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Background. Majority of prostate cancer (PCa) deaths are attributed to localized high-grade aggressive tumours which progress
rapidly to metastatic disease. A critical unmet need in clinical management of PCa is discovery and characterization of the
molecular drivers of aggressive tumours. The development and progression of aggressive PCa involve genetic and epigenetic
alterations occurring in the germline, somatic (tumour), and epigenomes. To date, interactions between genes containing
germline, somatic, and epigenetic mutations in aggressive PCa have not been characterized. The objective of this investigation
was to elucidate the genomic-epigenomic interaction landscape in aggressive PCa to identify potential drivers aggressive PCa
and the pathways they control. We hypothesized that aggressive PCa originates from a complex interplay between genomic
(both germline and somatic mutations) and epigenomic alterations. We further hypothesized that these complex arrays of
interacting genomic and epigenomic factors affect gene expression, molecular networks, and signaling pathways which in turn
drive aggressive PCa. Methods. We addressed these hypotheses by performing integrative data analysis combining information
on germline mutations from genome-wide association studies with somatic and epigenetic mutations from The Cancer Genome
Atlas using gene expression as the intermediate phenotype. Results. The investigation revealed signatures of genes containing
germline, somatic, and epigenetic mutations associated with aggressive PCa. Aberrant DNA methylation had effect on gene
expression. In addition, the investigation revealed molecular networks and signalling pathways enriched for germline, somatic,
and epigenetic mutations including the STAT3, PTEN, PCa, ATM, AR, and P53 signalling pathways implicated in aggressive
PCa. Conclusions. The study demonstrated that integrative analysis combining diverse omics data is a powerful approach for the
discovery of potential clinically actionable biomarkers, therapeutic targets, and elucidation of oncogenic interactions between
genomic and epigenomic alterations in aggressive PCa.

1. Introduction

Prostate cancer (PCa) is the second most diagnosed and sec-
ond leading cause of cancer deaths among men in the
United States [1]. In 2019, an estimated 174,650 men were
diagnosed with PCa and 31,620 men died from the disease
[1]. Majority of the PCa deaths are attributed to localized
high-grade aggressive tumours which progress rapidly to
metastatic disease [2, 3]. These tumours are characterized

by poor prognosis, high recurrence rates, and poor survival
rates [2, 3]. The development and progression of aggressive
PCa involve three separate, but related, genomes—the germ-
line, somatic or tumour, and epigenomes [2–9]. Tradition-
ally, the analysis of germline, somatic, and epigenetic
mutations in aggressive PCa has been conducted as separate
research endeavours [4]. Increasingly, germline and tumour
genomes are being explored jointly to understand how
genetic risk variants contribute to PCa [4]. However, to date,
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integration of information on germline, somatic, and epige-
netic mutations to gain insights about how genetic and epige-
netic mechanisms interact and cooperate to drive aggressive
PCa has not been reported.

Genome-wide association studies (GWAS) have enabled
discovery of germline mutations associated with an increased
risk of developing PCa [4, 10]. Genetic susceptibility variants
from GWAS are being incorporated in risk prediction
algorithms such as polygenic risk scores (PRSs) [11, 12] to
identify individual patients at the high risk of developing
aggressive PCa [12–14]. PRSs are poised to improve clinical
outcomes via precision medicine and precision prevention.
However, one of the limitations for clinical implementation
of PRSs is that the causal association between germline
genetic risk variants used for calculating polygenic risk scores
and aggressive PCa has not been established. Moreover, the
genetic susceptibility variants reported to date explain only
a small proportion of the phenotypic variation. Thus, inte-
grating GWAS information with other omics data has the
promise of not only associating genetic risk variants with
tumourigenesis but also explaining the missing variation.

Advances in the next-generation sequencing technologies
have enabled sequencing of the PCa or tumour and epigen-
omes [15, 16]. The Cancer Genome Atlas (TCGA) [15] and
the International Cancer Genome Consortium (ICGC) [16]
have performed large-scale sequencing of tumour and epi-
genomes generating vast amounts of information on somatic,
epigenetic, and gene expression profiles for many cancers
including PCa. However, despite the large amounts of
multiomics data generated by these large cancer genome
sequencing projects, genomic and epigenomic data from
these projects have not been leveraged and optimally inte-
grated with germline mutation information to elucidate the
genetic-epigenetic interaction landscape in aggressive PCa.
With the availability of germline, somatic, and epigenetic
mutation information on PCa, we are now well-positioned
to integrate these pieces of information to identify the geno-
mic and epigenomic drivers of aggressive PCa. The objective
of this investigation was to elucidate the genomic and epige-
nomic interaction landscape of aggressive PCa. Our working
hypothesis was that aggressive PCa originates from a com-
plex interplay between genetic (both germline and somatic
mutations) and epigenomic alterations. We further hypoth-
esized that these complex arrays of interacting genomic
and epigenomic factors affect gene expression, network
states, and signalling pathways which in turn drive aggres-
sive PCa. We addressed these hypotheses using integrative
data analysis combining information on germline, somatic,
and epigenomic alterations using gene expression data as
the intermediate phenotype. We leveraged this integrative
analysis approach with network and pathway analysis to elu-
cidate the genomic-epigenomic interaction landscape in
aggressive PCa.

2. Materials and Methods

2.1. Study Design and Sources of Genomics and Epigenomics
Data. The development and progression of aggressive PCa
involve three separate, but interrelated genomes, the germ-

line, somatic (tumour), and epigenomes. Alterations in these
genomes lead to measurable changes affecting therapeutic
decision-making in the in management of PCa. Therefore,
the discovery of molecular drivers of aggressive PCa should
take a comprehensive approach that combines pieces of
information from all three genomes. Here, we used an inte-
grative genomics approach that combines germline mutation
from GWAS with somatic mutation and DNA methylation
from TCGA using gene expression data as the intermediate
phenotypes and unifying parameter. The integrative analysis
approach was leveraged with network and pathway analysis
to elucidate possible oncogenic interactions between genes
containing germline, somatic, and epigenetic mutations.
The overall project design showing sources of data and
analysis workflow integrating multiomics data is shown in
Figure 1.

