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Objective. To investigate the genetic crosstalk mechanisms that link periodontitis and Alzheimer’s disease (AD). Background.
Periodontitis, a common oral infectious disease, is associated with Alzheimer’s disease (AD) and considered a putative
contributory factor to its progression. However, a comprehensive investigation of potential shared genetic mechanisms between
these diseases has not yet been reported. Methods. Gene expression datasets related to periodontitis were downloaded from the
Gene Expression Omnibus (GEO) database, and differential expression analysis was performed to identify differentially
expressed genes (DEGs). Genes associated with AD were downloaded from the DisGeNET database. Overlapping genes among
the DEGs in periodontitis and the AD-related genes were defined as crosstalk genes between periodontitis and AD. The Boruta
algorithm was applied to perform feature selection from these crosstalk genes, and representative crosstalk genes were thus
obtained. In addition, a support vector machine (SVM) model was constructed by using the scikit-learn algorithm in Python.
Next, the crosstalk gene-TF network and crosstalk gene-DEP (differentially expressed pathway) network were each constructed.
As a final step, shared genes among the crosstalk genes and periodontitis-related genes in DisGeNET were identified and
denoted as the core crosstalk genes. Results. Four datasets (GSE23586, GSE16134, GSE10334, and GSE79705) pertaining to
periodontitis were included in the analysis. A total of 48 representative crosstalk genes were identified by using the Boruta
algorithm. Three TFs (FOS, MEF2C, and USF2) and several pathways (i.e., JAK-STAT, MAPK, NF-kappa B, and natural killer
cell-mediated cytotoxicity) were identified as regulators of these crosstalk genes. Among these 48 crosstalk genes and the chronic
periodontitis-related genes in DisGeNET, C4A, C4B, CXCL12, FCGR3A, IL1B, and MMP3 were shared and identified as the most
pivotal candidate links between periodontitis and AD. Conclusions. Exploration of available transcriptomic datasets revealed C4A,
C4B, CXCL12, FCGR3A, IL1B, and MMP3 as the top candidate molecular linkage genes between periodontitis and AD.
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1. Introduction

An association between periodontitis and Alzheimer’s dis-
ease (AD) has been demonstrated, and periodontitis report-
edly confers risk for the incidence and progression of
Alzheimer’s disease (AD) [1, 2]. Alzheimer’s disease is a
neurodegenerative disease characterized by the formation of
amyloid-β peptide (AβP) plaques and intraneuronal neurofi-
brillary tangles (NFTs), which drives neuroinflammation in
the brain [3]. Periodontitis, a chronic, immunoinflammatory
disease affecting supporting structures of teeth, is multifacto-
rial in nature, driven by polymicrobial dysbiosis and unfavor-
able shifts in the plaque biofilm composition, which disrupts
the host-microbial homeostasis [4, 5]. Inflammation is con-
sidered the key connecting link between both these diseases
[6]. Two purported mechanistic links have been highlighted.
First, proinflammatory mediators including specific cyto-
kines or chemokines in the periodontal milieu that enter sys-
temic circulation impose a systemic inflammatory burden,
propagating inflammatory responses by microglial cells in
the brain [6]. Second, periodontal pathogens may directly
enter the brain via blood circulation or peripheral nerves, as
evidenced by the discovery of the keystone periodontal
pathogen Porphyromonas gingivalis (Pg) in AD patients’
brains [7, 8].

At the same time, genetic susceptibility and gene dysreg-
ulation have been identified in the context of both AD and
periodontitis. In AD, frequently reported dysregulated genes
include amyloid-beta precursor protein (APP), presenilin 1
(PSEN1), and presenilin 2 (PSEN2), apolipoproteins, and
lipid homeostasis, genes involved in endocytosis, and
membrane-spanning 4 (MS4) family [9]. In periodontitis,
aberrant genes highlighted include interleukin-1, interleu-
kin-6, interleukin-10, transforming growth factor-beta
(TGF-β), tumor necrosis factor-α (TNF-α), interferon-
gamma (IFN-γ), and matrix metalloproteinases (MMPs)
among others [10]. It is plausible that gene dysregulation in
periodontitis could contribute to its association with AD,
and crosstalk genes may biologically link AD and periodon-
titis serving as either shared susceptibility factors or molecu-
lar links.

Here, we designed a bioinformatic study of existing
experimental datasets to understand putative molecular links
between periodontitis and Alzheimer’s disease by identifying
crosstalk genes, transcription factors, and signaling pathways
involved in both disorders. The molecular mechanisms iden-
tified through this approach could suggest potential thera-
peutic targets particularly relevant to drug development and
personalized medicine approaches.

2. Materials and Methods

2.1. Study Design. Figure 1 depicts a flowchart outlining the
study workflow. DEGs dysregulated in periodontitis- and
AD-related genes were obtained from the GEO database
and DisGeNET database, respectively. Crosstalk genes link-
ing periodontitis and AD were identified as the AD-related
genes that overlapped with significantly up- or downregu-
lated DEGs in periodontitis. Thereafter, feature selection

from the crosstalk genes was performed using a conventional
recursive feature elimination (RFE) algorithm and the Boruta
algorithm. The crosstalk genes obtained by feature selection
were used to construct two networks to identify the tran-
scription factors and the differentially expressed pathways
that target these crosstalk genes. In the next step, “core”
crosstalk genes were identified as the crosstalk genes obtained
by feature selection that were overlapping with chronic
periodontitis-related genes in the DisGeNET database.

2.2. Procurement of Periodontitis-Related Datasets. Sample-
matched whole-genome gene expression datasets from peri-
odontitis were sourced and downloaded from the NCBI Gene
Expression Omnibus (GEO). The eligibility criteria for these
datasets were as follows: datasets that included established
periodontitis samples as the experimental group and
healthy gingival samples as the control group, where peri-
odontitis was defined based in accordance with the case
definition presented in the 2017 World Workshop: (1)
interdental CAL detectable at ≥2 nonadjacent teeth or (2)
buccal or oral CAL ≥ 3mm with pocketing >3mm detect-
able at ≥2 teeth [11].

