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To explore a method to predict ECG signals in body area networks (BANs), we propose a hybrid prediction method for ECG
signals in this paper. The proposed method combines variational mode decomposition (VMD), phase space reconstruction
(PSR), and a radial basis function (RBF) neural network to predict an ECG signal. To reduce the nonstationarity and
randomness of the ECG signal, we use VMD to decompose the ECG signal into several intrinsic mode functions (IMFs) with
finite bandwidth, which is helpful to improve the prediction accuracy. The input parameters of the RBF neural network affect
the prediction accuracy and computational burden. We employ PSR to optimize input parameters of the RBF neural network.
To evaluate the prediction performance of the proposed method, we carry out many simulation experiments on ECG data
from the MIT-BIH Arrhythmia Database. The experimental results show that the root mean square error (RMSE) and mean
absolute error (MAE) of the proposed method are of 10-3 magnitude, while the RMSE and MAE of some competitive
prediction methods are of 10-2 magnitude. Compared with other several prediction methods, our method obviously improves
the prediction accuracy of ECG signals.

1. Introduction

ECG signals are very important for doctors to diagnose
diverse kinds of heart diseases. It is of significance to predict
ECG signals accurately. Accurate prediction of ECG signals
can help doctors know the patient’s condition in advance,
while it can also reduce the energy consumption of sensors
in body area networks (BANs). In BANs, some sensors are
placed under the skin or inside the body, and their batteries
are inconvenient to replace. How to reduce the energy
consumption and prolong the lifetime of such sensors is a
challenge. If a prediction model is established in both a
sensor node and the sink node, when the prediction error
exceeds the specified threshold value, the sensor node will
send the measured data; otherwise, it will not send the mea-
sured data, and the sink node will use the predicted data as
the measured data [1]. In other words, prediction can reduce
the volume of transmitted data [2], thus reducing the energy
consumption of the sensor. In BANs, there are many physio-

logical signals, such as the ECG, body temperature, and blood
pressure. If these physiological signals can be accurately
predicted from the past and current data, the amount of data
transmission and the energy consumption of the sensor will
be greatly reduced.

There are many methods of predicting physiological
signals. Among them, the artificial neural network (ANN)
has become a widely used prediction method because of its
nonlinearity, self-adaption, and fast calculation speed. As a
type of ANN, a radial basis function (RBF) neural network
has the advantages of fast training speed and ability to not
easily fall into the local optimum; thus, RBF neural networks
have attracted increasingly more attention in time series
prediction [3–6]. The key problem of designing a RBF neural
network is to determine the network structure parameters,
including the center of the hidden layer, base width, and
weight of the output layer. In recent years, several algorithms
have been proposed to solve the problem of parameter opti-
mization [7–10]. To solve global optimization problems, an
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enhancedMSIQDE (improved quantum-inspired differential
evolution) algorithm based on mixing multiple strategies was
proposed in [7]. This algorithm has better optimization
ability than the DE (differential evolution), QDE (quantum-
inspired differential evolution), QGA (quantum genetic algo-
rithm), and MSIQDE algorithms. In [8], a novel improved
DE algorithm with the wavelet basis function was proposed.
This algorithm shows better optimization ability than other
several DE algorithms and effectively solved a real-world air-
port gate assignment problem. To optimize the parameters of
photovoltaic models and enhance the conversion efficiency
of solar energy, Song et al. [9] proposed a new multipopula-
tion parallel coevolutionary DE algorithm that showed
higher accuracy and reliability than other several methods
in extracting parameters of solar modules.

When using a RBF neural network to predict time series
signals, it is not enough to only optimize its internal struc-
ture parameters. One must also optimize the input parame-
ters of its input layer. The input parameters of a RBF neural
network include input dimension and delay time. Different
input parameters produce different prediction results. It is
difficult to determine the optimal input parameters. Phase
space reconstruction (PSR) [11] is one of the effective
methods used to solve the input parameter optimization
problem of RBF neural networks. PSR reconstructs the
multidimensional phase space structure of the original
system through a one-dimensional time series signal. The
embedding dimension and delay time of PSR are taken as
the input dimension and delay time of the neural network,
respectively. Several researchers have used PSR to optimize
the input parameters of neural networks and obtained good
prediction results [12–14].