Germline mutation data was obtained from a well-
curated and annotated catalogue of genetic variants associ-
ated with an increased risk of developing PCa that we have
developed and published [4, 17]. Details pertaining data col-
lection, curation, and annotation have been published else-
where [4, 17] and were based on international guidelines
for assessing cumulative evidence on GWAS associations
[18–22]. This data was supplemented with data from the
updated GWAS catalogue [10, 23, 24]. Overall, the GWAS
data set included 401 genes containing 631 germline muta-
tions (single-nucleotide polymorphisms (SNPs)) associated
with an increased risk of developing PCa, linked with SNP
identification numbers (rs-IDs), evidence of association as
determined by the GWAS P value, gene name, and associated
chromosome position. Information on SNP-IDs and gene
names was further verified using the single-nucleotide poly-
morphisms database (dbSNP) (https://www.ncbi.nlm.nih
.gov/snp/) [25] and the Human Genome Nomenclature
Committee (HGNC) database (https://www.genenames.org/
) which houses approved gene names and their aliases [26].
Information on genes and germline mutations including
the original reports from which the information was derived
is presented in Supplementary Table S1.

Somatic mutation information, DNA methylation, and
gene expression along with clinical variables on aggressive
PCa were obtained from The Cancer Genome Atlas (TCGA)
[27]. The data were downloaded from the Genomics Data
Commons portal (https://portal.gdc.cancer.gov/) using the
data transfer tool [28]. Somatic mutation, DNA methylation,
and gene expression were all generated on the same 188 indi-
vidual patients diagnosed with aggressive PCa and 52 control
samples. All the samples were linked with clinical informa-
tion. Aggressive tumours were defined as tumours with Glea-
son grade 8-10 and or Gleason grade 7 with pathological
score of 4 + 3 (primary + secondary) and were authenticated
using clinical information and the American Urological
Association (AUA) protocol [29]. Gene expression data was
checked for quality by removing the genes (rows) with miss-
ing data, such that each row had at least ≥30% data using
counts per million (CPM) filter (>0.5) implemented in R
[30]. The resulting data set with 18,428 probes was normal-
ized using the trimmed mean ofM value (TMM) normaliza-
tion method and transformed using Voom module in the
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Limma package implemented in R [30]. Probe IDs were
replaced by annotated gene symbols and names using the
Ensemble database. Somatic mutation data was processed
to identify the number of genes containing somatic muta-
tions and the number of somatic mutations per gene across
samples. This processing step generated a catalogue of
4,779 somatic mutated genes and 6,658 somatic mutation
events used in the analysis. A complete list of somatic
mutated genes and number of somatic mutation events per
gene is presented in Supplementary Table S2.

As noted, DNA methylation data was generated from the
same 188 tumour and 52 control samples as gene expression
and somatic mutation data using the Illumina Human-
Methylation450 BeadChip [31]. The data was processed
using the Illumina DNA methylation data processing and
analysis protocols [32, 33] implemented in our pipeline
[34]. The data was corrected for batch effects and normalized
using quantile normalization implemented in the R Package
consistent with Illumina DNAmethylation data analysis pro-
tocol [31–35].

2.2. Bioinformatics Analysis. We performed gene expression
and DNA methylation data analysis using the pipelines we
have developed and implemented in R Bioconductor pack-

ages [34]. We performed whole transcriptome analysis com-
paring gene expression levels between tumour and control
samples using the Limma package implemented in R [30]
to identify all significant differentially expressed genes dis-
tinguishing aggressive tumours from control samples. We
used the false discovery rate (FDR) procedure to control
for multiple hypothesis testing [36]. Genes were ranked on
P values, log2 fold change (LogFC), and FDR. Likewise, we
performed whole methylome analysis comparing DNA
methylation profiles between tumours and control samples
to discover a signature of significantly differentially methyl-
ated genes and CpG sites using the Limma package imple-
mented in R [30]. We employed the FDR in the analysis to
correct for multiple hypothesis testing [36]. The discovered
CpG sites were annotated with gene symbols using the
Ensemble Biomart database [37]. We computed the number
of CpG sites per gene for significantly differentially methyl-
ated genes to get a quantitative assessment of DNA methyl-
ation sites per gene. The methylation sites were classified as
either hypomethylated (down) or hypermethylated (up)
based on the direction of regulation using the Limma pack-
age [30]. The genes and CpG sites were then ranked on P
values, LogFC, FDR, and number of significantly (P < 0:05)
differentially methylated sites. Differentially expressed genes
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Figure 1: Study design and data analysis workflow for integrative analysis combining germline, somatic, and epigenetic mutation information
using gene expression data as the intermediate phenotype leveraged with network and pathway analysis. TCGA: The Cancer Genome Atlas;
GWAS: genome-wide association studies, T: tumours; N: normal controls; D.E.: differentially expressed; D.M.: differentially methylated.
Arrows indicate the data analysis workflow.
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and differentially methylated genes were merged and sorted
by gene symbols, expression, and methylation P values to
discover a signature of differentially expressed genes which
were also differentially methylated. We investigated the
impact of DNA methylation on gene expression using a
two-way plot of expression LogFC against the DNA methyl-
ation LogFC using the Starburst plot [38] using only differ-
entially expressed genes which were also differentially
methylated. Genes associated with the diseases were further
evaluated for the presence of germline and somatic muta-
tions to identify a signature of genes containing germline,
somatic, and epigenetic mutations transcriptionally associ-
ated with aggressive PCa. Genes containing germline,
somatic, and epigenetic alterations associated with aggres-
sive PCa were subjected to network and pathways analysis
using Ingenuity Pathway Analysis (IPA) software package
[39] to identify gene regulatory networks and signalling
pathways enriched for the three types of mutations. We used
gene ontology (GO) [40] analysis implemented in IPA to
characterize the genes according to molecular function,
biological processes, and cellular components in which they
are involved.

