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Background. Pulmonary arterial hypertension (PAH) is a disease or pathophysiological syndrome which has a low survival rate
with abnormally elevated pulmonary artery pressure caused by known or unknown reasons. In addition, the pathogenesis of
PAH is not fully understood. Therefore, it has become an urgent matter to search for clinical molecular markers of PAH, study
the pathogenesis of PAH, and contribute to the development of new science-based PAH diagnosis and targeted treatment
methods. Methods. In this study, the Gene Expression Omnibus (GEO) database was used to downloaded a microarray dataset
about PAH, and the differentially expressed genes (DEGs) between PAH and normal control were screened out. Moreover, we
performed the functional enrichment analyses and protein-protein interaction (PPI) network analyses of the DEGs. In addition,
the prediction of miRNA and transcriptional factor (TF) of hub genes and construction miRNA-TF-hub gene network were
performed. Besides, the ROC curve was used to evaluate the diagnostic value of hub genes. Finally, the potential drug targets for
the 5 identified hub genes were screened out. Results. 69 DEGs were identified between PAH samples and normal samples. GO
and KEGG pathway analyses revealed that these DEGs were mostly enriched in the inflammatory response and cytokine-
cytokine receptor interaction, respectively. The miRNA-hub genes network was conducted subsequently with 131 miRNAs, 7
TFs, and 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) which screened out via constructing the PPI network. 17
drugs interacted with 5 hub genes were identified. Conclusions. Through bioinformatic analysis of microarray data sets, 5 hub
genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) were identified from DEGs between control samples and PAH samples.
Studies showed that the five hub genes might play an important role in the development of PAH. These 5 hub genes might be
potential biomarkers for diagnosis or targets for the treatment of PAH. In addition, our work also indicated that paying more
attention on studies based on these 5 hub genes might help to understand the molecular mechanism of the development of PAH.

1. Background

Pulmonary arterial hypertension (PAH) is a disease or path-
ophysiological syndrome of abnormally elevated pulmonary
artery pressure caused by known or unknown reasons [1,
2]. PAH not only can be caused by the pathological changes
of pulmonary vessels themselves but also be secondary to
other heart, lung, or systemic diseases [3]. Pulmonary circu-
latory disturbance and high right heart load are the main

characteristics of PAH [3]. Severe PAH can lead to right
heart failure and even death. It is reported that the PAH prev-
alence rate is 15-60 cases/million people/year, and the inci-
dence rate is 5-10 cases/million people/year [4]. In the past
few decades, great progress has been made in understanding
the basic pathobiology of PAHs and their underlying history,
prognostic biomarkers, and treatment options; however, the
mortality from PAH remains high. Recently, the US-
REVEAL registry displayed a low 5-year survival rate of
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61.2% in patients with newly diagnosed PAH [5]. Therefore,
it has become an urgent matter to search for clinical molecu-
lar markers of PAH, study the pathogenesis of PAH, and
contribute to the development of new science-based PAH
diagnosis and targeted treatment methods.

Bioinformatic analysis is a tool that can be used to dis-
cover potential molecular markers in the pathology of disease
by analyzing the differential gene expression between
patients and healthy controls [6]. At present, the in-depth
study of transcriptome data through bioinformatic analysis
provides a new reference for finding new diagnostic molecu-
lar markers, prognostic monitoring markers, and therapeutic
targets [7, 8]. The primary diagnostic and evaluation method
for pulmonary hypertension is invasive right heart catheteri-
zation, and the primary therapeutic agent is difficult to
achieve a satisfactory therapeutic outcome due to its systemic
effect on blood vessels. Therefore, we intend to use the infor-
mation of PAH patients in the GEO database for bioinfor-
matic analysis to find diagnostic markers and target genes
for treatment, so as to reduce the harm caused by invasive
diagnostic techniques and reduce the side effects caused by
nonspecific treatments. We hypothesized that some genes
or proteins found through bioinformatics could contribute
to the diagnosis and treatment of PAH more specifically
and help for molecular mechanism of PAH.