This paper focuses on the prediction of ECG signals. In
BANs, the ECG signal has the largest amount of data among
all physiological signals. The sensor will consume a signifi-
cant amount energy to transmit vast quantities of raw ECG
data. To save the energy of the sensor, it is necessary to
reduce the transmission of ECG data without affecting the
normal use of ECG signals. An ECG signal is a nonlinear
nonstationary time series signal and has an inherent random
feature. Although an ECG signal is considered a periodic sig-
nal, its period does not keep a fixed value. These features
hinder the accurate prediction of ECG signals. Several papers
have discussed the prediction of ECG signals. Wei et al. [15]
developed a model for highly accurate prediction of ECGs
and EEGs by combining CNN and bidirectional recurrent
neural network (BRNN). In [16], Sun et al. proposed a
prediction method of an ECG signal using an error backpro-
pagation neural network (BPNN) and VMD technology. Sun
et al. [17] proposed another prediction method of an ECG
signal. The method was based on PSR theory and BPNN,
with accuracy close to that of the previously mentioned
method. To reduce the amount of data transmission, a wave-
form prediction lightweight algorithm was proposed in [1].
To improve the prediction accuracy, the algorithm used
wavelet transform (WT) to preprocess the noise. Liu [18]
proposed a data fusion algorithm based on WT and a least-
squares support vector machine (LS-SVM). The algorithm
used the LS-SVM model to predict an ECG signal. In [19],

Heurtefeux et al. investigated the tradeoff between accuracy
and complexity to predict ECG values in BANs. They
suggested using an ARMA model to predict ECG values,
but they could not build an ARMA model to predict ECG
signals experimentally. Sun et al. [20] used an ARIMAmodel
to analyze ECG data streams, but they did not use one to pre-
dict an ECG signal. An ECG signal prediction method based
on an ARIMA model and a discrete wavelet transform
(DWT) was proposed in [21]. This method obtained a good
prediction effect, but it needed a significant amount of calcu-
lation because it used many high-order autoregressive (AR)
models. In [22], an ECG signal prediction method was pro-
posed in which the PSR theory and TS fuzzy model were used
to predict an ECG signal. The accuracy of the prediction is
close to that of [16, 17].

To improve the prediction accuracy of ECG signals, we
propose a novel hybrid prediction method for ECG signals
using variational mode decomposition (VMD), PSR, and a
RBF neural network. In this paper, we make the following
primary contributions.

(a) We use VMD to decompose a nonstationary ECG
signal into several relatively stationary intrinsic mode
functions (IMFs), which is helpful to improve the
prediction accuracy. The parameter K represents
the number of IMF decomposed by VMD. We deter-
mine K by the ratio of the residual energy to original
signal energy.

(b) We use PSR to optimize the input parameters of the
RBF neural network. We determine the embedding
dimension by false nearest neighbors (FNN) method.
The embedding dimension is the input dimension of
the RBF neural network. We determine the delay
time by comparing the mutual information (MI)
method with the experimental method.

(c) We propose a novel prediction method for ECG
signals based on VMD, PSR, and a RBF neural
network. Compared with other prediction methods,
the proposed method improves the prediction accu-
racy of ECG signals.

The rest of this paper is organized as follows. In Section 2,
we describe the theories of VMD, PSR, and the RBF neural
network and propose a novel hybrid prediction method for
ECG signals. The simulation experiments and the analysis
of its results are presented in Section 3. In Section 4, we
provide concluding remarks.

2. Methods

2.1. Variational Mode Decomposition. Variational mode
decomposition (VMD) can decompose a nonstationary signal
into several discrete band-limited IMFs around the center fre-
quency, meeting the condition that the sum of the estimated
bandwidths of each mode is the smallest [23]. The decompo-
sition steps can be summarized as follows. The parameter K
represents the number of modal components decomposed
by VMD and it must be predetermined before VMD.
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Step 1. Calculate the analytic signal of each modal function
ukðtÞ by Hilbert transform

δ tð Þ + j
πt

� �
∗ uk tð Þ: ð1Þ

Step 2. Multiply the analytical signal by the estimated center
frequency e−jwkt , and move it to the base frequency spectrum

δ tð Þ + j
πt

� �
∗ uk tð Þ

� �
e−jwkt: ð2Þ

Step 3. Estimate the bandwidth of each mode by Gaussian
smoothing of the demodulated signal, i.e., the L2 norm of
the gradient. The constrained variational model is

min ukf g wkf g 〠
k
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where x is the input signal and k·k2 is the Euclidian distance.