3. Results

3.1. Discovery of Gene Expression and DNA Methylation
Signatures. To discover gene expression and DNA methyla-
tion signatures associated with aggressive PCa, we performed
whole methylome and whole transcriptome analysis compar-
ing tumour to control samples separately. The results of this
investigation are summarized in Figure 2(a). The compari-
son of DNA methylation profiles between tumour and con-
trol samples revealed a signature of 12,426 significantly
(P < 0:05) differentially methylated genes associated with
aggressive PCa (Figure 2(a)). There was significant variation
in patterns of DNA methylation profiles and the number of
CpG sites associated with aggressive PCa.

The number of CpG sites per gene ranged from 1 to 480
in tumour samples. The most highly significantly differen-
tially methylated genes were PTPRN2, PRDM16, PCDHGA1,
PCDHGA2, PCDHGA3, PCDHGB1, MAD1L1, PCDHGA4,
PCDHGB2, PCDHGA5, PCDHGB3, and PCDHGA6 with
≥200 significantly (P < 0:05) differentially methylated CpG
sites per gene. A complete list of all significantly differen-
tially methylated genes distinguishing tumour samples
from controls along with the number of differentially
methylated CpG sites per gene is presented in Supplemen-
tary Table S3. The comparison of gene expression levels
between tumour and control samples produced a signature
of 12,100 significantly (P < 0:05) differentially expressed
genes (Figure 2(a)). The most highly significantly
differentially expressed genes were SIM2, HOXC6, NKX2-3,
DLX1, EPHA10, PCAT7, ARHGEF38, PRR36, and EZH2
(P < 10-11). A complete list of significantly differentially
expressed genes associated with aggressive PCa is presented
in Supplementary Table S4.

To address the hypothesis that aberrantly expressed
genes associated with aggressive PCa are also aberrantly
expressed, we combined the 12,426 significantly (P < 0:05)

differentially methylated genes with the 12,100 significantly
(P < 0:05) differentially expressed genes and ranked the
genes based on expression and CpG sites P values. The anal-
ysis produced a signature of 6,486 containing both alterations
(Figure 2(a), intersection). In addition, the investigation pro-
duced a signature of 5,614 genes altered in the transcriptome
only and a signature of 5,940 genes with only epigenetic alter-
ations associated with aggressive PCa (Figure 2(a)). The dis-
covery of a signature of genes altered in both the trascriptome
and the methylome and signatures of different sets of genes
altered in each of them demonstrates the power of integrative
analysis using complementary technologies.

Having discovered the 6,486 aberrantly methylated
genes transcriptionally associated with aggressive PCa
(Figure 2(a)), we conducted additional investigation on
these genes to determine whether DNA methylation affects
gene expression. The results showing the effect of aberrant
DNA methylation on gene expression are presented in a
two-way Starburst plot in Figure 2(b). The investigation
revealed that aberrant DNA methylation affects gene expres-
sion (Figure 2(b)). We discovered 206 upregulated, 77 down
regulated, 152 hypomethylated, and 30 hypermethylated
genes (Figure 2(b)). Three genes HOXC4, HOXC6, and
NOX4 were hypomethylated and downregulated, whereas
14 genes CYP27A1, NRK, EMX2OS, C2orf88, PRKCB,
WFDC2, NRG2, MCF2, COL4A6, PROM1, AOX1, HIF3A,
CYP11A1, and GATA3 were hypomethylated and upregu-
lated. The gene SLC2A9 was hypermethylated and upregu-
lated. The results confirmed our hypothesis that aberrant
DNA methylation affects gene expression at varying levels.

To determine the extent of epigenomic alterations for the
6,486 genes containing both alterations, we computed the P
values for the most variable CpG sites and the number of
CpG sites across tumour samples for each gene. Genes were
ranked according to the number of CpG sites in the gene.
The results showing the top 23 most highly significantly dif-
ferentially methylated genes with >100 CpG sites per gene
are presented in Table 1. Also presented in the table are
probes showing the most highly significant CpG sites, their
estimates of P values, number of CpG sites per gene, and esti-
mates of gene expression p-values.

The analysis revealed significant variation in patterns of
DNA methylation profiles among the genes (Table 1). The
number of CpG sites per gene ranged from 1 to 480. The
genes PTPRN2, PRDM16, PCDHGA1, PCDHGA2,
PCDHGB1, MAD1L1, PCDHGA4, PCDHGB2, PCDHGA5,
PCDHGB3, PCDHGA6, RPTOR, COL11A2, KCNQ1,
PCDHA1, PCDHGA9, PCDHGB6, AGAP1, ATP11A,
PCDHGA10, PCDHGB7, MCF2L, and CACNA1HA had the
most highly significantly differentially CpG sites and the
highest number of CpG sites per gene ≥ 100 CpG sites
(Table 1). Among the 23 genes in Table 1 included the genes
PTPRN2, PCDHGB1, ATP11A, and CACNA1HA which have
been experimentally confirmed to be associated with aggres-
sive PCa [41–44]. A complete list of all the 6,486 genes con-
taining both genomic and epigenomic alterations along with
the number of methylation sites per gene is presented in
Supplementary Table S5. Taken together, the results of
these investigations show that a subset of genes that are
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transcriptionally associated with tumours is aberrantly
methylated and that aberrantly methylated genes affect
gene expression in aggressive PCa.