2.3. Differential Gene Expression Analysis. Differential gene
expression analysis of periodontitis-related datasets was car-
ried out using the Linear Models for Microarray (limma)
package [12] in the R project (version 3.0.1, http://www.r-
project.org/) [13]. Three such datasets, GSE23586,
GSE16134, and GSE10334, were sourced and analyzed.
Genes with p value < 0.05 and ∣logFC ðfold changeÞ ∣ ≥1 were
regarded as significant differentially expressed genes (DEGs).
For another dataset, GSE79705, the screening range of DEGs
was broadened by extending the thresholds and settings to p
value < 0.05 and ∣logFC ∣ >0 as DEGs.

Next, a Venn diagram (http://bioinformatics.psb.ugent
.be/webtools/Venn/) was drawn to identify shared genes
within the DEGs identified from the four datasets. The com-
mon up/downregulated DEGs in four datasets were used for
the following analyses, and DEGs that were not common to
all the datasets were excluded.

2.4. Functional Enrichment Analysis. Functional enrichment
analysis of up/downregulated periodontitis-related DEGs
was performed with DAVID (Database for Annotation,
Visualization and Integrated Discovery, v6.8) [14, 15].
p < 0:05 was set as the threshold. GO (Gene Ontology) and
pathway enrichment analysis of the identified DEGs was
performed [16, 17].

2.5. Construction of the Protein-Protein Interaction Network
of Periodontitis-Related DEGs. 280,826 PPI (protein-protein
interaction) pairs including 19,610 genes were downloaded
from HPRD (Human Protein Reference Database) [18], Bio-
GRID (Biological General Repository for Interaction Data-
sets) [19], DIP (Database of Interacting Proteins) [20],
MINT (Molecular INTeraction database) [21], PINA
(Protein Interaction Network Analysis) [22], InnateDB (a
knowledge resource for innate immunity interactions and
pathways) [23], and INstruct (3D protein interactome net-
works with structural resolution) [24]. The Cytoscape
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platform was used to visualize the network derived from PPI
pairs of DEGs and conduct a topological analysis [25].

2.6. Identification of Crosstalk Genes and Construction of the
Crosstalk Gene-Related PPI Network. AD-related genes were
downloaded from the DisGeNET database [26]. The AD-
related genes that overlapped with the up- and downregu-
lated periodontitis-related DEGs were identified. These over-
lapping genes were regarded as “crosstalk” genes linking AD
and periodontitis and further used for constructing a cross-
talk gene-related PPI network. The crosstalk gene-related
PPI network consisted of four types of nodes, namely, (1)
DEGs dysregulated in periodontitis (not related to AD), (2)
crosstalk genes or AD-related genes which were also DEGs
dysregulated in periodontitis, (3) AD-related genes (not dys-
regulated in periodontitis), and (4) other genes (neither
related to AD nor dysregulated in periodontitis).

2.7. Feature Selection from Crosstalk Genes. Since GSE16134
had the largest sample size among the periodontitis-related
datasets, it was used as the test set. The other three datasets
(GSE23586, GSE10334, and GSE79705) were used as valida-
tion sets. Firstly, expression values of the crosstalk genes
(identified in the previous step) from GSE16134 were used
as input for the Boruta algorithm in the R project [27] and

the conventional recursive feature elimination (RFE) algo-
rithm [28] and feature selection was performed. Each gene
was regarded as a feature.

2.8. Support Vector Machine (SVM) Modeling Using Feature-
Selected Crosstalk Genes. The expression values in GSE16134
and GSE10334 were scale-standardized. Next, it was exam-
ined if the crosstalk genes obtained by feature selection were
found in the four periodontitis-related datasets (i.e.,
GSE23586, GSE16134, GSE10334, and GSE79705). The gene
expression values of these feature selection-obtained cross-
talk genes were extracted from these datasets. If the number
of expression profile genes in a certain dataset after extrac-
tion was lower than the number of feature selection-
obtained crosstalk genes, the expression values of the missing
genes were considered missing values and represented by the
NA symbol. The missing values were processed by using the
DMwR package [29] in R, and the K-Nearest Neighbors
(KNN) algorithm was used to impute these missing values
(NA) in that dataset. By imputing these missing values, all
the four periodontitis-related datasets presented all the fea-
ture selection-obtained crosstalk genes. Thereafter, the
scikit-learn package [30] was used to perform a grid search,
and the best hyperparameters of a support vector machine
(SVM) model were found by using 5-fold cross-validation
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Figure 1: Flowchart depicting study workflow.
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(CV) [31]. A SVM classifier model was established by using
data from GSE16134 as the training set and test set, where
the samples of the GSE16134 dataset were split into
60% : 40% for the training set and test set, respectively. Data
from the other three datasets (GSE23586, GSE10334, and
GSE79705) were used as the validation set. The decision
function method was used to obtain the score for each sam-
ple. Next, receiver operating characteristic (ROC) curves for
the four datasets were generated by using the pROC package
and displayed using the ggplot2 package in R.

2.9. Targeting Relationships between Transcription Factors
(TFs) and Crosstalk Genes. Transcription factor- (TF-) target
gene regulation pairs were obtained and downloaded from
TRRUST [32], cGRNB [33], HTRIdb [34], ORTI [35], and
TRANSFAC [36] databases. The TF-target gene interaction
pairs corresponding to the feature selection-obtained cross-
talk genes were extracted and used for constructing a TF-
target gene interaction network with visualization using
Cytoscape software [37].

2.10. Pathway Analysis of the Crosstalk Genes. Human data
describing relationships between signaling pathways and
genes were downloaded from the KEGG database, and all
pathways related to the feature selection-obtained crosstalk
genes were extracted. The expression levels of these crosstalk
gene-related pathways were plotted as a heatmap, and differ-
ential expression analysis was performed and applied to the

four periodontitis-related datasets to identify the DEPs (dif-
ferentially expressed pathways) using the R package limma.
For the three datasets (GSE23586, GSE16134, and
GSE79705), the pathways with p value < 0.05 and ∣logFC ∣ ≥
1 were regarded as differentially expressed pathways (DEPs),
while for the dataset GSE79705, the pathways with p value <
0.05 and ∣log FC ∣ >0 were regarded as DEPs.

2.11. Classification Performance of the Core Crosstalk Genes.
The genes related to periodontitis were downloaded from
the DisGeNET database [26]. The overlap between the
periodontitis-related genes obtained from the DisGeNET
database and the feature selection-obtained crosstalk genes
was analyzed, and the overlapping genes were termed core
crosstalk genes. The corresponding expression values of these
overlapping genes in the four periodontitis-related datasets
were obtained, and ROC curves were drawn.

