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Ulcerative colitis (UC) is a common disease with great variability in severity, with a high recurrence rate and heavy disease burden.
In recent years, the different biological functions of competing endogenous RNA (ceRNA) networks of long noncoding RNAs
(lncRNAs) and microRNAs (miRs) have aroused wide concerns, the ceRNA network of ulcerative colitis (UC) may have
potential research value, and these expressed noncoding RNAs may be involved in the molecular basis of inflammation
recurrence and progression. This study analyzed 490 colon samples associated with UC from 4 gene expression microarrays
from the GEO database and identified gene modules by weighted correlation network analysis (WGCNA). CIBERSORT
detected tissue-infiltrating leukocyte profiling by deconvolution of microarray data. LncBase and multiMIR were used to identify
lncRNA-miRNA-mRNA interaction. We constructed a ceRNA network which includes 4 lncRNAs (SH3BP5-AS1, MIR4435-
2HG, ENTPD1-AS1, and AC007750.1), 5 miRNAs (miR-141-3p, miR-191-5p, miR-192-5p, miR-194-5p, and miR196-5p), and
52 mRNAs. Those genes are involved in interleukin family signals, neutrophil degranulation, adaptive immunity, and cell
adhesion pathways. lncRNA MIR4435-2HG is a variable in the decision tree for moderate-to-severe UC diagnostic prediction.
Our work identifies potential regulated inflammation-related lncRNA-miRNA-mRNA regulatory axes. The regulatory axes are
dysregulated during the deterioration of UC, suggesting that it is a risk factor for UC progression.

1. Introduction

Ulcerative colitis (UC) is a chronic and incurable inflamma-
tory disease, which most often affects the gastrointestinal
tract. A recent study also reported that UC prevalence is
increasing rapidly worldwide with a high recurrence rate
and heavy disease burden (1). Patients with UC need a life-
long course of drugs, which results in high psychological
and financial burdens to patients. An emerging biological
agent, mainly monoclonal antibodies against cytokines, has
been developed, including anti-TNF-α agent (infliximab,
golimumab), integrin antagonists (vedolizumab)and janus
kinase inhibitor (tofacitinib) (2). Nevertheless, up to 30% of

patients show no clinical benefit following biopharmaceuti-
cal. It is urgent to deepen the understanding of the pathogen-
esis of ulcerative colitis progression at the molecular level to
determine new therapeutic and disease surveillance strate-
gies. The gene expression network of the disease has been
predicted to be sophisticated and fathomable, involving a
large variety of characters, such as transcription factors
(TFs), microRNAs (miRNAs), long noncoding RNAs
(lncRNAs), and protein-coding genes (mRNAs).

One of the regulated axes is called the competing endog-
enous RNA network (ceRNA), and the ceRNA hypothesis
was first proposed by Salmena et al. in 2011 (3). LncRNA
competes with mRNA for miRNA by acting as a miRNA
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sponge, and increases the downstream mRNA expression.
The role of the ceRNA network has attracted much atten-

tion in recent years. Recently, there has been a lot of research
and analysis of ceRNA, of which tumor analysis is the most
extensive. Many studies have confirmed that lncRNAs are
mediated by proliferation, metastasis, drug sensitivity, and
tumor progression. Recent research expanded its function
into the field of nontumor. Few studies on ceRNAs have
focused on IBD-related mechanisms. So far, Nie and Zhao
et al. have shown that Lnc-ITSN1-2 promotes Th1/Th17 cell
differentiation and CD4+ T cell activation by sponging miR-
125a in increased IBD develops inflammatory cytokines of
IBD (4). Ye et al. have shown that the dysregulation of cir-
cRNA_103516 in PBMCs may participate in IBD through
hsa-miR-19b-1-5p sponging (5).

The complex network of lncRNA-miRNA-mRNA regu-
latory mechanisms is difficult to determine by exploring indi-
vidual pair interactions. Therefore, high-throughput
sequencing of RNA isolated by crosslinking immunoprecipi-
tation techniques (HITS-CLIP) can directly identify multiple
targeting sequences in the samples (6). The high-throughput
experimental data provide molecular interaction prediction
data (7).