Through gene expression analysis by chip technology,
more data of PAH expression profile are revealed, which is
helpful for comprehensive basic research and understanding
of biological function of differentially expressed genes
(DEGs) of PAH. In this study, a microarray dataset about
PAH was downloaded from the Gene Expression Omnibus
(GEO) database, and the DEGs between PAH samples and
normal samples were identified. Moreover, we performed
the functional enrichment analyses including Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses and protein-protein interac-
tion (PPI) network analyses of the DEGs. In addition, the
prediction of microRNA (miRNA) of hub genes and con-
struction of the miRNA-hub gene network were performed.
This study is aimed at exploring the hub genes related to
PAH by bioinformatic analysis.

2. Materials and Methods

2.1. Microarray Data Analysis. The National Center for Bio-
technology Information Gene Expression Omnibus (NCBI-
GEO) (https://www.ncbi.nlm.nih.gov/geo/) is a public data-
base created in the year 2000 [9, 10]. It contains the tran-
scriptome data of microarray chips that were submitted by
all kinds of institutions around the world. One mRNA
expression profiling (GSE117261) was downloaded from
the GEO database for further analysis, whose data has been
normalized and log2 transformed. The GSE117261 con-
tained gene expression information of 58 PAH lung tissue
samples and 25 normal samples. The demo data of the sam-
ples in GSE117261 was shown in Table S1. These microarray
data were executed with the help of GPL6244 [HuGene-1_0-
st] Affymetrix Human Gene 1.0 ST Array [transcript (gene)
version]. The detail of GSE117261 was shown in Table 1.

To make this article better understand, the workflow of this
study was shown in Figure 1.

2.2. Data Processing. After GSE117261 was downloaded,
probe identification numbers were transformed into gene
symbols in R software (version 3.6.3 https://www.r-project
.org) for further analyses, respectively [11]. The annotation
library hugene10sttranscriptcluster.db was used to per-
formed the probesets mapping to their respective gene sym-
bol identifier, and probesets annotated to the same gene
symbol identifier were aggregated according to their mean
value [12, 13]. In the GSE117261 dataset, the “limma” pack-
age in the R software (version 3.6.3) was used to screened out
DEGs between PAH samples and normal samples [14].
DEGs with a threshold of ∣log2 fold change ðFCÞ ∣ >1 and
Padj value <0.05 as the cut-off criteria were selected for fur-
ther analyses [15, 16].

2.3. Functional Enrichment Analyses. The DAVID database
(https://david.ncifcrf.gov/) is an online bioinformatic tool
that provides a comprehensive set of functional annotation
tools for researchers to understand the biological meaning
behind a large number of genes [17, 18]. To further under-
stand the function of DEGs in PAH, the DEGs were uploaded
to the DAVID database to perform the GO enrichment anal-
ysis. The “clusterprofile” package in R software can perform
statistical analysis and visualization of functional clustering
of gene collections [19]. The KEGG pathway enrichment
analysis of DEGs was performed using the “clusterprofiler”
package [20]. Gene Ontology is a widely used ontology in
the field of bioinformatics, which covers three aspects of biol-
ogy: biological process (BP), cellular component (CC), and
molecular function (MF) [21]. KEGG pathway annotation
and analysis of DEGs can determine the major metabolic
and signal transduction pathways involved in these genes
[22]. The P value < 0.05 was regarded as the threshold values
for remarkable enrichment.

2.4. Construction of the PPI Network. The Search Tool for the
Retrieval of Interacting Genes (STRING) database (http://
string-db.org/) is a database for searching known protein-
protein interactions and predicting protein-protein interac-
tions. It contains not only experimental data, data from text
mining, but also results of protein-protein interactions pre-
dicted by using bioinformatic methods [23]. In this study, a
PPI network of DEGs that was established with the minimum
interaction score which was set as 0.4. Cytoscape is a very
powerful tool for visualizing web data that can be used to
demonstrate the interrelationships between a set of gene-
s/proteins. Next, the PPI network was visualized by the
Cytoscape software (version 3.7.2) [24]. CytoHubba from

Table 1: Details of GEO dataset.

Dataset Tissue Platform PAH Normal
Reference
(PMID)

GSE117261 Lung GPL6244 58 25 30562042

Note: GEO: Gene Expression Omnibus; PAH: pulmonary arterial
hypertension.
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Cytoscape software was used to identify the hub genes in the
PPI network. Five methods in Plug-in CytoHubba were used
to select the hub genes in the PPI network, namely, edge per-
colated component (EPC), maximal clique centrality (MCC),
maximal neighborhood component (MNC), node connect
degree (degree), and node connect closeness (closeness).
The genes scored in the top 10 by all 5 methods were selected
as hub genes.