Step 4. Turn the constrained variational model into an
unconstrained variational model by introducing the qua-
dratic penalty factor α and Lagrange multiplication operator
λðtÞ. The extended Lagrange expression is

L ukf g, wkf g, λ tð Þð Þ = α〠
k
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k
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ð4Þ

Find the saddle point of the extended Lagrange expres-
sion using the alternating direction multiplier method
(optimization algorithm) to solve the minimization problem
of (3). The saddle point is the optimal solution.

Step 5. Obtain the saddle point of the extended Lagrange
expression by alternately updating un+1k , wn+1

k , and λn+1k . The
equations for this are

u^
n+1
k wð Þ = x^ wð Þ −∑i<k u

^n+1
i wð Þ − ∑i>k u

^n
i wð Þ + λ

^
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ð5Þ

wn+1
k =

Ð∞
0 w u^

n+1
k wð Þ

��� ���2dwÐ∞
0 u^

n+1
k wð Þ

��� ���2dw , ð6Þ

λ
^n+1

u^
n+1
k wð Þ = λ

^n
u^
n+1
k wð Þ + τ x^u^

n+1
k wð Þ −〠

k

u^
n+1
k u^

n+1
k wð Þ

��� ���
 !

,

ð7Þ

where u^ðwÞ, λ^ðwÞ, and x^ðwÞ are the Fourier transforms of
the signals uðtÞ, λðtÞ, andxðtÞ, respectively.

Step 6. Repeat Step 5 until the convergence condition is
reached

〠
k

u^
n+1
k − u^

n
k

��� ���2
2
/ u^

n
k

��� ���2
2
< ε: ð8Þ

2.2. Phase Space Reconstruction. Dutch mathematician Floris
Takens [24] proved that as long as the embedding dimension
is large enough, the reconstructed attractor retains the topo-
logical properties of the original attractor. In other words, in
the trajectory of the reconstructed space, the reconstructed
phase space and differential homeomorphism of the original
power system are maintained, and the phase space of the
delay time reconstruction keeps the geometric structure of
the original system, along with its dynamic characteristics.

For a time series x1, x2,⋯, xN , if the delay time τ and
embedding dimension m can be properly determined, then
the phase space can be reconstructed as

X =

X1

X2

⋮

XM

2
666664

3
777775 =

x1 x1+τ ⋯ x1+ m−1ð Þτ

x2 x2+τ ⋯ x2+ m−1ð Þτ

⋯ ⋯ ⋯ ⋯

xM xM+τ ⋯ xN

2
666664

3
777775, ð9Þ

whereM =N − ðm − 1Þτ is the length of the vector sequence
and Xi ði = 1, 2,⋯,MÞ is a point of the phase space.

When X is used as the input vector , the one-step predic-
tion output vector Y shows as follows:

Y =

Y1

Y2

⋮

YM

2
666664

3
777775 =

x2+ m−1ð Þτ

x3+ m−1ð Þτ

⋮

xN+1

2
666664

3
777775: ð10Þ

The key to PSR is to correctly determine the embedding
dimension m and delay time τ. The delay time can be deter-
mined by the average displacement, autocorrelation function,
complex correlation, and mutual information (MI) methods.
Methods to determine the embedding dimension include
false nearest neighbors (FNN) method, Cao method, and
G-P algorithm. Common methods to determine the embed-
ding dimension and delay time at the same time include the
window embedding and C-C methods.
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2.2.1. Mutual Information Method. Given that there are two
systems S = fs1, s2,⋯, sn1g and Q = fq1, q2,⋯, qn2g, the
information entropy of S and Q is

H Sð Þ = −〠
n1

i=1
Ps sið Þ log2Ps sið Þ, ð11Þ

H Qð Þ = −〠
n2

j=1
Pq qj
� 	

log2Pq qj
� 	

, ð12Þ

respectively, where PsðsiÞ and PqðqjÞ are probabilities of si
and qj, respectively.

The joint entropy of S and Q is

H S,Qð Þ = −〠
n1

i=1
〠
n2
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� 	
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� 	

, ð13Þ

where Psqðsi, qjÞ is the joint probability of si and qj.
Given that S has been measured, the conditional entropy

of Q is
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The MI of Q and S is
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According to (14) and (15), the following results are
obtained.