This research emphasizes establishing a regulatory net-
work rather than analyzing individual genes that focus on a
specific molecular interaction. The functions of the charac-
teristic RNAs were investigated by exploring multiple UC-
related microarrays from Gene Expression Omnibus (GEO)
datasets. We elucidated their possible participation in UC
pathogenesis and established an ulcerative colitis
progression-associated ceRNA network. Overall, the effects
and potential underlying molecular mechanisms of RNAs
on the pathological process of ulcerative colitis were elabo-
rated through interactions with specific RNAs. We explored
an inflammatory-related ceRNA network including 4
lncRNAs, 5 miRNAs, and 52 mRNAs. The ceRNA network
may involve the interaction among tissue-infiltrating
immune cells, including neutrophils, macrophage M0/M1,
CD8+T cell, and regulatory T cell. The analysis indicated that
the ceRNA network might become a potential genetic risk
factor for ulcerative colitis.

2. Materials and Methods

2.1. Data Collection and Data Processing. The Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database was searched for publicly available studies and sam-
ples that fulfilled the following criteria for analysis: (1) the
species of the samples was Homo sapiens, (2) the gene
expression data series contained UC colon tissue and normal
colon tissue samples, (3) the selected dataset should be over
15 samples, and (4) the characteristic of samples from a gene
expression study contained UC activity assessment. We used
five adult human UC microarray datasets from GSE48959,
GSE73661, GSE75214, GSE87466, and GSE92415. Among
them, GSE48959, GSE73661, and GSE75214 were hybridized
to Affymetrix Human Genome Affy Human Gene 1.0ST
Genechips (Affy Human Gene 1.0ST, Affymetrix), while
GSE87466 and GSE92415 were profiled using U133A Gene-

chips (HG-U133A, Affymetrix); miRNA array profiling from
GSE48959 was performed with the Affymetrix Multispecies
miRNA-2 Array by reannotating the mRNA microarray data
for lncRNAs. Samples contain a gene expression matrix and
baseline characteristics of 507 ulcerative colitis samples and
62 normal colon samples, of which 17 colitis samples and
10 normal samples come from miRNA datasets. Microarray
data were normalized, and the batch effect was assessed and
removed by the removeBatchEffect function from the limma
R package.

2.2. Established Tissue-Infiltrating Immune Cell Signature
Matrix (LM22). Using CIBERSORT analysis to analyze
LM22 abundance in each sample and filter out abnormal data
(8), subsequently, we calculated the correlation coefficient
between the abundance of the cell subset of the samples
and the rank variable of the disease status of their represented
samples.

2.3. Identify Modules of Coexpressed Genes within Gene
Expression Networks. We used weighted gene coexpression
network analysis (WGCNA) to identify modules of coex-
pressed genes within gene expression networks (9). WGCNA
was implemented in R with the following major parameters:
signed network, power of 20, maxBlockSize of 20000, min-
ModuleSize of 50, verbose of 3, and mergeCutHeight of
0.25. Module membership (MM) represents the intramodu-
lar connectivity of any gene in a given module. A higher
absolute value of MM represented that a gene has a greater
correlation with the module eigengenes (MEs). The gene sig-
nificance value (GS) implies the correlation between the clin-
ical features and the gene expression in a module. A higher
value of GS indicates the increased biological significance of
a gene for a given clinical trait. Hub genes in key modules
were identified based on the following thresholds: ∣MM ∣ >
0:8 and GS > 0:2.

2.4. Weighted Gene Coexpression Network Meta-Analysis.
The preservation and reliability of the modules was checked
by module preservation analysis. These datasets were inde-
pendently processed depending on the platform, and the
expression of module genes in corresponding datasets was
used as input data to measure the degree of preservation in
each dataset (10). The following thresholds for Zsummary
were used: no preservation (Zsummary < 2), weak-to-
moderate evidence of preservation (2 < Zsummary < 10),
and strong evidence of module preservation
(Zsummary > 10).

