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The Role of Innate Immunity in Pulmonary Infections
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Innate immunity forms a protective line of defense in the early stages of pulmonary infection. The primary cellular players of the
innate immunity against respiratory infections are alveolar macrophages (AMs), dendritic cells (DCs), neutrophils, natural killer
(NK) cells, and innate lymphoid cells (ILCs). They recognize conserved structures of microorganisms through membrane-
bound and intracellular receptors to initiate appropriate responses. In this review, we focus on the prominent roles of innate
immune cells and summarize transmembrane and cytosolic pattern recognition receptor (PRR) signaling recognition
mechanisms during pulmonary microbial infections. Understanding the mechanisms of PRR signal recognition during
pulmonary pathogen infections will help us to understand pulmonary immunopathology and lay a foundation for the
development of effective therapies to treat and/or prevent pulmonary infections.

1. Introduction

Lung tissue is continuously exposed to various pathogenic
microorganisms in the environment, leading to lung infec-
tions or lung diseases. The innate immune system is the first
line of defense against pathogens and includes a range of
immune cells and related mechanisms that nonspecifically
recognize and resist infections [1–4]. The main pathogens
of lung infection include Streptococcus pneumoniae,
Staphylococcus aureus, Legionella pneumophila, Chlamydia
pneumoniae, Klebsiella pneumoniae, and Pseudomonas
aeruginosa [4–7]. The rapid identification of nonself-
exogenous pathogens and their effective elimination with a
complex set of defense mechanisms is a testament to the effi-
ciency of the innate immune cells within the airways and
lungs. Innate immune cells include alveolar macrophages
(AMs), neutrophils, dendritic cells (DCs), natural killer cells
(NK), and large mononuclear cells, which can recognize
pathogen-associated molecular patterns (PAMPs) such as
components of bacteria via their pattern-recognition recep-
tors (PRRs) [8, 9].

Successful pathogenic identification and appropriate
responses are essential for effective pulmonary host defense
[10]. One of the primary mechanisms for bacterial growth
containment at the site of infection and consequently for
minimizing bacterial dissemination is the PRR-mediated
innate immune responses. PRRs, such as Toll-like receptor
(TLRs), Nod-like receptors (NLRs) [11], and retinoic acid
inducible gene I- (RIG-I-) like receptors (RLRs) [12], are
involved in innate immune responses and/or apoptosis
[13]. Therefore, PRR-mediated signaling pathways play a
significant role in the synergistic inflammatory responses
and the balance of tissue homeostasis.

TLRs are important for the pathogen recognition and
host immune response initiation. Human and mice contain
10 (TLR1-10) and 12 (TLR1-9, 11-13) TLRs, respectively
[14]. TLR1, TLR2, TLR4, TLR5, TLR6, and probably TLR12
of mice and TLR10 of humans are located on the cell surface
[14, 15]. TLR3, TLR7, TLR8, and TLR9 localize in intracellu-
lar vesicles such as endoplasmic reticulum (ER), endosome,
lysosome, and endolysosome [14, 15]. Recent studies have
shown that TLR11 is expressed both extracellularly and
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intracellularly in human cells [15, 16]. TLR13 is also
expressed in intracellular vesicles [15]. Plasma membrane-
bound TLRs (TLR2/1, TLR2/6, TLR4, and TLR5) and
endosome membrane-bound TLRs (TLR2/1, and TLR9) are
mainly involved in the recognition of lung bacteria [17, 18],
while TLR3, TLR7, and TLR8 recognize nucleic acids of
viruses during pulmonary infections [19].