I Q, Sð Þ =H Qð Þ −H
Q
S

� �
=H Qð Þ − H S,Qð Þ −H Sð Þð Þ
=H Qð Þ +H Sð Þ −H S,Qð Þ
= I S,Qð Þ:

ð16Þ

Given that Q is the delayed sequence of S, that is,
Q = fs1+τ, s2+τ,⋯, sn1+τg, the MI of S and Q is

I τð Þ = I S,Qð Þ = I Q, Sð Þ: ð17Þ

The τ corresponding to the first local minimum of I
ðτÞ is the optimal delay time τ.

2.2.2. False Nearest Neighbors Method. False nearest neigh-
bors (FNN) are phase points that are adjacent in low-
dimensional space, but not adjacent aftermapping to a certain
high-dimensional space. Suppose XmðiÞ = ðxi, xi+τ,⋯,
xi+ðm−1ÞτÞ is a phase vector in m-dimensional reconstruction

space, and the nearest neighbor point of XmðiÞ is XNN
m ðiÞ. If

XNN
m ðiÞ satisfies the following inequality when the dimension
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of reconstruction space increases fromm dimensions tom + 1
dimensions, XNN

m ðiÞ is the FNN of XmðiÞ.

Xm+1 ið Þ − XNN
m+1 ið Þ�� ��

2 − Xm ið Þ − XNN
m ið Þ�� ��

2
Xm ið Þ − XNN

m ið Þ�� ��
2

≥ RT , ð18Þ

where k·k2 is the Euclidian distance and RT is the threshold
value.

As the embedding dimension m increases from small to
large, the proportion of FNN points is calculated. When the
proportion of FNN points is very small or the number of
FNNs no longer changes as m increases, then m is the best
embedding dimension.

2.3. RBF Neural Network.Unlike a BP neural network, which
is a global approximation network, a RBF neural network is a
kind of local approximation network. As long as there are
enough hidden neurons, a RBF neural network can approxi-
mate any continuous nonlinear function with any accuracy.
Compared with a BP neural network, a RBF neural network
has the advantage of fast training speed, and it does not easily
fall into local minima.

The basic idea of a RBF neural network is that the RBF of
the hidden layer node transforms the input vector, maps the
low-dimensional input data to the high-dimensional space,
weights the sums of the output of the node, and maps the
results from the high-dimensional space to the low-
dimensional space for output [25].

The network structure of a RBF neural network generally
consists of an input layer, a hidden layer, and an output layer,
as shown in Figure 1.

In Figure 1, a Gaussian function is usually used as the
RBF of a hidden layer as follows.

hj = exp −
X − Cj


 �2
2σ2j

" #
, j = 1, 2,⋯,m, ð19Þ

where X = ½x1, x2,⋯, xn�, Cj is the center of the Gaussian
function, σj is the variance of the Gaussian function, and m
is the number of hidden layer nodes.

The output of the RBF neural network is

yk = 〠
m

j=1
wjkhj = 〠

m

j=1
wjk exp −

X − Cj


 �2
2σ2j

" #
, k = 1, 2,⋯, r,

ð20Þ

where wjk is the connection weight from the hidden layer to
the output layer.

The learning algorithm of the RBF neural network
solves for three parameters, which are the center of the
RBF, the variance of the RBF, and the weight of the connec-
tion between the hidden layer node and output layer node.
Common learning algorithms of RBF neural networks
include k-means, the gradient training method, and the
orthogonal least square product (OLS) algorithm.

2.4. Proposed ECG Signal Prediction Method. Based on the
study of ECG prediction, this paper proposes a hybrid
method of ECG signal prediction based on VMD, PSR, and
a RBF neural network. Its flowchart is shown in Figure 2.

The prediction steps of the proposed method are as
follows.

Step 1. Decompose an ECG signal into K IMFs by VMD.
In the experiment, we take K = 10 according to the ratio of
residual energy to the original signal energy.

Step 2. Determine the embedding dimensionm and delay
time τ of each IMF. We determine the embedding dimension
by the FNN method and determine the delay time by com-
paring the MI method with the experimental method.

Step 3. Reconstruct the phase space of each IMF accord-
ing to the embedding dimension and delay time.