2.5. Enrichment Analysis and Enrichment Map of Enrichment
Result. To identify represented pathways in coexpression
modules related to UC development, we used ClusterProfiler
in the R/Bioconductor package (11), Hypergeometrictest cal-
culated by ClusterProfiler was applied to analyze the signifi-
cantly enriched GO terms. Results were visualized by bar
plots created by the ClusterProfiler package. The Enrichment
Map results from gene set enrichment analysis created by the
enrichplot package (R package).
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Inclusion criteria
I Ulcerative colitis/negative control colon samples
II Adult
III > 15 samples
IV Homo sapiens

Excluded:
I. Non-colon samples
II. Crohn’s disease samples
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Figure 1: Continued.
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Figure 1: Continued.
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2.6. Protein-Protein Interaction (PPI) Networks. StringApp
constructed a comprehensive human PPI network (12). This
study integrates hub genes of the differential coexpression
module. A PPI network was constructed by mapping the
gene list to the PPI network. We overlapped our gene list
with the PPI network, set the confident threshold of 0.7,
and removed the noninteracting nodes.

2.7. Construction of a ceRNA Network. Based on the hypoth-
esis, the candidate lncRNA and mRNA expression must have
the same variation trend, while miRNA should have the
opposite trend. lncRNA-miRNA interactomes were per-
formed using the LncBase experimental database (13), and

miRNA-mRNA interactions were obtained from the R pack-
age “multiMIR” (14). The obtained lncRNA-miRNA pairs
and miRNA-mRNA pairs were combined to construct a
ceRNA network. The Cytoscape software (v3.8.0) was used
to visualize the ceRNA networks (15).

2.8. Establish a Severity Detection for the UC Patients Using a
Decision Tree. The patient’s clinical data were extracted from
the clinical data of UC patients in two GEO datasets. 328 UC
samples studied in GSE73661 and GSE92415 were included.
Outliers were filtered out by choosing an appropriate cut
parameter of the height of the tree cut in the dendrogram.
We established a decision tree model using rpart (R package).
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Figure 1: Preprocessing of the lncRNA/mRNA datasets and construction of weighted gene coexpression networks. (a) Flowchart for an
overview of the present analysis. (b) Preservation of GSE92415 network modules in different datasets. The y-axis displays the Z score for
each module. Labels beside each module (colored dot) represent the corresponding module in the reference dataset. The x-axis represents
the number of genes in the module. Z scores of less than 2 (blue bottom line) imply no evidence for module preservation, while scores
exceeding 10 (red line) imply strong evidence for module preservation. (c) Module trait relationship: a matrix with the module-trait
relationships (MTRs) (correlation coefficients) and corresponding P values (in brackets) between modules on the y-axis and disease
progression traits of four datasets on the x-axis. (d) The relationship between the module eigengene and disease severity: the y-axis
represents the module eigengene expression value of the sample, and the samples are sorted from mild to severe disease status.
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We train and provide better model results by using Caret (R
package). After performing 10-fold cross-validations, the
cost-complexity parameter (Cp) value in which the test error
was minimized was selected as the optimal Cp value. Classi-
fication models were evaluated based on the area under the
ROC curve (AUC) using the “pROC” (16) software package
(R package) and confusion matrix (R package) (17).

3. Results

3.1. Preprocessing of the lncRNA/mRNA Datasets and
Construction of Weighted Gene Coexpression Networks. The
overview of this study is shown in Figure 1(a). We screened
qualified datasets from GEO, and finally, four gene expres-
sion datasets were downloaded from GEO (GSE48959 (18),
GSE73661 (19), GSE75214 (20), and GSE92415 (21)). In
summary, 52 normal colon biopsy samples and 438 UC colon
biopsy samples were included (the total patients’ characteris-
tic is shown in Tables S1 and S2) All of these samples contain
an evaluation of disease activity by both endoscopy and
symptoms. The evaluation variables are further categorized
into ordinal variables. Ordinal variables allow us to order
the disease severity in terms of which category has less and
which category has more severe severity represented by the
variable. An ordinal variable is ranked by the Mayo score
from GSE92415, Mayo endoscopic score from GSE73661,
and disease activity assessment from GSE48959 and
GSE75214 (Table S8). We identified 15088 common
mRNAs and 1866 common lncRNAs from four datasets.
Using the WGCNA method, 25 gene modules were
constructed. A gene module is considered a set of
coexpressed genes to which the same set of transcription
factors binds. Those modules were first validated by
assessing their preservation across datasets (Figure 1(b) and
Table S4). Remarkably, the coexpression structure of those
modules from GSE92415 can be reproducibly identified in
either of three independent expression datasets, especially