3.2. Discovery of Somatic Mutation and DNA Methylation
Signatures. Although development and progression of
aggressive PCa tumours are driven by acquired somatic
driver mutations [3], enduring epigenetic landmarks define
the tumour microenvironment [45]. Therefore, our next step
in this investigation was to determine whether aberrantly
methylated genes transcriptionally associated with aggressive
PCa are somatic mutated. We hypothesized that aberrantly
methylated genes transcriptionally associated with aggressive
PCa are somatic mutated. We addressed this hypothesis by
integrating somatic mutation information with epigenomic
and gene expression data. Specifically, we evaluated aber-
rantly methylated genes transcriptionally associated with
aggressive PCa for the presence of somatic mutations using
the 4,779 genes containing somatic mutations.

The results of this investigation are presented in a three-
way Venn diagram shown in Figure 3. The analysis revealed
a signature of 1,702 genes containing all three alterations
(Figure 3). In addition, the analysis produced a signature
of 796 somatic mutated genes transcriptionally associated
with the disease and a signature of 1,264 somatic mutated
aberrantly methylated in aggressive PCa (Figure 3). A total
of 1,017 somatic mutated genes were neither aberrantly
methylated nor transcriptionally associated with the disease
(Figure 3). A complete list of all the 1,702 somatic mutated
genes aberrantly methylated and transcriptionally associated
with aggressive tumours is presented in Supplementary
Table S6. A complete list of the 796 somatic mutated
genes transcriptionally associated with the diseases and a

complete list of the 1,264 somatic mutated genes
aberrantly methylated in aggressive PCa are presented in
Supplementary Table S7.

To determine the extent of somatic and epigenetic alter-
ations and whether the most highly mutated genes are the
most highly epigenetically altered and or vice versa, we
evaluated the 1,702 genes containing all three alterations
(Figure 3). The results showing the top 45 most highly
somatic mutated (>3 somatic events per gene) genes are
presented in Table 2. Also presented in Table 2 are the most
highly significant CpG sites and associated P values along
with the number of CpG sites per gene and gene expression
P values.

There was significant variation in the distribution of
somatic mutations and methylation sites per gene. The most
highly somatic mutated genes were SPOP, FOXA1, LRP1B,
OBSCN, CSMD3, FREM2, AHNAK, PLCB4, SYNE1,
PCDH18, CDH23, DCHS2, VPS13D, MACF1, PTPRD,
HFM1, AHNAK2, CTNNB1, and SACS (Table 2). Further
evaluation of the results revealed that not all highly somatic
mutated genes were highly differentially methylated
(Table 2). The most highly differentially methylated genes
were SPOP, OBSCN, CSMD3, AHNAK, SYNE1, CDH23,
DCHS2, VPS13D, MACF1, PTPRD, TACC2, GRIN2A,
PCDHGA9, SALL1, NPAT, DST, CACNA1C, ZFHX3,
PCDHA1, EPHA3, and PTEN (Table 2). Conversely, not all
the most highly somatic mutated genes were highly differen-
tially methylated. The observed significant variation in DNA
methylation can be explained in part by the phenotypic het-
erogeneity inherent in aggressive PCa [8]. Overall, the inves-
tigation revealed that a subset of aberrantly methylated genes
is somatic mutated and that the distribution of somatic and
epigenetic alterations in these genes varies significantly. The
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discovery of somatic mutated genes which were also epige-
netically altered suggests that some of the genes driving
tumourigenesis may be under genetic and epigenetic control.

3.3. Discovery of Germline, Somatic, and Epigenetic Mutation
Signatures. As noted earlier in this report and consistent with

other reports [2–9], the development and progression of
aggressive PCa involve three separate, but related, geno-
mes—the germline, somatic or tumour, and epigenomes.
Therefore, optimal integration of omics data should include
all three genomes and the phenotype they regulate. Thus, to
address the hypothesis that somatic and epigenetics mutated
genes associated with aggressive PCa harbour germline
mutations and to infer the potential causal association
between genetic susceptibility and aggressive PCa, we evalu-
ated the 401 genes containing germline mutations for their
association with aggressive PCa using gene expression infor-
mation and for the presence of somatic mutations and epige-
netic alterations.

The results of this investigation are presented in a
four-way Venn diagram in Figure 4. Out of the 401 genes
containing germline mutations evaluated, 41 genes contained
germline, somatic, and epigenetic alterations and were tran-
scriptionally associated with aggressive tumours. In addition,
we discovered 202 genes transcriptionally associated with
aggressive PCa, 223 genes aberrantly methylated, 122 genes
somatic mutated, and 97 aberrantly methylated genes tran-
scriptionally associated with the disease (Figure 4). A subset
of 92 genes was altered only in the germline and was neither

Table 1: List of the 23 most highly significantly differentially methylated genes with greater than 100 CpG sites per gene which were also
differentially expressed associated with aggressive PCa. Probe and associated P value indicate the most significant CpG site.

Gene symbol Cytoband
Methylation RNA-Seq

CpG probes P values CpG sites P values

PTPRN2 7q36.3 cg27448110 1:13E − 30 480 0.00018

PRDM16 1p36.32 ch.1.131529R 6:00E − 06 472 3:48E − 10
PCDHGA1 5q31 cg27665767 1:25E − 08 294 2:00E − 12
PCDHGA2 5q31.3 cg27665767 1:25E − 08 288 0.048678

PCDHGB1 5q31 cg27665767 1:25E − 08 264 4:76E − 10
MAD1L1 7p22.3 ch.7.111787F 0.006761 261 0.000725

PCDHGA4 5q31 cg27665767 1:25E − 08 258 0.034977

PCDHGB2 5q31 cg27665767 1:25E − 08 243 1:04E − 05
PCDHGA5 5q31 cg27665767 1:25E − 08 236 3:28E − 06
PCDHGB3 5q31 cg27665767 1:25E − 08 221 0.01935