2.5. Prediction of miRNA and TF of Hub Genes and
Construction miRNA-TF-Hub Gene Network. The online
prediction tool microRNA Data Integration Portal (mirDIP)
(http://ophid.utoronto.ca/mirDIP) is a web-based computa-
tional database that integrates dozens of bioinformatic tools
used to predict the target miRNA of genes [25]. We used
the mirDIP database to predict potential miRNA targeting
of hub genes. The hub genes were submitted with the thresh-
old set as follows: minimum score = very high, and the top
five predicted miRNAs of every gene were chosen and listed.
TRRUST (Transcriptional Regulatory Relationships Unra-
veled by Sentence-Based Text Mining) (version 2, http://
www.grnpedia.org/trrust/) is an artificially annotated tran-
scriptional regulatory network database [26]. The TRRUST
database contains 800 human transcription factors (TFs)
and 828 mouse TFs, with 8444 human and 6552 mouse TF-
target regulatory relationships, respectively [26]. Then, the
TRRUST database was used to predicted the TFs of the hub
genes [27]. The TF-hub gene interaction pairs with P values
<0.05 were selected to establish the regulatory network.
Finally, the Cytoscape software was used to construct the
miRNA-TF-hub gene network.

2.6. Drug-Gene/Protein Interactions. The Drug-Gene Interac-
tion database (DGIdb) (http://dgidb.genome.wustl.edu/) was
used to identify potential drug targets for the 5 identified hub

genes. It contains data from 13 different sources on human
drugs, drug-deliverable genes, and drug-gene interactions
and currently contains more than fourteen thousand drug-
gene interactions including more than six thousand drugs
and two thousand human genes [28].

2.7. Diagnostic Significances of 5 Hub Genes. The evaluation
of the diagnostic value of hub genes was analyzing by estab-
lishing a receiver operating characteristic (ROC) according
to the hub gene expression data in 58 PAH patients and 25
normal control samples. The area under the curve (AUC)
value of the ROC curve was used to determine the diagnostic
effect of the hub genes in distinguishing patients with PAH
from normal subjects. Usually, an AUC value of >0.85 indi-
cated excellent diagnostic value [29, 30].

2.8. Statistical Analysis. The moderate t-test was used to
screen out DEGs; Fisher’s exact test to analysis was used to
performed function enrichment analysis including GO and
KEGG analysis [31]. All statistical analyses were performed
in R version 3.6.3 software.

3. Results

3.1. Identification of DEGs in PAH. To explore the drive
genes of PAH, we first excavated the mRNA expression pro-
filing (GSE117261) of PAH and normal tissue from GEO and
filtrated DEGs compared to the normal tissue. In our result,
69 DEGs of PAH were obtained. Among them, 38 were
upregulated expression (log2 FC > 1), and 31 were downreg-
ulated expression (log2 FC < −1) (Table 2 and Table S2).
These DEGs were shown as a volcano plot and heat map in
Figures 2(a) and 2(b).

3.2. Functional Enrichment Analyses. To further understand
the function of 69 DEGs in PAH, these 69 DEGs were

One microarray dataset was downloaded
from GEO database

GO analysis and
KEGG pathway

enrichment analysis
of DEGs

Construction of PPI network

Identification of DEGs

Identification
of hub genes

Drug-gene
Interactions of

hub genes

Construction
of miRNA-TF-

hub gene
network

Figure 1: The workflow of this study.
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uploaded to the DAVID database to perform the GO enrich-
ment analysis (Table S3 and Figures 3(a)–3(c)). The P
value<0.05 was regarded as the threshold values for
remarkable enrichment. The top five GO terms of DEGs
based on the P value are shown in Table 3. In BP analysis, it
was shown that the DEGs were mainly involved in the
inflammatory response, neutrophil chemotaxis, cellular
response to tumor necrosis factor, immune response, and cell
chemotaxis. In CC analysis, it was significantly involved in
the extracellular region, extracellular space, proteinaceous
extracellular matrix, extracellular exosome, and extracellular
matrix. In addition, MF analysis showed that DEGs were
mainly involved in chemoattractant activity, chemokine
receptor binding, RAGE receptor binding, integrin binding,
and chemokine activity. To obtain more information about
the crucial pathways of these DEGs, a KEGG pathway
analysis was performed (Table S4). The top ten KEGG terms
of DEGs according to the P value are shown in Table 4
and Figure 3(d). KEGG enrichment analysis showed that
DEGs were mainly involved in hematopoietic cell lineage,
cytokine−cytokine receptor interaction, fluid shear stress
and atherosclerosis, viral protein interaction with
cytokine and cytokine receptor, and malaria (Table 4).