in blue, dark-green, green, grey60, light-yellow, royal blue,
tan, and turquoise modules. The next step is to illustrate
the correlation between the gene module and disease
severity. We noticed that turquoise modules were positively
related to the severity of ulcerative colitis among four
datasets (Figure 1(c)), green, blue, and tan modules were
negatively related to the development of ulcerative colitis
among four datasets (Figure 1(c)), and the bar plots
revealed that the eigengene value of modules correlated
with the disease severity (Figure 1(d)). The above work
shows that four modules (turquoise, green, blue, and tan)
are significantly related to ulcerative colitis severity.
Subsequently, we used a relatively high criterion to select
hub RNAs on 4 modules (Table S5). Finally, we identified
329 hub mRNAs and 23 hub lncRNAs in the turquoise
module, 189 hub mRNAs and 13 hub lncRNAs in the blue
module, 76 hub mRNAs and 1 hub lncRNA in the green
module, and 31 hub mRNAs and 3 lncRNAs in the tan
module.

3.2. Construction of Weighted Gene Coexpression Networks in
the miRNA Dataset. The GSE48959 microarray dataset also
contains miRNA expression data. In total, there were 8 nor-
mal colon biopsy samples and 16 ulcerative colitis colon
biopsy samples (the total patients’ characteristic is shown in
Table S3); we obtained 1067 common miRNAs from the
datasets. Using WGCNA, two modules correlated with
ulcerative colitis progression are detected (Figure 2(a)), of
which 11 hub miRNAs of the brown module were
upregulated and 20 hub miRNAs of the blue module were
downregulated (Table S6), and we noticed that the module
eigengene value also correlated with the disease severity
(Figure 2(b)).

3.3. GO Enrichment and Pathway Analysis of Modules. We
performed pathway and Gene Ontology (GO) enrichment
analyses of the identified hub gene set function in modules.
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Figure 2: miRNA module-trait relationship. (a) A matrix with the miRNA module-trait relationships (correlation coefficients) and
corresponding P values (in brackets) between modules on the y-axis and disease progression traits of multiple datasets on the x-axis. (b)
The relationship between the module eigengene and disease severity: the y-axis represents the module eigengene expression value of the
sample, and the samples are sorted from mild to severe disease status.
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Figure 3: GO enrichment and Reactome pathway analysis for dysregulated gene modules. (a) Bar charts showing the top 5 GO terms for
biological process (BP), cellular component (CC), and molecular function (MF) in four modules (P < 0:05). (b) Pathway crosstalk among
gene-enriched pathways of the turquoise module. Nodes represent pathways, and edges represent crosstalk between pathways.
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The main functions and pathways enriched by the hubs in
these modules are shown. The function enrichment of the
turquoise module was found to participate in inflammation
development (P < 0:05, Figure 3(a)). These genes were
enriched for the Gene Ontology categories related to leuko-
cyte cell adhesion and proliferation, as well as neutrophil
activation and degranulation, and also stimulated for cyto-
kine release and cytokine receptor activity; pathway enrich-
ment demonstrated that hub genes were involved in
inflammation mediated by extracellular matrix (ECM) orga-
nization, leukocyte-cell adhesion, immune response-
activating cell receptor signal, cytokine receptor activity,
etc. (P < 0:05, Figure 3(b)). The blue module showed a signif-
icant decrease in a small molecular catabolic process, micro-
villus organization, and steroid hormone receptor activity.
The green module showed a significant decrease in cell-cell
junction, organic anion transport, and endocytic vesicle
membrane formation. The tan modules showed a significant
decrease in ion channel/transporter activity, lipid metabo-
lism, and biological oxidation (P < 0:05, Figure 3(a)). The
results may indicate that mitochondrial function and various
metabolisms were dysfunctional during the progression. Tis-
sue structure formation and bowel barrier were also dam-
aged, preventing mucosal wound healing and disrupting the
mucus’s protective function layer and contributing to recur-
rent and deterioration of inflammatory stimulation.