Step 4. According to the trained set of each IMF, establish
a RBF neural network and use it to predict the test set of each
IMF. The embedding dimension is the input dimension of
the RBF neural network.

Step 5. Add the prediction results of the RBF neural
network to obtain the final ECG signal prediction result.

Step 6. Analyze the prediction error and compare it with
some traditional prediction methods.

3. Results and Discussion

All ECG data in the simulation experiment are from the
MIT-BIH Arrhythmia Database [26]. We randomly selected
No. 100 ECG data, which consists of 2768 data points, for the
experiment. We used two-thirds of the source data as the
trained set (1845 data) and one-third of the source data as
the test set (923 data).

3.1. Performance Measures. The common performance mea-
sures of prediction methods are root mean square error
(RMSE), mean absolute error (MAE), and mean square error
(MSE), defined as

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

n=1
X nð Þ − X

^
nð Þ

� 	2s
, ð21Þ

MAE = 1
N
〠
N

n=1
X nð Þ − X

^
nð Þ

��� ���, ð22Þ

Input layer Hidden layer Output layer

wjk

x1

x2

xn

y1

y2

yr

h1

h2

h3

hm

Figure 1: Structure of RBF neural network.
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VMD
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PSR (m1, 𝜏1) PSR (m2, 𝜏2) PSR (mk, 𝜏k)

RBF prediction RBF prediction RBF prediction

Final prediction

𝛴

Figure 2: Flowchart of the proposed method.

Table 1: Rres of VMD with different K .

K 1 2 3 4 5 6 7 8 9 10 11

Rres 0.0658 0.0258 0.0116 0.0064 0.0035 0.0021 0.0018 0.0015 0.0018 0.0017 0.0017
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Figure 3: VMD of ECG signal.
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MSE = 1
N
〠
N

n=1
X nð Þ − X

^
nð Þ

��� ���2, ð23Þ

where X
^ðnÞ is the predicted value of XðnÞ and N is the length

of XðnÞ.
3.2. VMD of ECG Signal. A key problem of VMD is to set the
number K of modal components. K affects the accuracy of
the final prediction. If K is too small, the original series
may not be decomposed sufficiently. If the signal is too large,
the difference between each component becomes very small,
and it gives rise to unnecessary computing overhead. K can
be determined according to the ratio Rres of residual energy
to the original signal energy. Rres is defined as follows:

Rres =
1
N
〠
N

n=1

X nð Þ −∑K
k=1uk nð Þ

X nð Þ

�����
�����, ð24Þ

where XðnÞ is the original signal, uk ðnÞ is the IMF, and N is
the sample number. The decision rule of K is that when Rres is
less than 1% and there is no significant downward trend, the
number K can be determined [27]. For the No. 100 ECG
data, Rres of VMD with different K are shown in Table 1.

Table 1 shows that Rres has no obvious downward trend
when K = 10. Therefore, we set K = 10 in the experiment.

The No. 100 ECG was decomposed into 10 IMFs by
VMD as shown in Figure 3. IMF1 is the residual, and
IMF2-IMF10 is the component, sorted from low to high
frequency.

3.3. Determination of Delay Time and Embedding Dimension.
We determined the embedding dimension m and delay time
τ of each IMF. The embedding dimension m of IMF3 was
determined by the FNN method, as shown in Figure 4.

From Figure 4, we obtained m = 5. The delay time τ of
IMF3 was determined by the MI method, as shown in
Figure 5.

In Figure 5, we obtained the delay time τ = 7 according to
the first local minimum of MI. The embedding dimension
and delay time of each IMF are shown in Table 2.

In the experiment, we obtained better prediction results
when the delay time of each IMF was 1 (i.e., τ = 1). The com-
parison results are shown in Table 3.

According to the comparison in Table 3, we finally took
the delay of each IMF as 1 (i.e., τ = 1).

3.4. Optimization of RBF Neural Network. In the simulation
experiment, we used MATLAB function newrbe( P,T
,spread) to design a RBF neural network. The parameter P
is the input vectors of the RBF network, the parameter T is
the output vectors of the RBF network, and the parameter
spread is the spread of the RBF network. We used PSR to
optimize P and T , that is, we used equations (9) and (10) to
determine P and T , respectively. When the parameters P
and T had been determined, we determined the parameter
spread by experiments. Some experimental results are shown
in Table 4.