NLRs are expressed in the nucleus and cytoplasm [20].
There are more than 20 receptors in the NLR family, which
have three domains: the N-terminal effector domain, the cen-
tral NOD domain, and the leucine-rich repeat C-terminal
domain [20]. N-terminal functional domains are divided into
four groups: transactivator activation domain, baculovirus
inhibitor of apoptosis (BIR), caspase recruitment domain
(CARD), and pyrin domain (PYD) [12, 21]. NLRPs (nucleo-
tide-binding oligomerization domain-like receptors pro-
teins) are key molecules in the innate immune response to
pulmonary infection. The NLRP of NLRs are made up of
14 proteins, of which NLRP1, NLRP3, NLRP6, NLRP7, and
NLRP12 form inflammasomes, consisting of NLRP, ASC,
and procaspase-1 [11, 20]. Inflammasomes formed by these
NLRs regulate cytokine IL-1 family and pyrolytic cell death,
nuclear factor kappa-light-chain-enhancer of activated B
cell- (NF-κB-) dependent inflammatory mediators, autoph-
agy, or reactive oxygen species (ROS) production [11, 20].
In addition, unlike other NLR members, the N-terminus of
NLRCs contain a special CARD (apoptosis-associated
speck-like protein (ASC)), which is also known as the death
domain (DD) folding zone [22]. Different NLRs can detect
different lung pathogens. Several inflammasomes are acti-
vated as part of the host innate immune response during
different bacterial infections.

This review discusses recent advances on the function of
innate immune cells in lung bacterial infections, and
highlights the mechanisms used by pathogens to modulate
or interfere with PRR relevant signaling in the pulmonary
antibacterial responses for bacterial pathogens.

2. Innate Immune Cells in
Pulmonary Infections

2.1. Alveolar Macrophages in Pulmonary Infections. There are
three types of permanent tissue macrophages in the lung,
including AMs, interstitial macrophages, and bronchial mac-
rophages [23]. These cells mediate opsonophagocytosis and
nonopsonophagocytosis of inhaled or exhaled pathogens
[24]. AMs play a central role in maintaining environmental
stability and inducing effective defense mechanisms [25].
Pathogens such as L. pneumophila, Actinobacillus pleurop-
neumoniae, and Mycobacterium tuberculosis invade the lung
and activate AMs to produce proinflammatory cytokines and
chemokines, such as interleukin-1α/β (IL-1α/β), IL-6, tumor
necrosis factor-α (TNF-α), interferon-α/β (IFN-α/β), and
CXC chemokine ligand (CXCL2) [26–33]. Under the patho-
logical conditions of inflammation, injury, and infection, the
subgroup of AMs is different in the lung, namely, tissue-
resident AMs (TR-AMs) and monocyte-derived AMs (Mo-
AMs) [34, 35]. Since mice infected with viruses consume a
large amount of TR-AMs and are accompanied by a large

number of circulating blood mononuclear cells into the
lungs, Mo-AMs become increasingly indistinguishable from
TR-AMs as the lung returns to homeostasis [36, 37]. It is
not well understood whether the functions of macrophages
with different origins and locations are the same or whether
they have the ability to transform. Each macrophage lineage
arrives in the lung at a different time, destined to become a
specific type of macrophage with a unique microanatomical
niche and renewal mechanism [38]. Recent studies have pre-
sented compelling evidence that Mo-AM apolipoprotein E is
beneficial to the resolution of lung fibrosis, supporting the
notion that Mo-AMs may have distinct functions in different
phases of lung fibrogenesis [39]. Therefore, exploring the
number and function of colonized AMs and AMs differenti-
ated by circulating blood monocytes, lung mesenchymal
macrophages, and their relationship with each other is of
significance for studying inflammatory mechanisms caused
by pathogenic bacteria.