3. Results

3.1. Included Periodontitis-Related Datasets. Four datasets
pertaining to periodontitis (i.e., GSE23586, GSE16134,
GSE10334, and GSE79705) were included and analyzed.
Table 1 provides key details regarding the included datasets.

3.2. Identification of Periodontitis-Related DEGs and Their
Functions. Table 2 shows the number of up- and downregu-
lated DEGs that were identified in each of the four datasets.

Table 1: Details of the included periodontitis-related GEO datasets.

Included four
datasets

Type of
periodontitis

Experimental
platform

Number of
examined
genes

Number of
inflamed
gingival

tissue samples

Number of
healthy
control
samples

Number of
total samples

GSE23586
3 patients with severe
chronic periodontitis

GPL570 23,518 3 3 6

GSE16134

120 patients (65 with
chronic periodontitis
and 55 with aggressive

periodontitis)

GPL570 24,441 241 69 310

GSE10334
63 with chronic periodontitis

and 27 with aggressive
periodontitis

GPL570 24,441 183 64 247

GSE79705

Generalized aggressive
periodontitis (GAgP):

n = 4; chronic
periodontitis (CP): n = 4

GPL18734 19,305 8 4 12

Table 2: The number of up/downregulated DEGs identified in the four periodontitis-related datasets GSE23586, GSE16134, GSE10334, and
GSE79705 at thresholds set for defining DEGs.

Data
Number of

upregulated DEGs
Number of

downregulated DEGs
Number of total

DEGs
∣log 2 FC ∣ p

value
Expression scale (if the data

normalization was performed)

GSE23586 7 69 76 >1 <0.05 True

GSE16134 188 48 236 >1 <0.05 False

GSE10334 152 42 194 >1 <0.05 False

GSE79705 219 291 510 >0 <0.05 True
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Figure 2: Venn diagram showing the overlap between DEGs identified in the four periodontitis-related datasets.
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Figure 2 depicts a Venn diagram showing the overlap of
DEGs identified from the four datasets. A total of 816 DEGs
including 405 upregulated genes and 411 downregulated genes
were used for the following analyses. Figure 3 shows the bio-
logical processes and signaling pathways in which the up-
and downregulated DEGs were significantly enriched.

3.3. The Hub Genes Identified by the Periodontitis-Related
PPI Network. Figure 4 depicts a PPI network based on the
periodontitis-related DEGs, and Table 3 shows the topologi-
cal characteristics of the top 30 nodes in the PPI network. As
seen in Table 3, several genes with the highest degree were
identified as hub genes. These upregulated DEGs included
SMAD3, TRIM27, VIM, YWHAH, and FOS, and downregu-
lated DEGs included MYC, HSPB1, DDB1, RPS3, KAT5,
SMARCA4, RPL13, and PLCG1.

3.4. Crosstalk Genes Bridging Alzheimer’s Disease and
Periodontitis. In total, 51 upregulated crosstalk genes and
41 downregulated crosstalk genes were identified and are
listed in Table 4. The crosstalk gene-related PPI network as
shown in Figure 5 consisted of 3496 nodes and 5141 edges.
The topological characteristics of the top 30 nodes in this net-
work are presented in Table 5. Hub crosstalk genes with the
highest degree included MYC, HSPB1, VIM, KAT5, RPL13,
FOS, and CDH1.

3.5. Crosstalk Genes Obtained by Feature Selection. A total of
48 crosstalk genes were selected by using the Boruta algo-
rithm (Figure 6(a)). In addition, 62 crosstalk genes were
selected by using the RFE algorithm (Figure 6(b)). All 48
genes obtained by using the Boruta algorithm were included
in the 62 genes obtained by the RFE algorithm, indicating
that this 48-gene set was representative of the characteristics
of all 92 crosstalk genes.

3.6. Classification Accuracy Using the Feature Selection-
Obtained Crosstalk Genes. The 48 genes obtained by SVM
feature selection were not shown in all of the four
periodontitis-related datasets. The gene expression profiles
of GSE16134 and GSE10334 included all of the 48 crosstalk
genes, whereas GSE23586 included 44 crosstalk genes and
GSE79705 included 45 crosstalk genes. The classification
performance of these 48 crosstalk genes for the four datasets
is shown in Table 6. For the test set GSE16134 and the valida-
tion set GSE10334, the accuracy performance was high at
91.94% and 88.26%, respectively. By comparison, the perfor-
mance for the other two datasets GSE23586 and GSE79705
was low at 50% and 66.66%, respectively.

3.7. ROC Curves for the Four Periodontitis-Related Datasets.
As shown in Figure 7, the AUC (area under the curve) values
for the GSE16134 test set and the GSE10334 validation set
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were high at 95.77% and 90.53%, respectively, congruent
with the results in Table 6. It was thus inferred that the clas-
sifier performance was adequate only when the sample sizes
of the validation sets were similar to those of the training
and test datasets, and therefore, poor performance was noted
for GSE23586 and GSE79705 having much lower sample
numbers.

3.8. The Identification of Transcription Factors Regulating the
Crosstalk Genes. As shown in Figure 8, the TF-crosstalk gene
target network consisted of 388 nodes and 1178 edges. Sev-
eral transcription factors which were also DEGs played criti-
cal roles by regulating the most number of crosstalk genes,
for example, FOS, MEF2C, and USF2 (Table 7).

3.9. Signaling Pathways Enriched in the Crosstalk Genes.
From the 48 feature selection-obtained crosstalk genes, 37
crosstalk genes were found among gene-pathway interaction
pair data in the KEGG database. 137 KEGG pathways corre-

sponded to these 37 crosstalk genes. Figure 9 shows the
expression values of these 137 pathways in the four
periodontitis-related datasets.

The numbers of crosstalk gene-related DEPs obtained
from each of the four periodontitis-related datasets are listed
in Table 8. The interaction relationships between crosstalk
genes and DEPs are depicted in Figure 10, showing that sev-
eral DEPs were dysregulated in at least two datasets, includ-
ing cytokine-related pathways (cytokine-cytokine receptor
interaction, chemokine, and IL-17), immune cell-related
pathways (T cell receptor, B cell receptor, Th1 and Th2 cell
differentiation, Th17 cell differentiation, natural killer cell-
mediated cytotoxicity, and osteoclast differentiation), JAK-
STAT signaling, NOD-like receptor signaling, MAPK
signaling, Toll-like receptor signaling, NF-kappa B signaling,
and C-type lectin receptor signaling.