3.4. Construction of an Inflammation-Related ceRNA
Network.We identified the turquoise module as significantly
upregulated and mainly related to the inflammation process;
then, we constructed the PPI network-associated turquoise
module’s mRNAs (Figure S1). Based on the ceRNA
hypothesis, we selected the negative interactomes from the
ceRNA network to construct regulatory axes. 23
upregulated hub lncRNAs from the turquoise
lncRNA/mRNA module, 20 downregulated miRNAs from
the blue miRNA module, and 195 upregulated mRNAs in
the PPI network from the turquoise lncRNA/mRNA
module were first screened. The negatively correlated
miRNA-mRNA pairs in the ceRNA network were detected
through synthesizing miRDB, miRTarBase, and TargetScan
validation, and lncRNA-miRNA pairs were detected by
using the DIANA-LncBase v3 database (see Section 2.7).
Finally, a network consisting of 4 lncRNAs, 5 miRNAs, and
52 mRNAs was constructed and visualized (Table 1 and

Figure 4(a)). A diagram of the correlation relationships
between lncRNAs, miRNAs, and mRNAs revealed that all
miRNA expressions significantly correlated with their
targeted lncRNAs and targeted mRNAs in GSE48959
datasets (Figure 4(b)).

3.5. The Correlation of the Disease Progression and the
Abundance of Tissue-Infiltrating Immune Cells. We discuss
the relative abundance of different tissue-infiltrating immune
cell types analyzed by CIBERSORT. The results are listed in
order of severity for the disease (Figure 5(a)). As the disease
progressed, immune cell composition changes as an evolu-
tion of the disease. For better understanding, we analyze
Spearman’s rank correlations between the abundance of
tissue-infiltrating immune cells and severity for the disease
(Figure 5(b)), and the abundance of six subsets of immune
cells (neutrophils, resting NK cell, macrophage M0/M1, acti-
vated dendritic cell, and activated mast cell) was correlated
positively and significantly with the progression. In compar-
ison, five subsets (regulatory T cell, CD8+ T cell, activated
NK cell, macrophage M2, and resting mast cell) were signif-
icantly negatively correlated. In summary, the results showed
that the deterioration of UC is correlated with the infiltration
of the proinflammatory cell.

3.6. The Relationship between the ceRNA Network and
Inflammation. The enrichment showed that the ceRNA net-
work genes were mainly enriched in interleukin family sig-
nals (especially in IL-4 and IL-13 signaling), neutrophil
degranulation, adaptive immunity, cell surface interaction
at the vascular wall, and integrin-cell surface interactions
(Figure 6(a)). We also assessed the correlation between these
expressions of RNAs and tissue-infiltrating immune cells,
and the correlation analysis showed that mRNAs, miRNAs,
and lncRNAs were moderately and highly associated with
most of the UC-related infiltrating immune cells in respective
datasets, in particular neutrophil, macrophage M1, macro-
phage M0, CD8+ T cell, and regulatory T cell (Figures 6(b)
and 6(c)).

3.7. Establish a Severity Detection for the UC Patients Using a
Decision Tree. We established a severity detection model for
detecting disease status based on the gene expression of the
microarray sample and verified the robustness of our model
predictions and inference to assess their suitability for disease

Table 1: ceRNA regulation network of lncRNAs, miRNAs, and mRNAs in UC.

lncRNA miRNA mRNA

AC007750.1 hsa-miR-191-5p
ANGPTL2, ARHGDIB, CD79A, COL1A2, CSGALNACT1, CSGALNACT2, DOK3, FYN, HRH2,
ICAM1, INPP5D, ITGAM, MAP3K3, NCF2, OSMR, P2RY8, PIK3CD, PIP4K2A, PLAU, SOCS3

SH3BP5-AS1
hsa-miR-192-5p
hsa-miR-194-5p
hsa-miR-196a-5p

FBN1, LIMS1, MCAM, MSN, NOD2, PLAU, SEMA4D, THBD, TNFSF13B, FSCN1, LOXL2,
COL1A2, CSGALNACT2, SPARC, CSGALNACT2, CXCR4, CYTIP, IGFBP5, MAP3K3,
MSN, RAC2, ROBO1, SLAMF1, SLC2A3, SOCS3, SRGN, TGFBI, TNC, WIPF1, ATP11A,

