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Dry weight is the normal weight of hemodialysis patients after hemodialysis. If the amount of water in diabetes is too much (during
hemodialysis), the patient will experience hypotension and shock symptoms. Therefore, the correct assessment of the patient’s dry
weight is clinically important. These methods all rely on professional instruments and technicians, which are time-consuming and
labor-intensive. To avoid this limitation, we hope to use machine learning methods on patients. This study collected demographic
and anthropometric data of 476 hemodialysis patients, including age, gender, blood pressure (BP), body mass index (BMI), years of
dialysis (YD), and heart rate (HR). We propose a Sparse Laplacian regularized Random Vector Functional Link (SLapRVFL) neural
network model on the basis of predecessors. When we evaluate the prediction performance of the model, we fully compare
SLapRVFL with the Body Composition Monitor (BCM) instrument and other models. The Root Mean Square Error (RMSE) of
SLapRVFL is 1.3136, which is better than other methods. The SLapRVFL neural network model could be a viable alternative of
dry weight assessment.

1. Introduction

Fluid overload in patients with chronic renal failure is closely
related to poor cardiovascular outcomes [1, 2]. Maintenance
of hemodialysis (HD) is the main method for patients with
renal failure [3]. However, the accurate assessment of body
water volume is still a concern [4]. At present, dry weight
has been used as an important indicator to assess the homeo-
stasis of fluids in hemodialysis patients. Medical staff can use
the patient’s dry weight to estimate the amount of water
needed for dialysis during hemodialysis. The conventional
clinical-based dry weight assessment method is time-
consuming and labor-intensive [1]. There are already some
methods based on bioelectrical impedance analysis (BIA)
[5] to determine dry weight, including body composition
monitor (BCM) [6] and lung ultrasound (LUS). However,
all the above methods require special instruments and pro-

fessional technicians to complete. Medical staff can use some
clinical data to build predictive models [7] to accurately
assess dry weight. Currently, machine learning (ML) or deep
learning has solved many common clinical problems in
medicine, such as brain diseases [8–10], cancer analysis,
and diabetes.

Some scholars have used artificial neural networks
(ANN) to predict the total water volume of hemodialysis
patients and have obtained better results than conventional
clinical calculation equations [11]. In addition, deep learning
methods are also emerging in clinical diagnosis, including
pixel-based convolutional neural networks to diagnose skin
cancer [12]. In the biological field, microbiology analysis
[13], CircRNAs [14], microRNAs, and cancer association
prediction [15–17], lncRNA-miRNA association prediction,
O-GlcNAcylation site prediction [18], DNA methylation site
[19–21], protein remote homology [22], function prediction
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of proteins [23–29], electron transport proteins [30], breast
cancer [31], cell-specific replication [32], osteoporosis diag-
noses [33], and drug complex network analysis [34–38].

In our previous research, a Multiple Kernel Support
Vector Regression (MKSVR) [39] predictor was proposed to
assess the dry weight and obtain good predictive performance.
Inspired by the previous work and baseline Random Vector
Functional Link (RVFL) network [40], we propose a new dry
weight assessment model, called Sparse Laplacian regularized
RVFL neural network with L2,1-norm (SLapRVFL), which
considers the topological relationship between samples and
more sparse connections between the input layer and the
hidden layer.

2. Materials and Methods

2.1. Materials. This work collects demographic and anthro-
pometric data and bioimpedance spectroscopy (BIS) from
historical data (2018-9 to 2019-9) fromWuxi people’s hospi-
tal and the northern Jiangsu people’s hospital. This study has
been approved by the ethics committees of the hospitals
(Nos. KYLLKS201813 and 2018KY-001). The collected
patient data meet the following requirements: age greater
than 18 years; ESRD for more than three months and main-
tenance hemodialysis [41]; no heart failure, no metal
implants, no pregnancy, no disability, no infection, and no
edema and other diseases; and hemodialysis treatment 3
times a week, 4 hours each time. Finally, we obtain a data
set of 476 hemodialysis patients. DW is the normal body
weight after clinical diabetes. DW is obtained by a clinician
under strict clinical supervision using a clinical scoring
system (using trial and error method) [42, 43].

We choose 7 features, including age, gender (binary fea-
ture), systolic blood pressure (SBP), diastolic blood pressure
(DBP), body mass index (BMI), heart rate (HR), and years
of dialysis (YD) to build our predictive model. Table 1 shows
the information of the data set. BMI is measured before
hemodialysis treatment.

2.2. Methods. The baseline RVFL was proposed for regression
or classification. The schematic diagram of RVFL is shown in
Figure 1. The basic information of the patient is put into the
RVFL neural network model for processing, and the
predicted dry weight is the output.