3.10. The Identification of Core Crosstalk Genes. Among the
48 feature selection-obtained crosstalk genes and

Table 3: Topological characteristics of the top 30 nodes in the periodontitis-related PPI network, ranked in descending order of degree.

Node Label Degree
Average shortest path

length
Betweenness
centrality

Closeness
centrality

Clustering
coefficient

Topological
coefficient

MYC DEG_down 1027 2.432727 0.177217 0.411061 0.001896 0.002805

HSPB1 DEG_down 433 2.638061 0.059908 0.379066 0.00278 0.005213

SMAD3 DEG_up 396 2.667636 0.052167 0.374864 0.004283 0.005425

UBC 395 2.112 0.241673 0.473485 0.004524 0.007004

TRIM27 DEG_up 334 2.864727 0.046792 0.349073 0.000791 0.006306

VIM DEG_up 320 2.705212 0.037607 0.369657 0.005251 0.007619

YWHAH DEG_up 282 2.838788 0.034115 0.352263 0.001868 0.00865

DDB1 DEG_down 276 2.76497 0.029677 0.361668 0.003531 0.008012

RPS3 DEG_down 275 2.844848 0.015036 0.351513 0.019323 0.014779

KAT5 DEG_down 245 2.717697 0.028224 0.367959 0.00716 0.007732

SMARCA4 DEG_down 242 2.715758 0.021646 0.368221 0.010116 0.008636

RPL13 DEG_down 234 2.755152 0.015773 0.362956 0.024541 0.011238

PLCG1 DEG_down 227 2.885091 0.030011 0.34661 0.002144 0.009614

FOS DEG_up 226 2.880727 0.024538 0.347135 0.003265 0.009974

AP2M1 DEG_down 214 2.850182 0.025582 0.350855 0.007635 0.010848

SF3B3 DEG_down 203 2.765576 0.015188 0.361588 0.014583 0.010661

TP53RK DEG_up 200 2.871394 0.013972 0.348263 0.01608 0.012798

MMS19 DEG_down 195 2.806909 0.022335 0.356264 0.004705 0.008763

RPS7 DEG_down 193 2.88303 0.008126 0.346857 0.028335 0.016367

MEPCE DEG_down 189 2.905212 0.0145 0.344209 0.005066 0.012337

TUBB4B DEG_down 173 2.880364 0.008167 0.347178 0.007595 0.019412

CDH1 DEG_down 171 2.888485 0.016186 0.346202 0.005848 0.011775

EZR DEG_down 170 2.906667 0.016295 0.344037 0.004107 0.01554

DDX41 DEG_down 168 2.950061 0.009545 0.338976 0.007057 0.017509

NUDC DEG_up 160 2.943758 0.016886 0.339702 0.00283 0.013954

SF3A2 DEG_down 156 2.949818 0.009075 0.339004 0.009926 0.01593

RPL27 DEG_down 147 2.912727 0.003949 0.343321 0.043985 0.020057

NIFK DEG_up 145 3.107879 0.011111 0.321763 0.010345 0.016053

SRPRB DEG_up 143 2.945333 0.017545 0.33952 0.001674 0.015983

ATP1A1 DEG_up 140 2.816606 0.011269 0.355037 0.009147 0.013032
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Table 4: The 51 crosstalk genes that were upregulated and 41 crosstalk genes which were downregulated in periodontitis.

Regulation pattern in periodontitis Crosstalk genes linking periodontitis and Alzheimer’s disease

Upregulated

AMIGO1 (adhesion molecule with Ig-like domain 1; gene ID: 57463)
ARG2 (arginase 2; gene ID: 384)

BDKRB2 (bradykinin receptor B2; gene ID: 624)
BRI3 (brain protein I3; gene ID: 25798)

C1D (C1D nuclear receptor corepressor; gene ID: 10438)
C3 (complement C3; gene ID: 718)

C4A (complement C4A (Rodgers blood group); gene ID: 720)
C4B (complement C4B; gene ID: 721)

C4B_2 (complement component 4B (Chido blood group), copy 2; gene ID: 100293534)
CASP7 (caspase 7; gene ID: 840)

CD177 (CD177 molecule; gene ID: 57126)
CD38 (CD38 molecule; gene ID: 952)

CHCHD10 (coiled-coil-helix-coiled-coil-helix domain containing 10; gene ID: 400916)
COX8A (cytochrome c oxidase subunit 8A; gene ID: 1351)

CSF3 (colony-stimulating factor 3; gene ID: 1440)
CTGF (cellular communication network factor 2; gene ID: 1490)

CTSS (cathepsin S; gene ID: 1520)
CXCL1 (C-X-C motif chemokine ligand 1; gene ID: 2919)
CXCL12 (C-X-C motif chemokine ligand 12; gene ID: 6387)
CXCL8 (C-X-C motif chemokine ligand 8; gene ID: 3576)
CXCR4 (C-X-C motif chemokine receptor 4; gene ID: 7842)

ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; gene ID: 5168)
FCGR3A (Fc fragment of IgG receptor IIIa; gene ID: 2214)
FCGR3B (Fc fragment of IgG receptor IIIb; gene ID: 2215)
FHL2 (four and a half LIM domains 2; gene ID: 2274)

FOS (Fos proto-oncogene, AP-1 transcription factor subunit; gene ID: 2353)
FOXO1 (forkhead box O1; gene ID: 2308)

GSTK1 (glutathione S-transferase kappa 1; gene ID: 373156)
GSTO1 (glutathione S-transferase omega 1; gene ID: 9446)

HCLS1 (hematopoietic cell-specific Lyn substrate 1; gene ID: 3059)
IGFBP7 (insulin-like growth factor binding protein 7; gene ID: 3490)

IL1B (interleukin-1 beta; gene ID: 3553)
LYZ (lysozyme; gene ID: 4069)

MAK16 (MAK16 homolog; gene ID: 84549)
MEF2C (myocyte-specific enhancer factor 2C; gene ID: 4208)