PCDHGA6 5q31 cg27665767 1:25E − 08 211 0.002877

RPTOR 17q25.3 cg27511181 0.030313 185 3:13E − 09
COL11A2 6p21.32 cg27590742 7:21E − 06 178 0.001095

KCNQ1 11p15.5 cg27639104 0.036658 160 1:15E − 07
PCDHA1 5q31.3 cg27604145 0.000777 147 1:86E − 05
PCDHGA9 5q31 cg27639030 4:84E − 07 145 6:14E − 07
PCDHGB6 5q31 cg27639030 4:84E − 07 136 0.006861

AGAP1 2q37.2 cg27634020 2:03E − 06 134 1:04E − 07
ATP11A 13q34 cg27096043 1:07E − 09 127 7:25E − 05
PCDHGA10 5q31.3 cg27639030 4:84E − 07 124 0.013509

PCDHGB7 5q31.3 cg27639030 4:84E − 07 109 8:81E − 05
MCF2L 13q34 cg27359668 0.031441 105 1:46E − 10
CACNA1H 16p13.3 cg27616039 1:24E − 16 103 1:64E − 06

Somatic RNAseq
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4784

4676
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Methyl

Figure 3: Three-way Venn diagram showing the results of somatic
mutated, aberrantly DNAmethylated, differentially expressed genes
associated with aggressive PCa discovered through analysis and
integration of somatic mutation, DNA methylation, and gene
expression data.
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Table 2: List of the top 45 genes containing both somatic and epigenetic mutation with greater than 3 somatic mutations and number of CpG
sites per gene along with estimates of differential gene expression and DNA methylation probe P values.

Genes Cytoband
Methylation RNAseq

Probes Adjusted P value CpG sites Adjusted P value Somatic mutations

SPOP 17q21.33 cg14245135 1:69E − 60 10 4:31E − 23 29

FOXA1 14q21.1 cg01824511 3:51E − 23 1 2:24E − 30 12

LRP1B 2q22.1 cg21484213 1:17E − 09 5 1:11E − 17 10

OBSCN 1q42.13 cg05794117 2:11E − 32 57 0.000501 9

CSMD3 8q23.3 cg22433418 1:82E − 43 31 0.026425 8

FREM2 13q13.3 cg24087887 1:53E − 05 2 3:57E − 06 8

AHNAK 11q12.3 cg05427381 1:67E − 28 14 0.00191 7

PLCB4 20p12.3 cg09143713 2:34E − 21 6 9:80E − 07 7

SYNE1 6q25.2 cg11318342 1:42E − 20 46 2:38E − 05 7

PCDH18 4q28.3 cg12033966 0.019046 2 3:03E − 09 7

CDH23 10q22.1 cg24331301 7:70E − 56 40 1:35E − 19 6

DCHS2 4q31.3 cg00067274 7:70E − 37 18 1:97E − 17 6

VPS13D 1p36.22 cg20931951 1:58E − 33 35 0.006686 6

MACF1 1p34.3 cg14713026 1:56E − 27 16 0.010637 6

PTPRD 9p24.1 cg14258031 1:12E − 17 17 0.034734 6

HFM1 1p22.2 cg25188594 6:08E − 11 3 0.008453 6

AHNAK2 14q32.33 cg06903818 3:01E − 28 1 2:92E − 17 5

CTNNB1 3p22.1 cg05726118 6:92E − 16 6 0.023068 5

SACS 13q12.12 cg18653350 8:60E − 12 1 0.000469 5

TACC2 10q26.13 cg06733794 2:09E − 58 37 0.023942 4

GRIN2A 16p13.2 cg01348055 1:07E − 43 45 4:89E − 12 4

HSPA8 11q24.1 cg03309938 2:68E − 43 8 0.001265 4

PCDHGA9 5q31 cg12648074 3:97E − 39 145 6:14E − 07 4

SALL1 16q12.1 cg01679108 1:39E − 38 34 0.000121 4

TNS1 2q35 cg18328334 1:23E − 37 2 5:00E − 19 4

NPAT 11q22.3 cg19288979 4:06E − 37 26 0.002404 4

DST 6p12.1 cg08882472 5:70E − 35 38 2:09E − 11 4

CACNA1C 12p13.33 cg27501686 1:78E − 34 77 8:62E − 08 4

ZFHX3 16q22.2 cg27364780 3:28E − 31 45 0.002273 4

PCDHA1 5q31.3 cg15122993 7:12E − 28 147 1:86E − 05 4

CHD6 20q12 cg04139300 1:72E − 24 2 0.000157 4

KLHL2 4q32.3 cg13508949 2:44E − 24 9 4:60E − 10 4

EPHA3 3p11.1 cg16797972 8:13E − 23 13 0.001452 4

ZNF521 18q11.2 cg14783285 1:54E − 17 1 0.001784 4

DEPDC1 1p31.3 cg18167921 3:51E − 17 5 3:44E − 05 4

PTEN 10q23.31 cg07263825 2:65E − 14 34 3:62E − 08 4

FILIP1 6q14.1 cg10447080 5:53E − 11 1 8:08E − 15 4

SETD5 3p25.3 cg22811818 3:93E − 10 5 0.030099 4

TLK1 2q31.1 cg24772525 3:23E − 09 7 8:50E − 06 4

COL11A1 1p21.1 cg26913669 9:30E − 09 7 0.000893 4

SMAD4 18q21.2 cg10315128 7:56E − 06 1 0.000186 4

CSMD1 8p23.2 cg12258042 0.000152 1 0.046321 4

7BioMed Research International



aberrantly methylated nor transcriptionally associated with
the disease (Figure 4). Overall, the investigation confirmed
our hypothesis that genes containing germline mutations
are associated with aggressive PCa and harbour both somatic
and epigenetic alterations. The discovery of genes altered
only in the germline can be explained partially by the differ-
ences in population cohorts from which GWAS and
sequence data were derived. GWAS discoveries are inher-
ently heterogeneous and derived from heterogeneous popu-
lations, which gene expression can be population and time
specific. Under such conditions, the observed outcome is
expected.