2.2. Neutrophils in Pulmonary Infections. Neutrophils are
involved in the removal of exogenous and endogenous cellu-
lar debris and play an essential role in the pathogenesis of
many respiratory infections. Acute lung inflammation, trig-
gered by neutrophils, can be viewed as pathogenic, because
their activation promotes further damage in the early phases
of the inflammatory response [40]. Once specific receptors
(such as a toll-like receptor) recognize antigen, releasing a
cascade of mediators and leading to a chemotactic signal,
neutrophils are recruited into the lung interstitium followed
by a transepithelial migration into the alveolar space [41,
42]. For example, P. aeruginosa, LPS, and β-glucans promote
the recruitment of circulating neutrophils, in which proin-
flammatory cytokine production (TNF-α, IFN-γ, and IL-8)
and inflammatory chemokines (the chemokine (C-C motif)
ligand (CCL) 2 and CCL7) act synergistically to participate
in lung inflammation [43–47]. These migration steps are reg-
ulated differently by the interaction of neutrophilic adhesion
molecules (including CD11a, CD11b, CD44, CD162, CD29,
CD54, CD47, CD31, and CD172a) [48]. These neutrophils
phagocytose bacteria with the release of proteases (such as
neutrophil elastase), cytotoxic molecules, and reactive
oxygen species, enhancing inflammation and resulting in
host damage [47, 49].

However, this neutrophilic infiltration also plays a role in
the late phases of damaged areas for tissue regeneration [41,
42]. There are some molecular mechanisms by which neutro-
phils could orchestrate lung repair [50–53]. The most com-
mon mechanisms include neutrophil extracellular traps
(NETs). Some of the matrix metalloproteinase (including
MMP-2, 8, 9) and proresolving lipid mediators (including
lipoxin A4, resolvins, and protectins) released by neutrophils
directly contribute to tissue remodeling and repair [40, 50,
54, 55]. Neutrophil transmigration promotes tissue remodel-
ing and repair by Wnt/ß-catenin-dependent pathways with
the release of cysteine-rich angiogenic inducer 61 (Cyr61)
[56–58]. In addition, neutrophils may intercellularly transfer
miR-223 to epithelial cells to dampen acute lung injury
through repression of poly (adenosine diphosphate-ribose)
polymerase–1 (PARP-1) [59]. CXCL1 orchestrates neutrophil
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homeostasis in Klebsiella pneumoniae- and S. pneumoniae-
induced lung inflammation and sepsis [44, 60]. Overall, these
mediators stimulate apoptotic neutrophils and block neutro-
phil recruitment at late stages of the acute response through
NETs capturing released chemokines (e.g., CCL5, CXCL12,
and CXCL4) [42, 61].

2.3. Dendritic Cells in Pulmonary Infections. DCs, as antigen-
presenting cells that connect the innate and adaptive
immune systems, ensure an effective immune response dur-
ing infection. Importantly, there are functional differences
between the different subsets of lung DCs. Subpopulations
of DC are classified into CD103+ CD11b- conventional DCs
(cDC1), CD103- CD11b+cDCs (cDC2), and plasmacytoid
DCs (pDC) in the lungs [62–65]. cDCs, as proinflammatory
initiators and mediators, shifting balance between Th1 and
Th2 responses and crosstalk with neutrophils, may be two
underlying mechanisms during bacterial pathogen-induced
acute lung inflammation and injury [66]. Pulmonary
CD103+ DCs (CD103+ PDCs) is beneficial for T helper 2 cell
(Th2) and Th17 immunity, while CD103+cDCs is associated
with the induction of Th1, cytotoxic T lymphocyte (CTL)
responses, and regulatory T cells [67–70]. Following Klebsi-
ella pneumonia infection, the detection of increased respira-
tory CD103+ PDC numbers enhanced antigen-specific
CD4+ T cell responses, which may indicate possible novel
PDC functions with respect to lung repair and regeneration
[71]. Using transgenic mice enabling the inducible depletion
of CD103+ DCs found that DC subset contributes to the con-
trol of mycobacterial burden, which was associated with con-
sistently reduced levels of total and activated CD4+ and CD8+

T cells and Th1-related cytokines (IFN-γ and TNF-α) [72].
Pasteurella multocida triggers the maturation of DCs and
IL-12 production, a cytokine known to induce differentiation
of native T cells into interferon-γ- (IFN-γ-) producing Th1
cells, which are resistant to infection [73, 74]. These findings
suggest that bacteria target the high plasticity of T cell sub-
types to enhance their pathogenicity and may gain advan-
tages in survival and reproduction. Clearly, more work is
required to address (i) the mechanism of DCs in manipulat-
ing native T cell differentiation and (ii) how to prolong
neutrophil survival during bacterial pathogen infection.

