and (f) SSCA-Net, respectively. Our SSCA-Net can perform segmentation of
intracranial arteries effectively while preserving more vessel details.
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pretraining weights and SCA modules are not used, this
network can be regarded as a U-Net network. In Tables 1
and 3, we can see that the SSCA-Net network structure is
better than U-Net.

4.5.3. Comparison with GC-Net. Both are our best segmenta-
tion model (in Table 1) and SEPP model. We can see that
SSCA-Net has a slight decrease compared to GC-Net in the
DSC evaluation standard, but it has an improvement in

(a) (b)

(c) (d)

(e) (f)

Figure 11: Medical image segmentation results tested in the dataset of intracranial artery. (a) Backbone, (b) Backbone+ASPP, (c) ResNet50
+SCA+ASPP, (d) ResNet50+SCA, (e) ResNet50+SCA+SEPP, and (f) SSCA-Net, respectively. Our SSCA-Net can segment intracranial
arteries effectively while preserving more vessel details.
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MIoU. These subtle differences are in the range of tolerance,
and the reason for this mainly comes from the fine-tuning
batch normalization parameters.

4.5.4. Ablation Study. Finally, it has been proved that the pro-
posed algorithm is accurate and robust in medical segmenta-
tion from various CT images (see Figures 6–11). The average
DSC and MIoU of the proposed method on intracranial
blood vessel data were 96.21% and 92.70%, respectively,
which are shown in Table 1. On the leg bone artery dataset,
the average DSC andMIoU were 97.21% and 94.42%, respec-
tively, which are shown in Table 3. On the retinal vessel data-
set, Sen, Acc, and AUC obtained 85.32%, 96.14%, and
98.20%, respectively, on the three evaluation criteria, and
the results were better than other methods, which are shown
in Table 2.

(1) Limitations. We have introduced two new modules to
deal with the problem of medical image segmentation from
CT images. To some extent, the SSCA-Net network structure
can better improve the segmentation accuracy of CT images.
But compared to the U-Net network, it requires more param-
eters and takes a little more time to train the network. In dif-
ferent experiments, we have observed that the more feature
information, the better the performance, but in this work,
due to the lack of medical data, we conduct experiments on
2D slices. However, to get more segmentation image infor-
mation, 3D data may be used in the future.

5. Conclusion

This paper presents a novel network, called SSCA-Net, for
multiscale structure-preserving vessel segmentation. SSCA-
Net mainly uses two attention mechanisms to analyze the

context information of the entire network. To obtain global
contextual information, we introduce the SCA attention
module which applies two attention modes to obtain the fea-
ture information of the image, the SEPP module is devised to
increase the size of the receptive field of the network while
learning more features, and design a weighted cross-
entropy loss function to make the training process more
effective. These operations are beneficial for improving the
accuracy of vessel segmentation with multiscale structures.
Furthermore, we also experimented with the feature encoder
module instead of the ResNet50 pretraining model. This
greatly reduces the training time and also reduces the prob-
lem of network overfitting. Our method can be applied to dif-
ferent tasks by fine-tuning our model using the new training
data and test on three benchmark datasets and is compared
with various state-of-the-art methods concerning the DSC,
MIoU, and AUC metrics.
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