3.3. Construction of the PPI Network. The PPI network of
DEGs was constructed by using the STRING database and
Cytoscape software. After removing the unconnected nodes,
a PPI network that contained 51 nodes and 132 edges was
constructed (Figure 4). The cytoHubba in the Cytoscape soft-
ware was used to identify the hub genes of PAH scored in the
top 10 by all 5 methods. These genes were SPP1, CXCL12,
CXCR1, VCAM1, and CCL5, which may play an important
role in PAH progression.

3.4. Prediction of miRNA and TF of Hub Genes and
Construction miRNA-TF-Hub Gene Network. To further
explore the mechanism of the hub genes, we investigated
the potential interaction network of these hub genes. Accord-
ing to the mirDIP database and TRRUST database, there
were 131 potential miRNAs (Table S5) and 7 TFs by
targeting hub genes, and a miRNA-TF-hub gene interaction
network was established. Finally, the miRNA-TF-hub gene
interaction network was visualized via Cytoscape software
(Figure 5).

3.5. Drug-Gene/Protein Interactions. According to the
DGIdb database results, 17 drugs approved by the Food
and Drug Administration (FDA) were screened out,

including 4 drugs interacted with gene SPP1 (secreted
phosphoprotein 1), 5 drugs with VCAM1 (vascular cell
adhesion molecule 1), 6 drugs with CXCL12 (C-X-C motif
chemokine ligand 12), and 2 drugs with CXCR1 (C-X-C
motif chemokine receptor 1) (Table 5). Only one hub gene
(CCL5) however does not have a direct drug target.

3.6. Diagnostic Significances of Hub Genes. The ROC curve
was used to evaluate the diagnostic value of hub genes.
The diagnostic value of hub genes in recognizing PAH tis-
sues from normal control presented excellent diagnostic
value with AUC of 0.889 (95% confidence interval (CI):
81.73%-96.07%), sensitivity of 75.9%, and specificity of
96.0% in CCL5; AUC of 0.854 (95% CI: 75.81%-95.08%),
sensitivity of 93.1%, and specificity of 68.0% in VCAM1;
and AUC of 0.853 (95% CI: 76.01%-94.61%), sensitivity
of 74.1%, and specificity of 96.0% in SPP1 (Figure 6).
However, CXCL12 and CXCR1 presented AUC of <0.85
(Figure 6).

4. Discussion

PAH still is a severe disease which is difficult to diagnosed
and continuously makes patients and social suffering. The
rapid development of high-throughput microarray technol-
ogy and bioinformatic could provide more references for
finding diagnostic biomarkers and prognostic suggestions
for diseases.

In our work, GSE117261, a mRNA expression profile
which downloaded from the NCBI-GEO database, was used
to explore potential biomarkers and molecular mechanisms
of PAH. Firstly, 69 DEGs (38 upregulated genes and 31
downregulated genes) between PAH lung tissues and normal
lung tissues were screened out. Then, GO and KEGG analysis
was conducted to gain more insights into the function of
these DEGs in PAH. Further, we constructed a PPI network
via the STRING database and Cytoscape software and
screened out 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1,
and SPP1) from the PPI network. Moreover, the miRNA-hub
gene interaction network was established. Finally, the candi-
date drug targeting hub genes with PAH were screened out
via the DGIdb database.

CCL5 (C-C motif chemokine ligand 5), also known as
SCYA5, RANTES, and TCP228, is one of the chemokine
system genes and belongs to the C-C chemokine subfamily
[32, 33]. CCL5 could be released from platelets, macro-
phages, fibroblasts, endothelium, and epithelial cells [34].
And it was reported that CCL5 plays multiple roles in

Table 2: Screening DEGs in PAH by integrated analysis of microarray.