In addition to evaluating the distribution of genes con-
taining germline, somatic, and epigenetic mutations, we per-
formed a quantitative assessment on the discovered gene
signatures to evaluate the frequency distribution and extent
of germline, somatic, and epigenetic mutation events among
the 41 genes containing all three alterations. The results of
this investigation are presented in Table 3.

There was significant variation in the distribution of
germline, somatic, and epigenomic alterations (Table 3).
The number of somatic and germline mutations was lower
than the number of CpG sites in each gene (Table 3). Inter-
estingly, the 41 gene signature included the genes BRCA1,
KLK3, KLK2, PDLIM5, and ITGA6, containing genetic vari-
ants reported to be directly associated with aggressive PCa
[4, 46–48], and the genes AMIGO2, ATF71P, BRCA1,
KLK2, KLK3, MDM4, and PDLIM5 used in gene panels for
PCa screening and assessing disease prognosis [46–48].
Overall, the investigation confirmed our hypothesis that
somatic and epigenetic mutated genes harbour germline

mutations and provides some foundational knowledge about
the potential link between the genetic susceptibility variants
and tumourigenesis. The discovery of epigenetic mutated
genes without germline mutations tends to suggest that part
of the missing variation not explained by GWAS may be
explained by DNA methylation.

3.4. Discovery of Altered Molecular Networks and Signalling
Pathways. The objective of this investigation was to elucidate
the genomic and epigenomic interaction landscape of aggres-
sive PCa. The results in preceding sections have shown that
genes genetically altered in the tumour genome are aber-
rantly methylated and that somatic and epigenetic mutated
genes harbour germline mutations. To gain insights about
the possible oncogenetic interactions between genetic and
epigenetic changes, we performed network and pathway
analysis. Our working hypothesis was that aggressive PCa
originates from a complex interplay between genomic
(involving both germline and somatic mutations) and epige-
nomic alterations. We further hypothesized that these com-
plex arrays of interacting genomic and epigenomic factors
affect gene expression, molecular networks, and signalling
pathways which in turn drive aggressive PCa. We addressed
these hypotheses using network and pathways analyses to
identify molecular networks and signalling pathways
enriched for genetic and epigenetic alterations and character-
ized their functional connectivity. For this analysis, we used
the 41 genes containing germline, somatic, and epigenetic
mutations. Because genes containing germline mutations
explain only a small proportion of the phenotypic variation
and their causal association with the disease has not been
established, we also included the most highly somatic and
epigenetic mutated genes without germline mutations.

The results of network analysis are presented in Figure 5.
Network analysis produced 19 molecular networks with the
Z-scores ranging from 2 to 51. The analysis revealed func-
tionally related genes containing germline, somatic, and epi-
genomic alterations interacting in gene regulatory networks
(Figure 5).

The discovered networks contained genes predicted to be
involved in cancer, cell-to-cell signalling and interaction,
organismal injury and abnormalities, reproductive system
disease, cellular assembly and organization, amino acid
metabolism, posttranslational modification, immunological
disease, DNA damage and repair, and hereditary disorder.
The analysis also produced molecular networks containing
genes predicted to be involved in cell cycle, cell death and
survival, cellular development, organ development, and
reproductive system development and function. Among the
genes revealed by network analysis included the genes

Table 2: Continued.

Genes Cytoband
Methylation RNAseq

Probes Adjusted P value CpG sites Adjusted P value Somatic mutations

ZFPM2 8q23 cg17154315 0.004447 1 1:41E − 11 4

MTOR 1p36.22 cg03956606 0.004852 1 0.000207 4

TBC1D2 9q22.33 cg13732677 0.020917 1 1:48E − 14 4
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Figure 4: Four-way Venn diagram showing signatures of genes
containing germline, somatic, and epigenetic mutations
transcriptionally associated with aggressive PCa discovered
through analysis and integration germline and somatic mutation,
DNA methylation, and gene expression data.
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Table 3: List of the 41 genes containing germline, somatic, and epigenetic mutations transcriptionally associated with aggressive PCa
discovered through analysis and integration of multi-omics data.