FSCN1, COL1A2, CSGALNACT2, FBN1, THBS2, FSTL1, RASGRP1, RASSF5

MIR4435-2HG hsa-miR-196a-5p ATP11A, FSCN1, COL1A2, CSGALNACT2, FBN1, THBS2, FSTL1, RASGRP1, RASSF5

ENTPD1-AS1
hsa-miR-194-5p
hsa-miR-196a-5p

MAP4K4, QKI, MMP2, MMP9, STAT4, ATP11A, FSCN1, COL1A2, CSGALNACT2,
FBN1, THBS2, FSTL1, RASGRP1, RASSF5
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surveillance. Based on the current treatment options for UC,
the therapy plan of moderate-to-severe status is quite similar
(22) (moderate-to-severe ulcerative colitis defined as having
a total Mayo score of 6 to 12 points and Mayo endoscopic
score of 2 to 3). Moreover, patients with inactive and mild
UC are considered to be in remission status. Therefore, we
classified clinical phenotypes into inactive-to-mild or
moderate-severe ulcerative colitis, and the normal control
group was excluded from this model; then, the expressions
of lncRNA in the ceRNA network were treated as diagnosis
variables. The 328 UC samples from GSE73661 and

GSE92415 were first included. To avoid overfitting, we also
detected and filtered out the outlier samples (Figure S2). In
total, 249 moderate-to-severe patients (80.3%) among the
310 colon samples were treated as a training set. GSE75214
and GSE87466 (23) were regarded as the external validation
set. The decision tree model was fitted by the machine
learning method for acquiring the optimized complexity
parameter value (Figure 7(a)). Overall, lncRNA MIR4435-
2HG was selected as the key feature, with a sensitivity of
83.9%, specificity of 83.6%, and balanced accuracy of 83.8%
(Figure 7(b)). There was also a good concordance with
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Figure 4: Construction and correlation analysis of the ceRNA regulatory network. (a) lncRNA-miRNA-mRNA interacted network. The
squares represent the downregulated miRNA, the rhombus represents the upregulated lncRNA, and the circles represent the upregulated
mRNA. (b) The data were visualized by heat map, with a positive correlation in red and a negative correlation in blue. The graduated
color represents the correlation coefficient (ranging from 0, pale colors, to ±1, deep colors). Pearson’s correlation test calculated the
correlation coefficient.
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validation sets GSE75214 and GSE87466 judged by the
model (GSE75214: sensitivity: 93.2%, specificity: 91.3%, and
balanced accuracy: 92.3% and GSE87466: sensitivity: 82.6%,
specificity: 90.5%, and balanced accuracy: 86.6%,
respectively). These are under the ROC in the training set,
validation set GSE75214, and validation set GSE87466
which were 0.84 (95% CI 0.79-0.89), 0.92 (95% CI 0.86-
0.99), and 0.87 (95% CI 0.79-0.94), respectively, which
indicates a good ability to distinguish moderate-to-severe
UC (Figure 7(e)). The results reveal that this model may
provide a gene expression-based disease surveillance of UC.

4. Discussion

In this article, we found that interleukin family-related path-
ways, focal adhesion, and extracellular matrix adhesion
enriched in ceRNA networks are known to play an essential
role in ulcerative colitis in the literature review (24–26).
Interleukin-13 and interleukin-4 are produced by CD4+
Th2 cells, mediating UC through the shared type II
interleukin-4 receptor, as it cooperated with tumor necrosis
factor-alpha (TNF-α) to regulate the expression of genes
responsible for the development of tight junction enteroe-
pithelial cells (27). Verstockt et al. suggested that IL-13Rα2
on epithelial cells contributes to IBD pathology by negatively
regulating goblet cell recovery and epithelial restoration after
injury (28). Blocking IL-13Rα2 might be a promising target
for the IBD therapy, safety data of drugs targeting the IL-13
and IL-4 pathway are reassuring, and there were also a small
number of studies that demonstrated protective effects of IL-
4 pathway inhibition,IL-4 pathways inhibitionrepressed the
proliferation of malignant cells and increased apoptosis in a
mouse model of colorectal cancer. However, several lines of
evidence challenge this safety; Braddock et al. have proven

that IL-13 and IL-4 may have roles in the development of
colorectal cancers (29). Therefore, more research is needed
to eliminate the current disarray in the literature.