2.4. Natural Killer Cells in Pulmonary Infections. NK cells
constitute the first line of defense against pathogenic microor-
ganisms. There is increasing evidence that under steady-state
conditions, the frequency of NK cells in the total lymphocyte
population of the lungs is high, and lung NK cells have a more
mature phenotype, suggesting that quick and effective NK-
mediated immune responses are critical for eliminating
pathogens and maintaining homeostasis in the lung [75–77].
Previous studies have indicated that IFN-γ, IL-21, and IL-22
produced by NK cells enhance the immune response through
increasing IL-1β, IL-18, andMIP-1β production and reducing
IL-10 expression of monocytes in response to an intracellular
pathogen in the lungs [78–82]. The mechanism by which
NK cells protect against bacterial infection has not been exten-
sively characterized but may include the production of cyto-
kines such as tumor necrosis factor (TNF) and IFN-γ, the

production of chemokines to recruit additional leukocytes,
interactions with macrophages to regulate bacterial clearance,
and direct bacterial killing [78, 80, 83].

Innate lymphoid cells (ILCs, e.g., NK cells, ILC1s, ILC2s,
ILC3s, and lymphoid tissue-inducer cells) play important
roles in the protective immunity of the pulmonary infections
[84–88]. T-bet+ ILC1s produce IFN-γ. GATA3+ ILC2s
secrete IL-5, IL-9, and IL-13. Rorγt+ILC3s produce IL-22
and IL-17 [86, 89, 90]. Upon detection of a signal from dam-
aged epithelial cells, ILC2s release a large number of cyto-
kines including IL-4, IL-5, IL-13, killer cell lectin-like
receptor subfamily G member 1 (KLRG1), transforming
growth factor-beta (TGF-β), and amphiregulin, which are
also involved in lung tissue repair, immune response, and
maintenance of tissue homeostasis [85, 88, 91–95]. Gener-
ally, the function of ILC2 is inhibited by ILC1 via IFN-γ pro-
duction [85]. IL-22, the cytokine produced by NK cells and
RORγt-expressing ILC3s, is involved in defense against
rodent-adapted Klebsiella pneumoniae and Streptococcus
pneumoniae [96, 97]. Thus, although other ILCs in the lungs
are rare than NK cells, ILC1s and ILC3s facilitate perplex
with NK cells [98, 99], so previous studies on the production
of cytokine IL-22 and IFN-γ by lung NK cells may be affected
by the effects of other ILCs. In addition, the role of lung ILC3
is still unclear in respiratory infection, but some of these
effects have been demonstrated in maintenance of homeosta-
sis, infection, and other mucosal barriers [100]. Therefore,
further study is needed to explore the similarity and differ-
ence function of lung NK cells and other ILCs.

Recent studies provide some evidences that a prolonged
alteration or enhancement in antimicrobial function of
innate immune cells can itself contribute to protection from
secondary infection [101]. This functional reprogramming
of innate immune cells such as myeloid and NK cells, termed
trained immunity [102]. From this point of view, we discuss
the response of innate immunity to such as Bacille Calmette
Guérin (BCG) and Pneumococcal Polysaccharide Vaccine
(PPV). For example, Bacille Calmette Guérin (BCG) vaccine
utilized an attenuated strain of Mycobacterium bovis protect
chronic infection disease threats such as tuberculosis (TB)
through activating NOD2 [103, 104]. Recent studies demon-
strated that respiratory mucosal TB vaccination alters the air-
way innate immune landscape associated with airway
macrophages prior to M. tuberculosis exposure and vaccine-
trained airway macrophages enhance anti-TB innate immu-
nity [105, 106]. In addition, BCG revaccination of adults with
latent TB infection also induces long-lived BCG-reactive NK
cell responses [107]. Previous works reveal great functional
plasticity of the lungs of mice in defense against a bacterial
pathogen through activation of innate immunity protects
[108]. PPV is effective in preventing invasive pneumococcal
infections in immunocompetent patients with indications
for receiving the vaccine [109, 110]. Additionally,
macrophage-mediated innate immunity activated through
Pneumococcal conjugate vaccination (PCV) treatment intra-
cellular killing of secondary S. pneumoniae [111]. It is impor-
tant to investigate enhancement of the pulmonary innate
antimicrobial defenses especially in the complex context of
sequential infection or coinfection.
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3. Innate Immune Recognition Mechanisms in
Pulmonary Infections