DEGs Gene names

Upregulated
LTBP1, PDE3A, HBB, MFAP4, BMP6, GEM, SFRP2, CCL5, SLC18A2, RGS5, DEPP, WIF1, ASPN, VCAM1, AGBL1,

RGS1, CXCL12, POSTN, MS4A, MXRA5, DPT, OGN, CD69, CCL21, KIT, ENPP2, CPA3, THY1, EDN1, ESM1, GZMK,
FABP4, ROBO2, COL6A6, CCDC80, CHIAP2, PI15, HAS2

Downregulated
CSF3R, RNASE2, SULT1B1, SAA2, S100A9, MGAM, NQO1, CR1, SIGLEC10, IL1R2, RIPOR2, S100A8, AQP9, S100A12,
SAA1, CD163, LCN2, TIMP4, ANPEP, CXCR1, VNN2, HMOX1, BPIFA1, SLCO4A1, ELF5, BPIFB1, SPP1, SERPINA3,

CHIT1, MS4A15, MSMB

DEGs: differentially expressed genes; PAH: pulmonary arterial hypertension.
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the human tissue, including tissue repair/healing, fibrosis,
angiogenesis, tissue and vascular remodeling, embryogene-
sis, and tumorigenesis [35–37]. The major contributors to
promoting the development of PAH include but not limits
to genetic factors, autoimmune, pulmonary vascular endo-
thelium, and smooth muscle cell dysfunction. Nie and Tan
et al. have reported that the CCL5-CCR5 pathway took

part in macrophage recruitment and pulmonary vascular
remodeling [38]. This evidence suggests that CCL5 might
involve in the pathogenesis of PAH. Studies have shown
that CCL5 is highly expressed in patients with PAH, and
CCL5 gene knockout in mice could inhibit the develop-
ment of Sugen5416/hypoxia-induced PAH [39, 40].
Changming et.al have reported that the overexpressed
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Figure 2: Identification of DEGs from GSE117261 dataset. (a) Volcano plot of GSE117261 via R software. Log FC: log2 fold change. (b) Heat
map of differentially expressed gene expression. The heat map was generated using pheatmap package in R. The expression profiles greater
than the mean are colored in red, and those below the mean are colored in green. Blue, normal lung tissues; orange, PAH specimens. PAH:
pulmonary arterial hypertension.
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CCL5 was a risk factor for the pathogenesis of PAH, and
CCL5 could exert vasoconstriction and remodel effects
on the lung tissue in PAH [41]. In our study, we found
that CCL5 is overexpressed in PAH patients, and this is
consistent with previous research. What role does CCL5
play in pulmonary hypertension? It is reported that there
may be in the following aspects: CCL5 may play an indi-
rect role in PAH by inducing endothelin-converting
enzyme 1 and endothelin-1, and endothelin-1 is a power-
ful endothelin-derived factor with strong vasoconstriction
effects [42]. CCL5 is one of the genes regulating the NF-
κB signaling pathway [40]. Activation of NF-κB is a fea-
ture of many chronic inflammatory conditions such as
asthma and chronic obstructive pulmonary disease [40,

43, 44]. In atherosclerosis, activation of NF-κB can be seen
in macrophages endothelial cells and vascular smooth
muscle cells in atherosclerotic plaques [45]. Studies show
that NF-κB may play an important role in PAH via medi-
ating the cytokine-induced release of endothelin-1 [46].
PAH animal models have demonstrated that proinflamma-
tory cytokines and chemokines are involved in the devel-
opment of wild liliine-induced pulmonary hypertension
[47, 48]. Therefore, we speculate that the crosstalk between
the CCL5 and NF-κB pathway plays an important role in
the development of PAH, doing further researches of
which might make a great progress in PAH. However,
we found in the DGIdb database that there are currently
no FDA-approved drugs targeting CCL5. Therefore, the
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Figure 3: Top 10 enriched GO terms and top 10 KEGG pathways for differentially expressed genes. (a)–(c) GO term enrichment analysis for
(a) biological process, (b) molecular function, and (c) cellular component. (d) KEGG pathway analysis. Node size represents gene ratio; node
color represents P value. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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development of drugs targeting CCL5 may be beneficial
for the treatment of PAH.