Genes
GWAS Methyl P-values RNA-Seq

SNP_ID P value Probes P value CpG sites P value Somatic mutation

ADNP rs12480328 5:00E − 11 cg13940160 1:56E − 19 10 0.000235 1

AMIGO2 rs5759167 2:00E − 06 cg08135379 1:71E − 15 9 1:78E − 05 1

ANK2 rs7694725 2:00E − 06 cg16931969 4:77E − 27 31 4:78E − 15 1

ATF7IP rs3213764 2:00E − 09 cg00236831 0.026384 1 0.001392 3

B3GAT1 rs878987 5:00E − 08 cg22777979 1:80E − 29 15 4:02E − 12 1

BCL11A rs2556375 6:00E − 19 cg01616628 5:31E − 15 28 9:29E − 11 2

BRCA1 rs1799950 0.01 cg19531713 2:65E − 32 25 0.015169 1

CDYL rs79774606 9:00E − 06 cg08249424 9:85E − 30 29 0.011624 1

COL6A3 rs7584330 3:00E − 09 cg00779216 2:82E − 28 43 0.000158 2

DNAH5 rs887391 2:00E − 06 cg05149258 1:61E − 26 1 4:17E − 25 2

EPHA10 rs731174 5:00E − 06 cg01967642 1:07E − 32 15 3:32E − 44 1

FERMT2 rs8008270 6:00E − 16 cg02232988 5:19E − 47 11 2:14E − 24 1

FGFR2 rs10886902 2:00E − 53 cg18566515 1:31E − 38 42 1:83E − 20 1

FTO rs9939609 0.04 cg12495954 5:00E − 38 13 6:25E − 11 1

HAPLN1 rs4466137 3:00E − 06 cg18343881 2:18E − 11 3 0.011965 1

ITGA6 rs12621278 2:00E − 42 cg24530074 6:79E − 40 22 4:86E − 06 1

KCNN3 rs1218582 1:00E − 08 cg12058501 1:32E − 13 11 1:06E − 05 1

KIAA1211 rs629242 7:25E − 07 cg12879013 1:75E − 09 1 0.006964 2

KIF13A rs10456809 5:00E − 06 cg09723635 1:07E − 39 17 0.041976 3

KLK2 rs2735839 6:00E − 37 cg05935086 2:92E − 43 5 1:49E − 14 1

KLK3 rs17632542 2:00E − 34 cg17687962 4:00E − 33 5 1:64E − 09 1

LRP1B rs10210358 2:00E − 06 cg21484213 1:17E − 09 5 1:11E − 17 10

MDM4 rs4245739 3:00E − 24 cg20286844 9:68E − 17 6 0.000471 2

MYO9B rs11666569 8:00E − 09 cg24679890 7:85E − 43 21 0.005102 1

NOTCH4 rs3096702 1:00E − 11 cg11753286 7:37E − 35 29 0.000522 1

OTX1 rs58235267 6:00E − 07 cg11935853 0.002988 1 5:46E − 24 1

PDLIM5 rs17021918 1:00E − 24 cg09885664 9:66E − 20 18 2:99E − 20 1

PHF20L1 rs2472537 0.000212 cg27342122 3:77E − 13 5 0.036862 1

PKNOX2 rs138466039 2:00E − 11 cg22956116 6:90E − 41 2 0.002475 1

POU2F2 rs61088131 9:00E − 09 cg07716663 1:75E − 05 1 4:03E − 09 1

PRDM15 rs6586243 7:79E − 06 cg06555093 1:20E − 22 22 5:44E − 12 2

SLC19A2 rs3765227 0.000126 cg00893538 5:84E − 11 2 3:62E − 12 1

SMAD9 rs140971918 4:00E − 06 cg03283486 3:35E − 24 13 1:45E − 06 1

TBX1 rs2238776 2:00E − 08 cg24753662 7:76E − 20 26 4:61E − 08 1

TBX3 rs11067228 1:00E − 14 cg06211872 2:47E − 08 7 0.001996 2

TBX5 rs1270884 1:00E − 18 cg25556579 4:59E − 24 40 1:49E − 05 1

TCF4 rs28607662 3:00E − 08 cg00657460 5:45E − 33 11 1:35E − 07 1

TCF7L2 rs7094871 5:00E − 08 cg10983115 7:26E − 31 37 2:96E − 05 2

TTC7A rs10194115 5:00E − 07 cg04574383 1:24E − 14 5 3:66E − 10 1

VGLL3 rs9757252 5:00E − 06 cg16373010 1:29E − 08 1 0.003787 1

ZNF652 rs7210100 3:00E − 13 cg07164631 5:54E − 14 9 3:89E − 07 1

9BioMed Research International



KLK3, ITGA6, and BRCA1 containing germline mutations
directly associated with aggressive cancer Figure 5 [4].
Overall, the investigation revealed molecular networks
enriched for germline, somatic, and epigenetic mutations
involved in aggressive PCa. The investigation confirmed
our working hypothesis was that aggressive PCa is an emer-
gent property of molecular networks of functionally related
genes containing germline, somatic mutations, and epige-
netic alterations.

Pathway analysis revealed 96 signalling pathways
enriched for germline, somatic, and epigenetic mutations.
The topmost highly significant signalling pathways are pre-
sented in Figure 6. Also presented in the figure is the thresh-
old P value marked by the yellow line, above which the
pathways were declared significant following correction for
multiple hypothesis testing. The investigation revealed the
STAT3, IL-15, PTEN, axonal guidance, cancer, FAT10 can-
cer, RAR activation, EGF, androgen, NF-κB, ATM, PI3K,
and P53 signalling pathways (Figure 6). In addition, the
investigation revealed the cell cycle: G1/S checkpoint regula-

tion, and IL-8; and cell cycle: G2/MDNA damage checkpoint
regulation, PI3K/AKT, and the PCa signalling pathways
(Figure 6). Overall, the results of the investigation confirmed
our working hypothesis that oncogenic interactions among
genes containing genetic and epigenetic mutations affect sig-
nalling pathways which in turn drive aggressive PCa.

In summary this integrative data approach combining
multi-omics data revealed that genomic and epigenomics
alterations in the germline and tumour genomes can lead to
measurable changes that could guide elucidation of the
genomic-epigenomic landscape in aggressive PCa. This
interdisciplinary integrated approach establishes putative
functional bridges between germline, somatic (tumour),
and epigenetics and the pathways the control. These observa-
tions suggest that genes and pathways driving aggressive PCa
are under genetic and epigenetic control and that integrative
analysis combining data from complementary technologies
provides a unified and optimal approach to the discovery of
potential clinically actionable biomarkers and targets for
the development of novel therapeutics in aggressive PCa.
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Figure 5: Molecular networks enriched for germline, somatic, and epigenomic mutations. The nodes represent the genes in gene symbols,
and vertices represent functional relationships. Genes in blue fonts contain germline, somatic, and epigenetic mutations. Genes in red
fonts contain somatic and epigenetic mutations. Genes in green fonts are highly differentially methylated genes with greater than 50 DNA
methylation sites per gene.
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4. Discussion

The last decade has witnessed remarkable progress in the
discovery and development of comprehensive catalogues of
germline genetic susceptibility variants associated with an
increased risk of developing PCa using GWAS [4, 5, 10,
17]. In parallel to large-scale genotyping, next-generation
sequencing has generated massive amounts of genomic and
epigenomic data from tumour genomes [15, 16]. Tradition-
ally, genotyping and sequencing have been conducted as sep-
arate research endeavours. Here, we combined information
on germline, somatic, and epigenetic alterations using gene
expression data as the intermediate phenotype to elucidate
the genomic-epigenomic interaction landscape of aggressive
PCa. The investigation revealed functionally related germ-
line, somatic, and epigenetic mutated genes associated with
aggressive tumours. The investigation further revealed
molecular networks and signalling pathways enriched for
genetic and epigenetic mutations and that DNA methylation
affects gene expression. To the best of our knowledge, this is
the first study to comprehensively integrate information on
germline, somatic, and epigenetic mutations at the gene, net-

work, and pathway levels using gene expression as the inter-
mediate phenotype. We summarize the clinical significance
and translational aspects of this investigation as follows.