Suppose, there are N training samples with fxi, yig, i = 1,
2,⋯,N. The output value is yi ∈ R

1×c and the input data is xi
∈ R1×d. d denotes the dimension of xi. As per Figure 1, RVFL
randomly initializes all weights and deviations between the
hidden layer and the input layer. These parameters are fixed
during the training process and do not need to be tuned. There
are connections between the output layer, input layer, and hid-
den layer. This part of the weight needs to be obtained by train-
ing RVFL. The output layer of RVFL is connected to both the
input layer and the hidden layer, so as to ensure the nonlinear
and linear relationships between the input and the output. The
RVFL network with P hidden nodes are formulated as

Hβ = Y , ð1Þ

where β denotes the output weight matrix; H is the
concatenatedmatrix, which combines the output of the hidden
layer and the input layer; and Y denotes the label matrix. H
and β can be represented as

H = H1 H2½ �, ð2Þ

H1 =
x11 ⋯ x1d

⋮ ⋱ ⋮

xN1 ⋯ xNd

2
664

3
775
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, ð3Þ

H2 =
G a1x1 + b1ð Þ ⋯ G aPx1 + bPð Þ
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2
664
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775
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, ð4Þ
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βT
1

βT
2

⋮

βT
d+P

2
666664

3
777775

d+Pð Þ×C

: ð5Þ

Table 1: The information of data set.

Feature Value r∗

Age (years) 54:17 ± 14:22 -0.2341

Gender (males/females) 312/164 -0.4489

BMI 22:96 ± 2:95 0.9558

Systolic blood pressure (mmHg) 150:64 ± 29:36 -0.1739

Diastolic blood pressure (mmHg) 88:32 ± 19:56 -0.1249

Heart rate (times/min) 73:41 ± 8:92 0.1862

Years of dialysis (years) 5:97 ± 3:22 -0.1069
∗Denotes that each feature correlated with dry weight using Pearson
correlation coefficient (r).

……

∫∫ ∫∫ ∫∫……∫∫

Input nodes

Hidden nodes
(enhanced
function)

Output nodes

Age Gender Years of
dialysis……

Dry weight

Figure 1: Schematic of our proposed method.
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In Equation (4), aj and bj are the weights and bias of the
hidden and input layers. C and P are numbers of output and
hidden layer nodes. In general, the activation function is a
Gaussian function: gðxÞ = e−x

2
. The activation function has a

nonlinear approximation effect. To consider the potential lin-
ear relationship between the input data and the output value,
RVFL adds a direct connection weight between the input layer
and the output layer. Therefore, RVFL is a model that contains
both linear and nonlinear approximations to improve predic-
tion performance. For optimal β, the RVFL can be formulated
as a regularized least-squares:

β∗ = arg min 1
2 Hβ − Yk k22 +

λ

2 βk k22, ð6Þ

where λ is the parameter of regularization term. The solution
of Equation (6) can be found by setting its gradient to 0:

β∗ = HTH + λI
� �−1

HTY , ð7Þ

where I denotes the identity matrix. However, the RVFL net-
work did not consider the topological relationship between
samples. For the output node, it must be connected to both
the input and the hidden layer.

In order to further improve the robustness of RVFL, we
propose Sparse Laplacian regularized RVFL neural network
with L2,1-norm (SLapRVFL). The objective function is

β∗ = arg min 1
2 Hβ − Yk k22 +

λ1
2 Tr Hβð ÞTLHβ

� �
+ λ2

2 βk k22,1,
ð8Þ

where L ∈ RN×N denotes the Laplacian matrix. λ1 and λ2 are
the coefficients of Laplacian regularization the and L21-norm
term, respectively. Laplacian regularization is used to indicate
the potential manifold between samples. It can better describe
the topological association between samples to improve the

generalization ability of the model. Since the third term of
kβk22,1 is not diversified, we convert Equation (8) to

β∗ = arg min 1
2 Hβ − Yk k22 +

λ1
2 Tr Hβð ÞTLHβ

� �

+ λ2
2 Tr βTGβ

� �
,

ð9Þ

where G ∈ Rðd+PÞ×ðd+PÞ denotes a diagonal matrix whose ith-
diagonal element

Gii =
1

2 βik k2
, i = 1, 2,⋯, d + Pð Þ: ð10Þ

We take the derivative of the formula Equation (10) as

HT Hβ − Yð Þ + λ1H
TLHβ + λ2Gβ = 0, ð11aÞ

HTHβ + λ1H
TLHβ + λ2Gβ =HTY , ð11bÞ

Require: Training set fxi, yig, i = 1, 2,⋯,N , test set fxtej g, j = 1, 2,⋯,M, the numbers of hidden layer nodes (P), the maximum num-
ber of iterations tmax, coefficients of λ1 and λ2;
Ensure: The predictive values of fytej g, j = 1, 2,⋯,M
(1) Randomly initializing all weights and deviations between the hidden layer and the input layer. Calculating the hidden layer output
matrix H (training set)and Laplacian matrix L by Equations (2), (12), and (13);
(2) Set t = 0, estimate the initial β0 using Equation (7);
Repeat
(3) Update the diagonal matrix G with