SPP1 (secretory phospho-protein1), also known as
OPN or osteopontin, is a chemokine-rich matrix phospho-
glycoprotein, which mostly exists in human body fluids,
lungs, gastrointestinal tract, and other organs. Previous
studies have found that the SPP1 gene is highly expressed
in idiopathic pulmonary fibrosis (IPF), the occurrence, and
metastasis of multiple tumors. High expression of SPP1
promotes the occurrence of lung fibers by regulating the
expression of many genes, such as LEP and KCNJ5 [49].
Chronic hypoxia and repeated chronic airway inflamma-
tion will lead to lung tissue destruction, fibrosis, and then
increase pulmonary vascular resistance and eventually
induce exacerbating PAH. Pulmonary fibrosis is a com-
mon reason for the formation of PAH. The comprehensive
analysis showed that the high expression of SPP1 should

be a driver of PAH. It has been reported that SPP1 plays
a role in PAH via enhancing pulmonary vascular smooth
muscle cell (PVSMC) proliferation [50, 51]. The expres-
sion level of SPP1 was related to the severity of PAH
[52, 53]. These results suggest that SPP1 may be a prog-
nostic indicator and therapeutic target for PAH. Targeted
SPP1 therapy might reverse the development of pulmo-
nary fibrosis and prevent or delay the progression of pul-
monary hypertension. Further study of the molecular
mechanism of SPP1 in pulmonary hypertension will be
beneficial to the majority of patients.

VCAM1 encodes adhesion molecules induced by proin-
flammatory cytokines, and it has been reported that VCAM1
is increased in systemic sclerosis complicated with PAH [54].
VCAM1 on endothelial cells is involved in leukocyte adhe-
sion and activates intracellular calcium release and NADPH
oxidase Nox2, further promoting leukocyte migration [55,

Table 3: GO analysis of DEGs in PAH.

Category Term Count P value FDR

BP Inflammatory response 12 1.21E-07 3.52E-05

BP Neutrophil chemotaxis 7 1.51E-07 3.52E-05

BP Cellular response to tumor necrosis factor 8 1.56E-07 3.52E-05

BP Immune response 11 2.96E-06 5.01E-04

BP Cell chemotaxis 6 4.06E-06 5.49E-04

CC Extracellular region 30 2.33E-14 1.91E-12

CC Extracellular space 27 1.84E-13 7.53E-12

CC Proteinaceous extracellular matrix 8 4.62E-05 1.22E-03

CC Extracellular exosome 24 5.97E-05 1.22E-03

CC Extracellular matrix 8 8.64E-05 1.42E-03

MF Chemoattractant activity 4 1.23E-04 2.11E-02

MF Chemokine receptor binding 3 3.55E-04 3.03E-02

MF RAGE receptor binding 3 6.92E-04 3.94E-02

MF Integrin binding 4 6.48E-03 2.77E-01

MF Chemokine activity 3 1.35E-02 4.10E-01

Note: GO: Gene Ontology; DEGs: differentially expressed genes; PAH: pulmonary arterial hypertension; BP: biological process; CC: cellular component; MF:
molecule function; FDR: false discovery rate.

Table 4: KEGG enrichment analysis of DEGs in PAH.

Category Term Count P value FDR

hsa04640 Hematopoietic cell lineage 5 6.98E-05 6.63E-03

hsa04060 Cytokine-cytokine receptor interaction 7 2.71E-04 1.09E-02

hsa05418 Fluid shear stress and atherosclerosis 5 3.45E-04 1.09E-02

hsa04061 Viral protein interaction with cytokine and cytokine receptor 4 9.62E-04 2.29E-02

hsa05144 Malaria 3 1.38E-03 2.62E-02

hsa04614 Renin-angiotensin system 2 4.61E-03 7.30E-02

hsa04657 IL-17 signaling pathway 3 8.26E-03 1.10E-01

hsa04062 Chemokine signaling pathway 4 1.01E-02 1.10E-01

hsa04064 NF-kappa B signaling pathway 3 1.09E-02 1.10E-01

hsa05143 African trypanosomiasis 2 1.17E-02 1.10E-01

Note: KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: differentially expressed genes; PAH: pulmonary arterial hypertension; FDR: false discovery
rate.
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56]. It has been reported that the concentration of VCAM-1
only increases in PAH-CTD, but not in patients with IPAH,
suggesting that VCAM1 may play a specific role in PAH sub-
types and may be related to the degree of inflammation, vas-
cular injury, and antiangiogenesis [57]. However, other
studies have found that VCAM1 is increased in both patients
and animal models of IPAH [58, 59]. Therefore, the expres-
sion pattern and role of VCAM1 in pulmonary hypertension
need to be further studied.