First, the discovery of genes such as KLK3 and AR altered
in germline, somatic (tumour), epigenome, and the tran-
scriptome, coupled with the findings that aberrant DNA
methylation affects gene expression demonstrates that inte-
grative analysis combining information from complimentary
technologies provides a unified approach for the discovery of
potential clinically actionable biomarkers in aggressive PCa.
Indeed, aberrant DNAmethylation in PCa has been reported
[49–51]. The novel and innovative aspects of our investiga-
tion are that they combine diverse omics data and assesses
the impact of DNA methylation on gene expression and to
establish putative functional bridges between germline,
somatic, and epigenetic alterations and the pathways they
control in aggressive PCa.

Second, the discovery of genes such as BRCA1, AR, ATM,
and KLK3 containing germline, somatic, and epigenetic
mutations is of particular interest. This reveals a potential
link between genetic susceptibility and tumourigenesis.
Importantly, while tumour development and progression

Pathway name

STAT3 pathway

IL-15 production

PTEN signaling

Axonal guidance signaling

FAT10 cancer signaling pathway

RAR activation

EGF signaling

Androgen signaling

NF-𝜅B signaling

ATM signaling

PI3K signaling in B lymphocytes

p53 signaling

Cell cycle: G1/S checkpoint regulation

IL-8 signaling

Cell cycle: G2/M DNA damage checkpoint regulation

PI3K/AKT signaling

Prostate cancer signaling

�reshold
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

–log (P value)

Figure 6: Signalling pathways enriched for germline, somatic, and epigenetic mutations in aggressive PCa. The y-axis shows the pathway
names, and the x-axis shows the –log(P values) on which pathways were ranked and selected. The yellow line indicates the threshold level
expressed as the –log(P-value) above which the signalling pathway was declared significant.
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may be driven by acquired somatic driver mutations in these
genes, the actions of somatic mutations maybe primed by
germline mutations and enduring epigenetic landmarks
may be defining the tumour microenvironment [45]. More-
over, epigenetic alterations in DNA repair genes such as
BRCA1 and ATM discovered in this investigation could cause
genome instability and silencing of tumour suppressor genes,
such as P53, leading to carcinogenesis [52–54].

Third, the discovery of a signature of 41 genes containing
germline, somatic, and epigenetic alterations is of particular
interest. To date, risk prediction algorithms such as PRSs
use germline mutations mapped to genes used in this investi-
gation [11–14]. However, the causal association between
genetic susceptibility variants used in computing PRSs and
aggressive PCa has not been established. Moreover, the
genetic susceptibility variants reported thus far explain only
a small proportion of the phenotypic variation, which raises
the question of “where is the missing heritability”?. Incorpo-
ration of somatic mutation, epigenetic, and gene expression
data as demonstrated here has the potential to address some
of the limitations incurred in current risk prediction models
and could address the question of missing variation not
accounted for by risk variants [55, 56]. This could be
achieved by leveraging germline mutation information and
integrating it with somatic and epigenetic mutation using
gene expression data as demonstrated here to develop more
robust and more accurate genetic risk prediction models to
enhance precision medicine and precision prevention [57].
This is an attractive approach because both germline and epi-
genomic variations are heritable and affect gene expression
variation [58–60].

Fourth, the discovery of key signalling pathways impli-
cated in aggressive PCa including STAT3, PTEN, molecular
mechanisms of cancer, AR, ATM, PI3K/AKT, PCa, and
P53 signalling pathways [61, 62] was intriguing. First, it dem-
onstrates that the signalling pathways driving aggressive PCa
are likely under genetic and epigenetic control. Second and
perhaps more importantly is that these findings provide a
rational basis for the discovery of potential targets critical
to the development of novel therapeutics for aggressive
PCa. This is noteworthy because, currently, the AR and
PI3K signalling pathways are used as therapeutic targets in
aggressive PCa, as androgen-deprivation therapy (ADT) is
one of the most effective therapeutic modalities [61, 62].
Overall, this comprehensive multidisciplinary approach to
elucidation of the genomic-epigenomic interaction landscape
of aggressive PCa provides novel insights about the power of
integrative analysis combining diverse omics data for the dis-
covery of genetic and epigenetic drivers of aggressive PCa
and how they interact and cooperate to drive the clinical
phenotypes.

5. Conclusions

The investigation revealed DNAmethylation and gene expres-
sion signatures associated with aggressive PCa and that
aberrant DNAmethylation affects gene expression. The inves-
tigation revealed that germline and somatic mutated genes are
aberrantly methylated and transcriptionally associated with

aggressive PCa. The investigation revealed that aggressive
PCa is an emergence property of gene regulatory networks
and signalling pathways under genetic and epigenetic controls.
Integrative analysis combining genomic and epigenomic data
using gene expression as the intermediate phenotype is a pow-
erful approach for elucidating the genomic-epigenomic inter-
action landscape in aggressive PCa, discovery of potential
clinically actionable biomarkers, and targets for the develop-
ment of novel therapeutics.
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