MME (membrane metalloendopeptidase; gene ID: 4311)
MMP1 (matrix metallopeptidase 1; gene ID: 4312)
MMP3 (matrix metallopeptidase 3; gene ID: 4314)

MS4A1 (membrane-spanning 4-domains A1; gene ID: 931)
MSRA (methionine sulfoxide reductase A; gene ID: 4482)

MZB1 (marginal zone B and B1 cell-specific protein; gene ID: 51237)
NDUFB8 (NADH:ubiquinone oxidoreductase subunit B8; gene ID: 4714)
PECAM1 (platelet endothelial cell adhesion molecule 1; gene ID: 5175)

PLAT (plasminogen activator, tissue type; gene ID: 5327)
PSENEN (presenilin enhancer, gamma-secretase subunit; gene ID: 55851)
SEL1L (SEL1L adaptor subunit of ERAD E3 ubiquitin ligase; gene ID: 6400)

SERPINI1 (serpin family I member 1; gene ID: 5274)
ST6GAL1 (ST6 beta-galactoside alpha-2,6-sialyltransferase 1; gene ID: 6480)

VCAN (versican; gene ID: 1462)
VIM (vimentin; gene ID: 7431)

WARS2 (tryptophanyl tRNA synthetase 2, mitochondrial; gene ID: 10352)

Downregulated

ABCA12 (ATP binding cassette subfamily A member 12; gene ID: 26154)
ACE (angiotensin I converting enzyme; gene ID: 1636)

ADRB1 (adrenoceptor beta 1; gene ID: 153)
BCL2L2 (BCL2-like 2; gene ID: 599)

BRSK1 (BR serine/threonine kinase 1; gene ID: 84446)
CALML5 (calmodulin-like 5; gene ID: 51806)

CALR (calreticulin; gene ID: 811)
CD36 (CD36 molecule; gene ID: 948)
CDH1 (cadherin 1; gene ID: 999)

CDK5R1 (cyclin-dependent kinase 5 regulatory subunit 1; gene ID: 8851)
CTDSP2 (CTD small phosphatase 2; gene ID: 10106)
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periodontitis-related genes in the DisGeNET database, 12
common genes were identified as core crosstalk genes includ-
ing C3, C4A, C4B, CXCL12, FCGR3A, FCGR3B, HSPB1,
IL1B, MME, MMP3, PLAT, and VEGFA (Table 9). Among
these 12 genes, 6 genes, C4A, C4B, CXCL12, FCGR3A,
IL1B, and MMP3, were found associated with chronic
periodontitis.

Figure 11 shows ROC curves for the 6 chronic
periodontitis-related genes for each of the four datasets. An
AUC value of more than 80% was presented by three genes,
C4A, C4B, and CXCL12, for the dataset GSE10334, 5 genes,
C4A, C4B, CXCL12, FCGR3A, and IL1B, for GSE16134, 3
genes, CXCL12, IL1B, and MMP3, for GSE23586, and all 6
genes for GSE79705. The 3 genes, C4A, C4B, and CXCL1,
had the highest classification accuracy when the datasets with
small samples (GSE23586 and GSE79705) were not
considered.

4. Discussion

The present study addressed shared genetic mechanisms and
molecular links between periodontitis and Alzheimer’s dis-
eases by identifying gene expression, signaling pathways,
and TFs that were most robustly associated with both these
diseases. These findings are largely substantiated by preexist-
ing experimental data.

Table 4: Continued.

Regulation pattern in periodontitis Crosstalk genes linking periodontitis and Alzheimer’s disease

DNM1 (dynamin 1; gene ID: 1759)
DSG1 (desmoglein 1; gene ID: 1828)

FLG (filaggrin; gene ID: 2312)
GJA1 (gap junction protein alpha 1; gene ID: 2697)

GRHL3 (grainyhead-like transcription factor 3; gene ID: 57822)
GRIN3B (glutamate ionotropic receptor NMDA type subunit 3B; gene ID: 116444)

HM13 (histocompatibility minor 13; gene ID: 81502)
HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase; gene ID: 3156)
HSPB1 (heat shock protein family B (small) member 1; gene ID: 3315)

KAT5 (lysine acetyltransferase 5; gene ID: 10524)
MAP3K12 (mitogen-activated protein kinase kinase kinase 12; gene ID: 7786)

MED12 (mediator complex subunit 12; gene ID: 9968)
MFN2 (mitofusin 2; gene ID: 9927)

MYC (MYC proto-oncogene, bHLH transcription factor; gene ID: 4609)
NEFL (neurofilament light; gene ID: 4747)

NES (exportin 1; gene ID: 7514)
NGF (nerve growth factor; gene ID: 4803)

NOS3 (nitric oxide synthase 3; gene ID: 4846)
NPTXR (neuronal pentraxin receptor; gene ID: 23467)

PLXNA3 (plexin A3; gene ID: 55558)
PPIL2 (peptidylprolyl isomerase-like 2; gene ID: 23759)

PTGS1 (prostaglandin-endoperoxide synthase 1; gene ID: 5742)
RPL13 (ribosomal protein L13; gene ID: 6137)

SCIMP (SLP adaptor and CSK interacting membrane protein; gene ID: 388325)
SPPL2B (signal peptide peptidase-like 2B; gene ID: 56928)

TIAF1 (TGFB1-induced antiapoptotic factor 1; gene ID: 9220)
TP73 (tumor protein P73; gene ID: 7161)

TYRP1 (tyrosinase-related protein 1; gene ID: 7306)
USF2 (upstream transcription factor 2, C-Fos interacting; gene ID: 7392)

VEGFA (vascular endothelial growth factor A; gene ID: 7422)