CXCL12 belongs to the CXC subfamily of chemokines,
and increased blood CXCL12 levels are associated with right
ventricular dysfunction in patients with idiopathic pulmo-
nary hypertension [60]. The expression level of CXCL12 is
significantly increased in the pulmonary vascular endothe-

lium and the endothelium of the vasa vasorum of larger pul-
monary vessels removed from PAH patients when compared
to normal control [61, 62]. The neutralization effect of
CXCL12 can reduce the infiltration of pulmonary macro-
phages, so as to improve pulmonary hypertension in rats
[60]. The promoter region of CXCL12 contains binding sites
for several transcription factors, including NF-κB [63].
CXCL12 may play an in PAH via the NF-κB signaling path-
way. It is reported that the CXCL12/CXCR4/CXCR7 axis
plays a central role in PAH [64]. These results also suggest
that CXCL12 may be a therapeutic target for PAH.

CXCR1, also known as IL8R1, encoded a protein that is a
member of the G-protein-coupled receptor family [65]. This
protein is a receptor for interleukin 8 (IL8) [65]. Bone
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Figure 5: Construction of the miRNA-TF-hub gene interaction network. The circles represent hub genes, the triangles represent miRNAs,
and the diamond represent TFs, respectively.

Table 5: Candidate drug targeting genes with PAH.

Gene Drug Sources Reference (PMID)

SPP1 Alteplase NCI 12009309

SPP1 Gentamicin NCI 11274264

SPP1 Tacrolimus NCI 16103732

SPP1 Calcitonin NCI 8013390

VCAM1 Cyclosporine NCI 7694584

VCAM1 Carvedilol DrugBank 17139284, 15374848, 17016423

VCAM1 Alcohol DrugBank 18165316

VCAM1 Mercaptopurine NCI 7694584

VCAM1 Dexamethasone NCI 7694584

CXCL12 Vincristine PharmGKB 27173875

CXCL12 Alemtuzumab PharmGKB 27173875

CXCL12 Prednisone PharmGKB 27173875

CXCL12 Cyclophosphamide PharmGKB 27173875

CXCL12 Chlorambucil PharmGKB 27173875

CXCL12 Rituximab PharmGKB 27173875

CXCR1 Ibuprofen TTD N/A

CXCR1 Ketoprofen DrugBank 9093816, 15974585, 11331079

Note: PAH: pulmonary arterial hypertension; NCI: National Cancer Institute; TTD: Therapeutic Target Database; N/A: not available.
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morphogenetic protein receptor-II (BMPR-II) expressed in
pulmonary artery endothelial cells, which play an anti-
inflammatory role by regulating the release of proinflamma-
tory cytokines and promote the barrier function by inhibiting

the migration of white blood cells to the pulmonary vascular
wall [66]. In mice with deficient expression of BMPR-II, the
decreased barrier function and the resulting PAH are the
results of increased leukocyte recruitment caused by
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CXCR1/2 increase and inhibiting CXCR1/2 could be slow
down to the progress of PAH [66]. These results suggest that
CXCR1 may be a therapeutic target for PAH.

However, there are some limitations in this study. First,
the sample size was relatively small. Second, this study was
based on bioinformatics, and the results were based on com-
puter analysis; so, the results need to be verified by experi-
ments in vivo and in vitro.

5. Conclusions

Through bioinformatic analysis of microarray data sets, 5 hub
genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) were
identified fromDEGs between control samples and PAH sam-
ples. Studies showed that the five hub genes might play an
important role in the development of PAH. These 5 hub genes
might be potential biomarkers for the treatment of PAH. In
addition, our work also indicated that paying more attention
on studies based on these 5 hub genes might help to under-
stand the molecular mechanism of the development of PAH.
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