Gt+1 =
1/2kβt

1k2
⋱

1/2kβt
d+Pk2

2
664

3
775
ðd+PÞ×ðd+PÞ

,

(4) Update β via Equation (11d);
Untilt > tmax;
(5) Calculate the hidden layer output matrix Hte (test set);
(6) Estimate fytej g, j = 1, 2,⋯,M by Yte =Hteβ.

Algorithm 1. Algorithm of SLapRVFL
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Figure 2: The RMSE under different numbers of hidden layer nodes
(SLapRVFL network).
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HTH + λ1H
TLH + λ2G

� �
β =HTY , ð11cÞ

β = HTH + λ1H
TLH + λ2G

� �−1
HTY : ð11dÞ

We use the baseline RVFL solution with Equation (7) as the
initial β0. In addition, the Laplacian matrix can be calculate as

L =D−1/2ΔD−1/2, ð12aÞ

Δ =D − S, ð12bÞ
where D is diagonal matrix, Dii =∑N

j=1Sij. Similarity matrix S is
built by Radial Basis Function (RBF):

Sij = exp −γ xi − xj
�� ��2� �

: ð13Þ

The process of SLapRVFL is list in Algorithm 1.

3. Results

We test our model on the benchmark data set and obtain the
optimal parameters of the predictor through cross-
validation. The SLapRVFL network is compared to other
machine learning-based models. In addition, the body com-
position monitor (BCM) device (Fresenius Medical Care,
Baden Humboldt, Germany) is also compared with the
SLapRVFL network.

3.1. Evaluation Measurements. The 10-fold cross-validation
(10-CV) is employed to evaluate the robustness of methods.
Root Mean Square Error (RMSE), R square, correlation coef-
ficient (R), Bland–Altman analysis, and Empirical Cumula-
tive Distribution Plot (ECDP) [44] are all used in our study.
To evaluate the agreement of two different methods, the
Bland–Altman analysis usually can obtain whether the two
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Figure 3: The RMSE of iterations on the training set.
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Figure 5: Folded empirical cumulative distribution plot between different methods.

Table 3: Bland–Altman plot analysis for different models.

Model
Differences with DW (%) Limits of agreement (%)

Mean SD 95% confidence interval Lower limit Upper limit
Number (ratio) of outside

agreement interval

BCM∗ -1.8232 2.7466 -2.0706 to -1.5759 -7.2066 3.5601 30/476 (6.30%)

LR∗ 0.0002 2.4269 -0.2184 to 0.2187 -4.7566 4.7569 21/476 (4.41%)

ANN (BP)∗ 0.1152 2.5139 -0.1112 to 0.3416 -4.8119 5.0424 22/476 (4.62%)

MKRR∗ -0.0801 2.5007 -0.3053 to 0.1451 -4.9814 4.8212 23/476 (4.83%)

MKSVR∗ -0.2638 2.3372 -0.4743 to -0.05329 -4.8446 4.3171 22/476 (4.62%)

SLapRVFL (our method) 0.0867 2.2202 -0.1133 to 0.2866 -4.2650 4.4383 20/476 (4.20%)
∗The results are from previous work on MKSVR [39].

Table 2: Comparison on existing methods via 10-fold cross-validation.

Method R R squared RMSE
Empirical cumulative distribution plot

Highest value Lowest value Median value

BCM∗ 0.9473 0.9137 1.9694 3.2235 -6.2776 -0.9863

LR∗ 0.9403 0.9308 1.4335 4.2524 -4.4014 0.1418

ANN (BP)∗ 0.9398 0.9295 1.4794 7.3661 -4.7447 0.1324

MKRR∗ 0.9399 0.9289 1.5015 4.9227 -4.2604 0.1104

MKSVR∗ 0.9412 0.9321 1.3817 4.3962 -4.1273 0.0082

RVFL 0.9389 0.9300 1.3828 6.7004 -4.3557 0.0704

SLapRVFL (our method) 0.9632 0.9501 1.3136 3.1940 -3.5066 0.1014
∗The results are from previous work on MKSVR [39].
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Figure 6: Bland–Altman plot analysis.
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methods can be substituted for each other (equivalence).
Evaluating the agreement of the two methods can answer
the question, “Can these two methods replace each other?”