VIM

HSPB1

MYC

UBC

KAT5
RPL13 TP73

CDH1

CALR

NTRK1

APPSMAD3

MAPK7

MME

GSTK1

FOS

FHL2

DEG_ad_up DEG_down
AD

Other_gene

DEG_up

DEG_ad_up

Figure 5: The crosstalk gene-related PPI network.
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Six genes C4A, C4B, CXCL12, FCGR3A, IL1B, and
MMP3 were identified as the most significant crosstalk genes
linking chronic periodontitis and Alzheimer’s disease. C4B
and C4A, respectively, encode the basic and acidic forms of
the complement factor 4, and C4 gene deficiency has been
noted to predispose the development of severe chronic peri-
odontitis [38]. In AD, the expression levels of C4 mRNA
were shown to be 3.27-fold increased in temporal cortex sam-
ples as compared to controls [39]. The CXCL12 (C-X-C
motif chemokine ligand 12) gene is the ligand of the C-X-C
motif chemokine receptor 4 (CXCR4). CXCL12 expression
in the gingival crevicular fluid of periodontitis patients was
shown to be significantly higher than that of healthy subjects,
suggesting that it might play a role in enhancing neutrophil
migration and further the progression of periodontitis [40].
A decreased level of CXCL12 in Alzheimer’s disease has been
documented as affecting cognitive function, impairing learn-
ing and memory [41]. FCGR3A (Fc fragment of IgG receptor
IIIa) encodes a receptor for the Fc portion of immunoglobu-

lin G, and FCGR3A polymorphisms are shown to confer sus-
ceptibility to periodontitis in Caucasians [42]. In AD, the Fc
gamma receptor (FcγR) was recently found to exacerbate
neurodegeneration [43]. Cytokines are considered a primary
link between chronic periodontitis and Alzheimer’s disease
as they can enter systemic circulation through periodontal
pockets [6]. The classical proinflammatory cytokine, IL1B,
is elevated in periodontitis and can induce resorption of
alveolar bone [44]. In AD, IL1B gene polymorphisms are
linked to disease susceptibility [45]. MMP3 (matrix metallo-
proteinase 3) is implicated in the progression of chronic
periodontitis and can degrade the periodontal tissue matrix
[46]. Elevated brain levels of MMP3 have been associated
with the duration of Alzheimer’s disease, and it has been
found to increase the activity of MMP9, thereby indirectly
promoting aggregation and cerebral accumulation of tau
deposits [47].

More interestingly, the six genes discussed in the last par-
agraph were also found to be the molecular crosstalks in

Table 5: Topological characteristics of the top 30 nodes in the crosstalk gene-related PPI network, ranked in descending order of degree.

Node Label Degree
Average shortest path

length
Betweenness
centrality

Closeness
centrality

Clustering
coefficient

Topological
coefficient

MYC DEG_AD_down 1027 2.127525 0.466698 0.47003 5:03E − 04 0.001842

HSPB1 DEG_AD_down 433 2.36959 0.184598 0.422014 0.001636 0.003351

VIM DEG_AD_up 320 2.663301 0.116611 0.375474 0.001763 0.005783

KAT5 DEG_AD_down 245 2.566359 0.089476 0.389657 0.003011 0.005621

RPL13 DEG_AD_down 234 2.589729 0.089708 0.386141 0.001394 0.005672

FOS DEG_AD_up 226 2.883151 0.083642 0.346843 1:97E − 04 0.017606

CDH1 DEG_AD_down 171 2.93191 0.058428 0.341075 0 0.025911

TP73 DEG_AD_down 137 2.61483 0.046781 0.382434 0.006333 0.009173

FHL2 DEG_AD_up 136 2.641085 0.057192 0.378632 0.004031 0.00889

CALR DEG_AD_down 135 2.812464 0.046142 0.35556 0.002764 0.010949

GSTK1 DEG_AD_up 111 2.988459 0.035152 0.334621 0 0.026289

MME DEG_AD_up 104 2.836988 0.040386 0.352487 0.001307 0.011694

MED12 DEG_AD_down 91 2.695615 0.030682 0.370973 0.006105 0.012517

CASP7 DEG_AD_up 90 2.901039 0.027131 0.344704 0.005243 0.015603

DNM1 DEG_AD_down 84 2.960185 0.029086 0.337817 0.001147 0.023716

FOXO1 DEG_AD_up 67 2.977784 0.017403 0.33582 0.004071 0.026586

CXCR4 DEG_AD_up 65 2.998557 0.020851 0.333494 0.003846 0.028808

NOS3 DEG_AD_down 62 2.963647 0.018786 0.337422 0.002644 0.027957

NDUFB8 DEG_AD_up 56 3.042412 0.02136 0.328687 0 0.027447

UBC Other gene 53 2.084824 0.149265 0.479657 0.015965 0.027336

NES DEG_AD_down 53 2.920946 0.017012 0.342355 0.007983 0.022954

CDK5R1 DEG_AD_down 50 3.0176 0.0133 0.331389 0.002449 0.037222

NEFL DEG_AD_down 49 2.913445 0.014886 0.343236 0.008503 0.024673

C3 DEG_AD_up 43 3.043278 0.01705 0.328593 0 0.042101

SEL1L DEG_AD_up 42 3.036065 0.013066 0.329374 0 0.045635

DSG1 DEG_AD_down 41 3.046163 0.00857 0.328282 0 0.068464

GJA1 DEG_AD_down 41 3.035199 0.015703 0.329468 0 0.04037

MEF2C DEG_AD_up 41 3.039238 0.008676 0.32903 0 0.068892

LYZ DEG_AD_up 40 3.042123 0.008578 0.328718 0 0.065086

GSTO1 DEG_AD_up 38 2.820254 0.010905 0.354578 0.019915 0.030356
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linking the peripheral immune system and central nervous
system (CNS). It has been well demonstrated that the peri-
odontal disease-evoked peripheral systemic host immune
response can aggravate the progression of neuroinflamma-
tion and neurodegeneration in Alzheimer’s disease by
switching the microglia from the primed phenotype to an
aggressive proinflammatory phenotype [48, 49]. The
immune-inflammatory mediators (e.g., cytokines and che-
mokines) abundantly expressed during periodontal inflam-

mation can circulate into the bloodstream and travel into
the brain by crossing the blood-brain barrier (BBB) and
impact the function of CNS [50]. Therefore, the crosstalk
between the peripheral immune system and the CNS might
be an important mechanism underlying periodontitis,
increasing the risk of AD. This paragraph will provide a
description regarding the potential role of the six crosstalk
genes in linking periodontal disease and AD, especially by
means of neuroimmune interaction. For example, the
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complement components C4A and C4B highly expressed in
periodontal disease were found to modulate T cell immune
response by stimulating the activation and migration of T
cells [51–53]. The migration of T cells enhanced by C4A
and C4B might allow T cells to traffic across the BBB and