Bacteria binds cell receptors, such as intercellular adhesion
molecule 1 (ICAM-1), sialic acid, platelet activating factor
(PAF), and glycine 6-phosphate receptor to recognize PRRs
downstream signaling [112]. In this part, we will summarize
the current knowledge of the multiple roles of TLRs in lung
bacterial infections and highlight the mechanisms by which
pathogens regulate or interfere with TLR signaling in the
lungs. In order to clarify the complex NLR signaling network,
we reviewed the roles of 7 different NLR family members
(NOD1, NOD2, NLRC4, NLRC5, NLRP1, NLRP3, NLRP6,
NLRP7, and NLRP12) involved in lung infections.

3.1. Toll-Like Receptors in Pulmonary Infections

3.1.1. Plasma Membrane-Bound TLRs

(1) TLR2-TLR1/TLR6. TLR2 recognizes a variety of PAMPs,
including lipoproteins, lipopeptides, β-glucans, glycopro-
teins, and zymosans, thereby recruiting TIR domain-
containing adaptor protein (e.g., myeloid differentiation
factor 88 (MyD88), Toll-IL-1R domain-containing adapter
protein (TIRAP), TIR domain-containing adapter inducing
IFN-β (TRIF), or TRIF-related adapter molecule (TRAM))
[14, 113]. TLR2 signaling is essential for bacterial clearance
and survival in the lung of mice infected with S. pneumoniae,
P. Aeruginosa, L. pneumophila, Brucella melitensis, Acineto-
bacter baumannii, Mycoplasma, M. tuberculosis, and S.
aureus, indicating the importance of the TLR2 pathway for
protecting the host [13, 114–124] (Figure 1). In most cases,
TLR2 forms heterodimers with TLR1 and/or TLR6 [122].
After bacterial recognition, heterodimers of TLR1-TLR2
and TLR2-TLR6 on the surface of macrophages and cDCs
activate NF-κB through the recruitment of TIRAP and
MyD88 to induce the expression of inflammatory cytokines
[125]. Synthetic bacterial lipopeptides are recognized from
within endosomes by TLR2/1 [126, 127]. TLR2/1 is activated
within the endosome and induces type I IFN via unique
MyD88-dependent activation of IFN-regulatory factor 3
(IRF3) and IRF7 [127–129] (Figure 1).

(2) TLR4. Plasma membrane-bound TLR4 recognizes a vari-
ety of gram-negative bacterial LPS, including B.melitensis, P.
aeruginosa,A. baumannii, S. pneumoniae, E. coli,K. pneumo-
niae, and Haemophilus influenzae [130–133]. LPS binds to
CD14 (Cluster of Differentiation), thereby promoting the
transfer of LPS to the TLR4/MD-2 complex, activating p38,
extracellular signal-regulated kinases (ERK), and c-Jun N-
terminal kinases (JNKs). Macrophages and primordial
human alveolar type II (ATII) cells release large amounts of
TNF-α, IL-8, and monocyte chemoattractant protein 1
(MCP-1) [134]. M. pneumoniae activates mitogen-activated
protein kinases (MAPKs) by recognizing TLR2 and TLR4
and activates NF-κB via MyD88 to produce inflammatory
factors such as pro-IL-1β [135]. After bacterial recognition,
TLR4 initially recruits TIRAP and MyD88 and then activates
NF-κB and p38 MAPK via interleukin-1 receptor-associated

kinases (IRAKs), TNF receptor-associated factor 6 (TRAF6),
and TGF beta-activated kinase 1 (TAK1) complexes [122,
136–141] (Figure 1). Furthermore, TLR4 is endocytosed to
the Rab11a-positive phagosome to form a complex with
TRAM and TRIF, which then activates the TRAF3-TANK-
binding kinase 1 (TBK1)-IRF3 axis to induce expression of
type I IFN [142, 143] (Figure 1).