We carried out the simulation experiment in the range of
[0.1, 100] of the parameter spread. The best prediction results
in the simulation experiment are RMSE = 0:0035 and MAE
= 0:0027 when spread = 0:4, 0.5, and 0.6.

3.5. Prediction Results of the Test Set. We used the proposed
method to predict the test set of the No. 100 ECG signal.
The prediction waveform is shown in Figure 6.

Figure 6(b) is a partial ECG signal amplification from
[180 : 210] in Figure 6(a). Figure 6 shows that the predicted
waveform fits well with its original ECG waveform.

The prediction errors are shown in Figure 7.
In Figure 7, in addition to the large error at the peak

point, the error in other places is relatively small.
To evaluate the generality of the proposed method, we

used ECG data other than the No.100 ECG data to carry
out experiments. The experimental results are shown in
Table 5.

Some prediction waveforms are shown in Figure 8.
From Table 5 and Figure 8, the prediction performances

of the proposed method on other ECG data are very close to
that of the No. 100 ECG data. This illustrates that the gener-
ality of the proposed method is good and it is very suitable for
ECG signal prediction.
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Figure 4: Determining embedding dimension by FNN method.
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3.6. Comparison with Other Prediction Methods. To illustrate
the advantages of the proposed prediction method, we com-
pared it with the prediction methods of Sun et al. [16], Sun
et al. [17], and Su et al. [22]. We experimented on the same
data source, the No. 100 ECG data, and the experimental
results are shown in Table 6 and Figure 9.

As shown in Table 6, the RMSE and MAE of the pro-
posed method are of 10-3 magnitude, while the RMSE and
MAE of [16, 17, 22] are of 10-2 magnitude. Table 6 and
Figure 9 show that the RMSE and MAE of the proposed
method are significantly smaller than those of [16], [17],
and [22]. This illustrates that the prediction accuracy of this
paper is much higher than that of [16, 17, 22].

We also compared the proposed method with some tra-
ditional prediction models, such as ARMA, LS-SVM, SVM,
and Kalman. The experimental results on the data source of
No. 100 ECG are shown in Table 7.

We can see from Table 7 that the RMSE of the proposed
method is much smaller than that of LS-SVM, SVM, ARMA,
and Kalman.

In addition, the proposed method (VMD-PSR-RBF for
short) was compared with some approximate hybrid predic-
tion methods, such as the method based on WT, PSR, and a
RBF neural network (WT-PSR-RBF for short), the method
based on EMD, PSR, and a RBF neural network (EMD-
PSR-RBF for short), the method based on VMD, PSR, and

Table 2: The parameters of each IMF.

Parameters IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

τ 31 18 7 5 4 3 2 2 1 3

m 4 4 5 5 5 5 5 4 4 4

Table 3: The comparison results of different delay times.

Delay time IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 RMSE MAE

τ 31 18 7 5 4 3 2 2 1 3 0.0054 0.0041

τ∗ 1 1 1 1 1 1 1 1 1 1 0.0035 0.0027

Table 4: Some experimental results of the parameter spread.

Spread 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RMSE 0.1115 0.0055 0.0037 0.0035 0.0035 0.0035 0.0036 0.0036 0.0036 0.0036

MAE 0.0346 0.0035 0.0028 0.0027 0.0027 0.0027 0.0027 0.0028 0.0028 0.0028
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Figure 6: Prediction waveform: (a) prediction waveform of test set; (b) a part of prediction waveform of (a).
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a BP neural network (VMD-PSR-BP for short), and the
method based on VMD, PSR, and a GRNN (VMD-PSR-
GRNN for short). The experimental data are the No. 100
ECG data, and the experimental results are shown in
Table 8 and Figure 10.

Table 8 and Figure 10 show that the prediction accuracy
is better than that of several other approximate hybrid
prediction methods.

The comparison prediction waveforms are shown in
Figures 11 and 12.

Figure 11(b) is a partial ECG signal amplification from
[192 : 198] in Figure 11(a). Figure 11(b) shows that the pre-
diction curve of the proposed method (VMD-PSR-RBF) is
closer to the original ECG curve than that of VMD-PSR-BP
and VMD-PSR-GRNN.