We also discovered that the abundance of inflammatory
cells in M0/M1 cells, activated mast cells, neutrophils, and
cd4t cells was significantly positively correlated with the dis-
ease progression. M0/M1 cells are highly related to the dete-
rioration of the disease. Many articles have shown that M1
cells in inflammatory bowel disease are the main cell type
that releases inflammatory factors (30–32). It is known that
LPS and IFN-γ can activate M1 macrophages through the
nuclear factor kappa-B (NF-κB) signaling pathway, produc-
ing the proinflammatory factors IL-1β, IL-6, IL-23, TNF-α
and ROS (33). Thus, M1 macrophages may be the major
inflammatory cell in the early stage of inflammation. The
potential function of mast cells to IBD has been demon-
strated in experimental studies. Albert-Bayo et al.’ reviews
conclude that mast cells play a role in intestinal permeability,
initiation and maintenance of inflammatory processes with
ensuing tissue remodeling and neuropathological stress
(34). Combined with the functional enrichment of those
three downregulated modules, the tissue lipid/small molecu-
lar metabolism level was decreased and tissue and cell struc-
tures were also damaged. It was exacerbating the defective
gut barrier in ulcerative colitis patients. A proinflammatory
cytokine loop overrides anti-inflammatory signals and causes
chronic intestinal inflammation.

Based on the results, a potential ceRNA regulatory axis
fitted well with the ceRNA pattern, and the lncRNA
MIR4435-2HG is highly enriched with several cytokine path-
ways. The massive report indicated that lncRNA MIR4435-
2HG contributes to colorectal cancer development and pre-
dicts poor prognosi. MIR4435-2HG was identified as a
miRNA sponge for TGF-β1 and thus activated TGF-β
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Figure 5: The correlation of disease progression and changes in tissue-infiltrating immune cells. (a) Enrichment scores for 22 tissue-
infiltrating immune cell subpopulations on four gene expression datasets based on deconvolution by CIBERSORT. The results are listed in
order of disease severity assessment (GSE73661, Mayo endoscopic score (MES): 0-3; GSE48959 and GSE75214, disease activity
assessment: normal, inactive UC, active UC; GSE92415, Mayo score: 0-12). (b) A heat map of the Spearman rank correlation coefficient
between the proportion of 19 tissue-infiltrating immune cells and disease characteristics on four gene expression datasets. Asterisks denote
significant correlations after P value corrections (P < 0:05).
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signaling, which indicates that MIR4435-2HG may also play
an inflammation-mediated role. In Dong et al., MIR4435-
2HG was highly expressed in CRC tissue compared to nor-
mal tissues, displaying poor prognosis (35, 36). Overall, the
literature review suggested that MIR4435-2HG knockdown
could suppress CRC cell proliferation, invasion, and migra-
tion. MIR4435-2HG may be a key mediator of both inflam-
matory processes and colorectal cancer generation. In
addition to lncRNAs, miRNAs, as a widely discussed non-
coding RNA, are critical in the ceRNA hypothesis. We found
a complex regulatory network for the above 5 miRNAs, and
the miRNAs have extensively been studied. Mechanisms
involving miRNAs have been shown to take part in various
autoimmune diseases, including IBD. Wu et al. first evalu-
ated the abnormal expression of miRNA miR-192 in the
intestinal tissue of UC patients and decrease TNF-α-induced
MIP-2-α expression, also shown to be profibrotic (37); miR-
192 can inhibit the expression of NOD2, inhibiting innate
immune system activation via the NF-κB pathway, and
inhibit interleukin-8 and CXCL3 messenger RNA expression
(38), indicating that mir-192 might protect colon tissue from
the damage by participating in the inhibition of innate
immune signaling. Another miRNA, mir-194-5p, was con-
firmed to have the specific differential expression of miR-
194 in ulcerative colitis (39), and miR-194 has more attention
on several autoimmune diseases. Tian et al. show that overex-
pression of miR-194 attenuated the release of the proinflam-
matory cytokine TNF-α in PA-activated monocyte THP-1 in