3.2. Selection of Optimal Parameters. To get the optimal
parameters of the predictive method, we obtain them
through a grid search method. The parameters that need to
be determined include the numbers of hidden layer nodes P
, maximum iterations, and coefficients of λ1 and λ2. For the
numbers of hidden layer nodes P, we fix the iterations, λ1
and λ2. Setting the maximum number as 50, λ1 = 1 and λ2
= 1. The value of P is from 10 to 140 with step of 10. The
results are shown in Figure 2. From 10 to 100, the more neu-
rons in the hidden layer, the lower the RMSE. Since then,
RMSE has gradually increased. So, we get the lower RMSE
under P = 100.

Next, P = 100, λ1 = 1, and λ2 = 1. We gradually increase
the number of iterations from 1 to 100 (shown in Figure 3).
After the number of iterations reaches 10, the RMSE value
drops to a minimum and slightly oscillates within a certain
value. In our study, maximum number of iterations is 10.

Then, we use the better number of hidden layer nodes
and iterations to search for the best λ1 and λ2. The search
range of parameters is from 2−5 to 20 (with step of 20:5).
Figure 4 shows the results of different parameters. When λ1
and λ2 are 2−3 and 2−2:5, RMSE is the lowest.

3.3. Comparison to Other Predictive Models and BCM. To
evaluate our model, SLapRVFL is compared with our previ-
ous work of Multiple Kernel Support Vector Regression
(MKSVR) [39], Multikernel Ridge Regression (MKRR), Lin-
ear Regression (LR), Artificial Neural Network based on Back
Propagation algorithm (ANN with BP), and BCMmeasuring
instrument. Clinical dry weight is our reference standard
(also the regression target value of the prediction model).
The comparisons are listed in Table 2, which shows that
SLapRVFL achieves best performance of RMSE (1.3136).
Although the ECDP median value (peak) of MKSVR
(0.0082) is more close to zero, Figure 5 shows that SLapRVFL
has the least bias and much less tails than MKSVR (smaller
width). The RMSE of BCM is 1.9694, which is larger than
SLapRVFL.

3.4. Bland–Altman Analysis. Bland–Altman plot is a useful
tool to evaluate the agreement between predictive methods
and clinical DW. In Table 3 and Figure 6, SLapRVFL,
MKSVR, LR, ANN (BP), MKRR, and BCM are analyzed via
Bland-Altman difference plot. SLapRVFL achieves the smal-
lest range of 95% confidence interval (-0.1133 to 0.2866) and
standard deviation (2.2202). In addition, the number (ratio)
of outside agreement interval for predictive models is all less
than 24 (5%) predictive samples. These results of models are
clinically acceptable. SLapRVFL achieves least number (20)
of the outside agreement interval in Table 3. As shown in
Figure 6, two red horizontal dotted lines (upper and lower)
denote the upper and lower limits of the 95% agreement
limit, respectively. The middle blue solid line is the average
value of the difference (between measurement methods and
clinical DW). While one measurement method and clinical

method can be considered as a better agreement, they can
be substituted for each other (equivalence). If 95% of the
points of the data set are in the agreement range, the mea-
surement method (predictive model) is clinically acceptable.
The results of the evaluation show that SLapRVFL can help
clinicians assess DW with low cost.

4. Discussion

Due to the limitations of clinical and BCM measurement
(more time and cost), this study uses a machine learning
method to assess the dry weight of hemodialysis patients.
Based on the basic RVFL, we propose a sparse Laplace regu-
larized RVFL network (SLapRVFL) model. SLapRVFL is
compared not only with other machine learning methods
(such as LR, MKRR, ANN with BP, and MKSVR) but also
with BCM equipment (commonly used in hospitals). The
RMSE and Bland–Altman analysis of the model are better
than the BCM instrument. It is proven that the predictive
model driven by data can provide reference for clinical dry
weight assessment.

BCM requires the patient’s information on weight (before
hemodialysis) and height. It is a portable, inexpensive, and
noninvasive technology that has been used to measure DW
[45, 46]. For the Bland–Altman analysis, SLapRVFL achieves
the least number (20) of outside agreement interval. However,
BCM has 30/476 (6.30%) points (ratio) of the outside agree-
ment interval. Obviously, our method has better agreement
with the clinical method.

5. Conclusions

To further improve the robustness of RVFL, we introduce
sparse Laplacian regular term with L2,1-norm. In the training
process, the graph topology information and the sparse
weight matrix (output) are employed to improve the robust-
ness of the RVFL. In fact, our work provides a new idea for
assessing patients’ dry weight. Not only that, in the fields of
biology [47–57], pharmacy [58], and medicine [12, 59, 60],
machine learning methods have helped solve many analysis
tasks. In future research, we will consider collecting more
samples, introducing more patient personal information,
and building a predictor based on a deep learning model to
more accurately assess the dry weight of hemodialysis
patients.
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