As shown in Figure 12(b), the prediction curve of the
proposed method (VMD-PSR-RBF) is also closer to the
original ECG curve than that of EMD-PSR-BP and WT-
PSR-RBF.

4. Conclusions

In this paper, we propose a hybrid prediction method for
ECG signals using VMD, PSR, and a RBF neural network.
Before prediction, we use VMD technology to preprocess
the ECG signals in order to remove their nonstationarity
and randomness. We determine the parameter K of VMD
by the ratio of residual energy to original signal energy. To
obtain the optimal input parameters of the RBF neural net-
work, we employ PSR to determine the input dimension
and the delay time of the RBF neural network. Using the
ECG data from the MIT-BIH Arrhythmia Database as the
data source, we evaluate the prediction performance of the
proposed method. The RMSE and MAE of the proposed
method are of 10-3 magnitude, while the RMSE and MAE
of several common prediction methods are of 10-2 magni-
tude. The former is one order of magnitude smaller than
the latter. The experimental results indicate that the pro-
posed method is not only suitable for normal ECG signal pre-
diction, such as No. 100 ECG, but also for abnormal ECG
signal prediction, such as No. 207 ECG. Compared with
other prediction methods, the proposed method is not only
superior to some competitive prediction methods, such as
[16, 17, 22], but also superior to some single prediction
models, such as LS-SVM, SVM, ARMA, and Kalman. The
proposed prediction method also outperforms some hybrid
prediction methods, such as EMD-PSR-RBF and VMD-
PSR-BP. WT-PSR-RBF is a competitive prediction method,
its RMSE and MAE are 0.0052 and 0.0031, respectively, but
the RMSE and MAE in this paper are smaller, only 0.0035
and 0.0027. As future work, we consider employing the pre-
diction method proposed in this paper to reduce the energy
consumption of the sensor in BANs.
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Figure 7: The prediction errors of test set.

Table 5: Prediction performance of different ECG numbers.

ECG numbers RMSE MSE MAE

100 0.0035 1:2323e − 05 0.0027

101 0.0064 4:1198e − 05 0.0033

103 0.0048 2:3258e − 05 0.0036

105 0.0026 6:8964e − 06 0.0020

115 0.0090 8:0978e − 05 0.0039

118 0.0082 6:6581e − 05 0.0037

123 0.0041 1:6513e − 05 0.0030

201 0.0025 6:0916e − 06 0.0018

207 0.0021 4:2296e − 06 0.0015

212 0.0043 1:8733e − 05 0.0033

219 0.0048 2:2814e − 05 0.0037

223 0.0036 1:3294e − 05 0.0028

234 0.0038 1:4448e − 05 0.0030
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Figure 8: Prediction results of different ECG numbers: (a) No. 105; (b) No. 115; (c) No. 207; (d) No. 219.

Table 6: Comparison with common prediction methods.

Methods RMSE MAE

This paper 0.0035 0.0027

Sun et al. [16] 0.0233 0.0157

Sun et al. [17] 0.0423 0.0240

Su et al. [22] 0.0146 0.0106

This paper Sun et al.[16] Sun et al.[17] Su et al.[22]
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Figure 9: Comparison with common prediction methods.

Table 7: Comparison with traditional prediction models.

Prediction models RMSE

This paper 0.0035

LS-SVM [1] 0.1754

SVM [18] 0.0669

ARMA [18] 0.4630

Kalman [18] 0.3967

Table 8: Comparison with other hybrid prediction methods.

Prediction methods RMSE MSE MAE

VMD-PSR-RBF (this paper) 0.0035 1:2323e − 05 0.0027

WT-PSR-RBF 0.0052 2:6576e − 05 0.0031

EMD-PSR-RBF 0.0128 1:6496e − 04 0.0094

VMD-PSR-BP 0.0155 2:3991e − 04 0.0125

VMD-PSR-GRNN 0.0129 1:6752e − 04 0.0089
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Figure 11: Comparison with VMD-PSR-BP and VMD-PSR-GRNN: (a) prediction waveform of test set; (b) a part of prediction waveform of (a).
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Figure 12: Comparison with EMD-PSR-RBF and WT-PSR-RBF.
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In this paper, all ECG data are from MIT-BIH Arrhythmia
Database. MIT-BIH Arrhythmia Database is available online:
https://www.physionet.org/content/mitdb/1.0.0/.
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