enter the brain. For another example, the chemokine and
its receptor-composed system CXCL12/CXCR4-7 system
were found to be a significant player of the neuroimmune
interface [54]. On the one hand, the chemokine CXCL12
mediated the immune-inflammatory response in CNS by
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Figure 7: The ROC curves of four periodontitis-related datasets.
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recruiting lymphocytes and macrophages [55]. On the other
hand, CXCL12 can lead to neurotoxicity and neurodegener-
escence by activating the neuronal survival-associated G
protein-activated inward rectifier K(+) (GIRK) [54].
FCGR3A (also named CD16) is essential for the antibody-
dependent cellular cytotoxicity (ADCC) mediated by natural
killer (NK) cells [56]. The increased cytotoxic activity of NK
cells was found to cause the dysregulation of protein kinase C
and further led to the cognitive deficits in Alzheimer’s dis-
ease, indicating the contribution of immunological factors
to the dysfunction of CNS [57]. IL1B, which was upregulated
in periodontitis and transported through the vascular circu-
lation into the brain, was found to play promoting roles in
neuroinflammation by enhancing the expression of leukocyte
chemotactic chemokines, cell surface adhesion molecules,
cyclooxygenases, and MMPs within the brain parenchyma

[58]. Likewise, MMP3 abundantly produced in periodontitis
was also found to be associated with neuroinflammation via
activating microglial cells, as well as participating in the
BBB breakdown through the proteolysis of fibronectin and
type IV collagen [59]. Taken together, the six crosstalk genes
identified in the present research were well evidenced to be
involved in periodontitis-triggered peripheral systemic host
immune response caused CNS dysfunction in Alzheimer’s
disease.

Three transcription factors, FOS, MEF2C, and USF2,
were identified as related to the regulation of the crosstalk
genes and were also found to be dysregulated in chronic peri-
odontitis. The proto-oncogene FOS (also named C-Fos) was
found to be involved in the transcriptional regulation of col-
lagenase and cell proliferation genes in periodontal gingival
fibroblasts [60]. In AD, FOS is reported to initiate amyloid-

Table 7: Topological characteristics of the top 30 nodes in the TF-crosstalk gene target network, ranking in descending order.

Node Label Degree
Average shortest path

length
Betweenness
centrality

Closeness
centrality

Clustering
coefficient

Topological
coefficient

FOS DEG_up&TF 89 2.178295 0.206101 0.459075 0.020429 0.03825

VEGFA DEG_down 77 2.211886 0.197219 0.452103 0.010936 0.038456

MEF2C DEG_up&TF 76 2.328165 0.159945 0.429523 0.004211 0.044258

CDH1 DEG_down 69 2.540052 0.159392 0.393693 0 0.086634

CXCR4 DEG_up 47 2.596899 0.075105 0.385075 9:25E − 04 0.083836

MME DEG_up 44 2.664083 0.04365 0.375364 0 0.131313

C4A DEG_up 38 2.661499 0.029742 0.375728 0.01138 0.118617

VIM DEG_up 38 2.521964 0.060293 0.396516 0.012802 0.065789

CSF3 DEG_up 36 2.550388 0.031734 0.392097 0.019048 0.075137

C4B DEG_up 34 2.679587 0.018887 0.373192 0.012478 0.122037

VCAN DEG_up 34 2.726098 0.030567 0.366825 0 0.143717

IL1B DEG_up 33 2.741602 0.05746 0.36475 0 0.134602

BRSK1 DEG_down 30 2.741602 0.030404 0.36475 0 0.153788

SERPINI1 DEG_up 29 2.793282 0.019014 0.358002 0 0.127586

USF2
DEG_

down&TF
27 2.591731 0.027575 0.385842 0.045584 0.081607

GRHL3 DEG_down 27 2.775194 0.027067 0.360335 0 0.150732

HSPB1 DEG_down 26 2.780362 0.017981 0.359665 0 0.155678

MMP3 DEG_up 26 2.607235 0.024377 0.383548 0.036923 0.074984

CTGF DEG_up 25 2.788114 0.020669 0.358665 0 0.161905

HMGCR DEG_down 25 2.767442 0.041119 0.361345 0 0.16

GATA2 TF 24 2.095607 0.052687 0.477189 0.018116 0.104678

PLAT DEG_up 24 2.762274 0.028075 0.362021 0 0.173148

ETS1 TF 22 2.273902 0.03767 0.439773 0.012987 0.092022

NPTXR DEG_down 22 2.826873 0.020478 0.353748 0 0.154545

AR TF 21 2.24031 0.040698 0.446367 0.02381 0.105465

YBX1 TF 21 2.315245 0.037801 0.43192 0.004762 0.098928

BCL2L2 DEG_down 21 2.813953 0.018179 0.355372 0 0.144048

FCGR3A DEG_up 21 2.81137 0.020521 0.355699 0 0.192799

ABCA12 DEG_down 20 2.79845 0.010961 0.357341 0 0.2

SP1 TF 20 2.191214 0.037362 0.456368 0.026316 0.109167

CDK5R1 DEG_down 20 2.824289 0.017878 0.354071 0 0.156098

FLG DEG_down 20 2.653747 0.012281 0.376826 0.042105 0.093043
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β-mediated apoptosis and found to be increased in the hip-
pocampal regions of AD patients [61]. Myocyte-specific
enhancer factor 2C (MEF2C) was identified as a critical tran-
scription factor involved in the coexpression network of
chronic periodontitis [62]. Genome-wide association studies
(GWAS) have shown the linkage between mutation of
MEF2C and aging-associated late-onset Alzheimer’s disease
[63, 64]. Experimentally, a lack of MEF2C expression was
shown to exaggerate microglial response and negatively
affect brain function [65]. The USF2 (upstream transcription
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Figure 9: Heatmaps depicting 137 signaling pathways enriched in the crosstalk genes in the four periodontitis-related datasets.

Table 8: The number of crosstalk gene-related DEPs within the four
periodontitis-related datasets.

Data Sample
DEP DEP DEP Log FC

p value
Up Down Total Abs

GSE23586 6 1 12 13 >1 <0.05
GSE16134 310 84 2 86 >1 <0.05
GSE10334 247 77 2 79 >1 <0.05
GSE79705 12 4 4 8 >0 <0.05
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Figure 10: The crosstalk gene-differentially expressed pathway interaction network.