(3) TLR5. TLR5 is expressed on the cell surface and recog-
nizes bacterial flagella [143]. Numerous studies have investi-
gated the importance of MyD88-dependent TLR5 in
pathogen phagocytosis and neutrophil/AMs/DCs clearance
in the lung [144–148]. The antibacterial effect of intranasal
flagellin in mouse model of pneumococcus respiratory infec-
tion indicates that flagellin has potential value as a therapeu-
tic agent for the control of pulmonary infection [149]. In
rodents, TLR5 is critical for mucosal intrinsic defense activity
of Salmonella enterica, P. aeruginosa, S. pneumoniae, and
uropathogenic E. coli [150, 151]. After bacterial recognition,
plasma membrane-bound TLR5 recruits MyD88, followed
by activation of NF-κB through IRAKs, TRAF6, TAK1, and
IκB kinase (IKK) complexes to induce expression of inflam-
matory cytokines and chemokine gene, such as IL-8, IL-6,
TNF-α, CXCL1, CXCL2, and CCL20 [152–155] (Figure 1).

3.1.2. Endosome Membrane-Bound TLRs

(1) TLR9. Endosome membrane-bound TLR9 plays an
important role in activating innate immunity by recognizing
CpG-specific motifs found in microbial DNA [14]. For
example, deficient in either TLR9 or MyD88 was impaired
in bacteria uptake and clearing the airway infection caused
by S. pneumoniae [156]. Mice lacking TLR9 are unable to
produce Th1 effector cells, resulting in increased bacterial
load in the lungs [130]. Thus, TLR9 plays a detrimental role
in P. aeruginosa pneumonia and methicillin-resistant S.
aureus pneumonia [157]. Additionally, a study indicated that
P. aeruginosa DNA reduced IL-1β and NO production by
TLR9 signaling, impairing the ability of activated AMs to
clear bacteria [158]. Finally, after bacterial recognition,
TLR9 activates MyD88-TRAF6-dependent NF-κB to induce
production of IFN and inflammatory cytokines/chemokines
[15] (Figure 1).

3.2. NOD-Like Receptors and Inflammasomes in
Pulmonary Infections

3.2.1. NOD1 and NOD2. CARD mainly includes NOD1 and
NOD2. Although NOD1 and NOD2 are similar in structure,
their activated ligands have different roles in lung immunity.
For example, compared with NOD2, NOD1 does not play an
important role in immune response to A. baumannii infec-
tion [159, 160]. NOD1 recognizes C. pneumoniae, L. pneu-
mophila, K. pneumoniae, H. influenzae, and P. aeruginosa
[159, 161–163]. NOD2 plays an important role in host
against viral and bacterial pathogens of the lung, such as S.
pneumoniae, S. aureus, E. coli, C. pneumoniae, M. tuberculo-
sis, and A. baumannii [159, 164].

Previous studies characterizing NOD1 and NOD2
members of the NLR family have shown that these NLR have
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protective effects against microbial pathogens, and the lack of
these NLR has led to increased morbidity and mortality in
infected animals [165]. NOD1 and NOD2 in macrophages
infected by M. pneumoniae coordinate host immune
defenses by producing IFN-γ, nitrogen oxides, IL-12p40,
and macrophage inflammatory protein-2 [135]. NOD1 and
NOD2 activate NF-κB and MAPK through the serine-
threonine kinase RIP2, resulting in the production of proin-
flammatory cytokines, chemokines, and adhesion molecules
(Figure 2).