rheumatoid arthritis (40). Another downstreammiRNAmir-
196a is associated with various diseases, including rheuma-
toid arthritis (41) and colorectal cancer (42–44). In the
review about IBD, Ranjha et al. found that miR-196a-2 was
also negatively associated with UC (45). However, Brest
et al. found that the over expression of miR-196 affected the
function of autophagy due to the downregulation of the
immunity-related GTPase family M protein (46). The patho-
genesis of UC and Crohn's disease is considerably distinct
from each other. The dysbiosis and impairment of the epithe-
lial barrier via disruption of tight junctions are strongly
implicated in the pathogenesis of UC (22).Studies evaluating
biological treatments in patients with severe disease and
inadequate response to conventional therapies were remark-
ably cost-effective. We have attempted to use multiple
methods, including the widely used regression model, to
establish a diagnostic prediction model, but high-
throughput microarray data may not be applicable for con-
structing the regression model due to big noise and high
dimensions. This study tested the performance of supervised
machine learning algorithms: Decision Forest Regression
(DFR); disease modeling with DFR has several distinct
advantages; the approach, which automates the feature selec-
tion, efficiently selected the few critical features from the false
signal; and the model has a simple structure based on one
optimal attribute of each split dot. Our decision tree confirms
that lncRNA MIR4435-2HG variables are good predictors.
The goodness of fit assessment suggested that our model fits
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Figure 6: Correlation between the gene of the ceRNA network and inflammatory pathway. (a) Heat map represents an association matrix of
mRNAs in the ceRNA network and Reactome pathway terms. (b) Correlation analysis between the abundance of tissue-infiltrating immune
cells and the expression of lncRNAs/mRNAs in respective datasets. Asterisks denote significant correlations after P value corrections
(P < 0:05). (c) Correlation analysis between the abundance of tissue-infiltrating immune cells and the expression of miRNAs in respective
datasets. Asterisks denote significant correlations after P value corrections (P < 0:05).
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Figure 7: Continued.
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well with the data. The accuracy of the decision tree is also
relatively high.

This article addresses several limitations in this literature.
First, it is unfeasible for a current database to include all
RNA-RNA interaction information. Hence, some of the
potential interactomes may not be included in our network,
and some critical regulatory RNAs might be lost of the anno-
tations. Second, despite the progress in developing the
ceRNA network, the hypothesis still lacks conclusive evi-
dence. Most of the active miRNAs were not readily affected
by ceRNA. The natural conditions in cells are difficult to con-
trol, and it is easy to overexpress genes artificially, which can-
not mimic the normal ceRNA effects in the body.

Moreover, there are not many prediction tools currently
available. Third, most of the miRNA-mRNA predicted data-

sets are based on 3′UTR sequences, which have certain lim-
itations. An accumulating amount of evidence indicates
that lncRNAs play an important role in biological functions
through multiple regulation levels, which involve transcrip-
tional, posttranscriptional, and epigenetic regulation.

5. Conclusions

Our work combined four microarray data from the GEO
database and identified potential inflammatory gene-related
ceRNA network regulatory axes dysregulated during UC
progression. We speculate that the lncRNA-miRNA-mRNA
regulatory axes may depend on the interaction among
tissue-infiltrating immune cells, including neutrophil, mac-
rophage M0/M1, CD8+ T cell, and regulatory T cell. These
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Figure 7: Establishment of a severity detection for the UC patients using a decision tree. (a) Decision tree (the normalized MIR4435-2HG
expression values are shown, and all gene expressions were standardized during the calculation). (b) Confusion matrix for the training
dataset. (c) Confusion matrix for the validation set GSE75214. (d) Confusion matrix for the validation set GSE87466. (e) ROC curve of the
model for the training set and two validation sets. The vertical axis represents sensitivity, and the horizontal axis represents specificity.
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RNAs play a crucial role in inflammatory stimulation and its
abnormal behavior in UC, as reported. The network and its
potential function obtained from the bioinformatics analysis
can be examined by future experimental studies.
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