Table 9: The 12 overlapping genes between 48 feature selection-obtained crosstalk genes and periodontitis-related genes in the DisGeNET
database. Among the 12 genes, 6 genes, C4A, C4B, CXCL12, FCGR3A, IL1B, and MMP3, were associated with chronic periodontitis.

Gene symbol Gene ID Disease ID Disease name

C3 718 C0031099 Periodontitis

C4A 720 C0266929 Chronic periodontitis

C4B 721 C0266929 Chronic periodontitis

CXCL12 6387 C0266929 Chronic periodontitis

FCGR3A 2214 C0266929 Chronic periodontitis

FCGR3A 2214 C0031099 Periodontitis

FCGR3A 2214 C0031106 Periodontitis, juvenile

FCGR3A 2214 C0399447 Early-onset periodontitis

FCGR3A 2214 C0031030 Periapical periodontitis

FCGR3B 2215 C0399447 Early-onset periodontitis

FCGR3B 2215 C0031106 Periodontitis, juvenile

HSPB1 3315 C0031030 Periapical periodontitis

IL1B 3553 C1719494 Periodontitis, localized aggressive

IL1B 3553 C1719495 Aggressive periodontitis, generalized

IL1B 3553 C0399447 Early-onset periodontitis

IL1B 3553 C0001342 Acute periodontitis

IL1B 3553 C0031106 Periodontitis, juvenile

IL1B 3553 C0031030 Periapical periodontitis

IL1B 3553 C4025886 Severe periodontitis

IL1B 3553 C0031099 Periodontitis

IL1B 3553 C0266929 Chronic periodontitis

MME 4311 C0031099 Periodontitis

MMP3 4314 C0031106 Periodontitis, juvenile

MMP3 4314 C0001342 Acute periodontitis

MMP3 4314 C0266929 Chronic periodontitis

MMP3 4314 C0031099 Periodontitis

PLAT 5327 C1719495 Aggressive periodontitis, generalized

VEGFA 7422 C0031099 Periodontitis
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Figure 11: Continued.
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factor 2, C-Fos interacting) transcription factor is reported
to enhance osteogenic differentiation of periodontal liga-
ment cells (PDLCs) [66]; however, its involvement in
periodontal inflammation has not been reported. In the con-
text of AD, the USF2 gene was shown to regulate the expres-
sion of genes Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, and Syn2,
which drive the neuropathological mechanisms [67]. How-
ever, a study of Japanese participants found that the single
nucleotide polymorphisms of the USF2 gene were not signif-
icantly related to the onset of AD [68].

Differentially expressed pathways were identified from
the crosstalk gene-pathway network, and several pathways

including JAK-STAT, MAPK, NF-kappa B, and natural killer
cell-mediated cytotoxicity were found as the most robust dif-
ferentially expressed pathways in at least two periodontitis
datasets. Overall, experimental evidence supports these as
linkage mechanisms between periodontitis and AD. The acti-
vation of the JAK-STAT pathway induced by the Porphyro-
monas gingivalis lipopolysaccharide (LPS) and nicotine was
shown to increase the expression of cyclooxygenase-2
(COX-2), prostaglandin E2 (PGE2), and proinflammatory
cytokines in osteoblasts, thus further accelerating periodonti-
tis progression [69, 70]. In AD, the inhibitor of the JAK-
STAK pathway is reported as a therapeutic target, and
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Figure 11: The ROC curves for 6 chronic periodontitis-related genes, C4A, C4B, CXCL12, FCGR3A, IL1B, and MMP3, in the four
periodontitis-related datasets.
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blocking this pathway can protect against neuroinflamma-
tion and dopaminergic neurodegeneration [71]. The MAPK
pathway is the upstream signaling intermediate to many
inflammatory cytokines such as TNF-α, IL-1β, IL-6, and
prostaglandin E2 [72], and the blockage of this pathway
could be beneficial for treating inflammatory diseases like
chronic periodontitis and AD [73, 74]. The activation of
MAPK signaling is noted to promote the production of
MMPs and RANKL, leading to osteoclastogenesis and the
acceleration of alveolar bone loss [73]. MAPK signaling is
also implicated in multiple aspects of the neuropathology of
AD, such as promoting neuroinflammation, amyloid-beta
toxicity and aggregation, autophagy, and apoptosis [75].
The overexpression of NF-κB signaling plays a pivotal role
in periodontitis-associated bone destruction by promoting
the differentiation and activation of osteoclasts [76]. The
blockade of NF-κB signaling is found to trigger detrimental
neural alterations including neuroinflammation, activation
of microglia, oxidative stress-related complications, and apo-
ptosis [77]. Natural killer (NK) cells are important regulators
of innate and adaptive immunity and are closely linked to the
regulation of cytotoxicity [78]. Experimental data shows NK
cells can directly recognize the Fusobacterium nucleatum
pathogen, leading to alveolar bone resorption and periodonti-
tis [79]. The overactivity of NK is also purported to play a
driving role in the progression of AD by producing a series
of proinflammatory cytokines [80].

The findings of this in silico analysis must be considered
in light of the strengths and limitations of this work. By using
a machine learning-based feature selection method as the
core technique, the most putatively robust crosstalk genes
could be identified. Furthermore, functional molecular links
were also analyzed in terms of differentially expressed path-
ways. The integrated analysis of multiple periodontitis-
related GEO datasets enabled a larger sample size for
improved accuracy of our computational prediction in the
present study. The major limitation of the current approach
is that no experimental validation of the identified pivotal
genetic molecular linkage candidates was performed. This
work has multiple implications for future research. Experi-
mental and clinical studies focused on these candidates could
be valuable from the perspectives of identification of shared
susceptibility, exaggerating pathogenic mechanisms, bio-
markers, and therapeutic targets relevant to precision medi-
cine and drug development or repurposing.

5. Conclusion

Bioinformatic analysis integrating experimental transcrip-
tomic data from Alzheimer’s disease and periodontitis
revealed the most robust potentially shared molecular link-
ages. Six crosstalk genes, C4A, C4B, CXCL12, FCGR3A,
IL1B, and MMP3, three transcription factors, FOS,
MEF2C, and USF2, and several pathways, JAK-STAT,
MAPK, NF-kappa B, and natural killer cell-mediated
cytotoxicity, emerged as top candidate shared molecular
linkage entities and merit future research in experimental
and clinical studies.
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