3.2.2. Inflammasomes

(1) NLRP3. The best characterized inflammasome is NLRP3,
which is primarily up-regulated in immune and inflamma-
tory cells after infection of multiple pathogens, such as K.
pneumoniae, S. pneumoniae, S. aureus, C. pneumoniae, C.
neoformans, M. tuberculosis, L. pneumophila, Francisella
tularensis, Moraxella catarrhalis, Listeria monocytogenes,
and Paracoccidioides brasiliensis, A. fumigatus, and A. bau-

mannii [20, 158, 166–169]. The formation of the inflamma-
some leads to caspase-1 activation that triggers pyroptosis
and activation of interleukin-1β (IL-1β) and IL-18 that even-
tually contributes to bacterial clearance [170, 171] (Figure 2).
In recent years, the important protective role of the NLRP3
inflammasome is indicated by enhanced bacterial growth in
the lungs of NLRP3 knockout (KO) and Asc knockout
(KO) mice infected with serotype 2 S. pneumoniae (D39)
[169]. Importantly, infected NLRP3 deficient (Nlrp3-/-)
C57BL/6 mice failed to process and secrete IL-1β and dis-
played diminished bacterial clearance and incomplete innate
immune cell activation compared to wild-type (WT) mice
[172]. Those findings demonstrate that bacterial-infected
mice activate NLRP3 inflammasome to produce inflamma-
tory cytokines such as IL-1β [172–175]. In stark contrast to
the current paradigm, infecting with lethal S. pneumoniae
at increasing doses, results in NLRP3 inflammasome strongly
impair host defense [169, 176, 177]. However, the current
results are only reminded a detrimental role of ASC and
NLRP3 in antibacterial defense during community-acquired
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pneumonia; it is still unclear that weather those downstream
consequences of NLRP3 inflammasome activation is similar
to those in the model of acute bacterial infection.

(2) NLRC4. Several lines of evidence show that NLRC4
recruits and activates caspase-1, which assembles inflamma-
some, leading to the pyroptosis and secretion of IL-1β and
IL-18, thereby inhibiting L. pneumophila replication in
mouse macrophages [178] (Figure 2). Additionally, NLRC4
is up-regulated in immune and inflammatory cells after
infection of diverse bacteria, such as Salmonella typhimur-
ium, K. pneumoniae, L. pneumophila, P. aeruginosa, Burkhol-
deria pseudomallei, and E. coli [158, 179] (Figure 2). Besides,
NLRC4 inhibits IL-17A-dependent neutrophil accumulation
by inducing necroptosis and IL-18 activation in the lungs fol-
lowing S. aureus infections [180]. Thus, a novel therapeutic
approach may be provided by modulating the function of

the NLRC4 for the treatment of bacteria-induced infections
in the lungs in the future.

(3) NLRP6 and NLRP12. It has been well established that
NLRP6 regulates host defense inflammasome in response to
bacterial infections. NLRP6 colocalizes with ASC, caspase-
1, and caspase-11 forming the NRLP6 inflammasome
complex to induce cell pyroptosis [165]. Once activated,
pro-IL-1β and pro-IL-18 are converted into their active and
proinflammatory forms, IL-1β and IL-18, ready for mediat-
ing further immunological responses [181, 182] (Figure 2).
In contrast to the believed proinflammatory role, as other
NLRs, NLRP6 is a negative regulator of inflammatory signal-
ing to dampen host responses against several bacterial path-
ogens, thereby promoting bacterial dissemination [165]. For
example, compared to their WT counterparts, NLRP6-/- mice
were highly resistant to infection with the pulmonary S.
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aureus, which were evidenced by improving survival rates
and enhancing bacterial clearance in the lungs [183].

Similar to NLRP6, NLRP12 is another example of NLR
family member that negatively regulates inflammatory
response [184]. NLRP12 plays a protective role in Yersinia
pestis infection by inducing IL-18-mediated IFN-γ secretion
[185]. NLRP12-/- mice had reduced survival rate and
enhanced bacterial burden response to pathogenic bacteria
infection, such as M. tuberculosis, F. tularensis, S. aureus, P.
aeruginosa, S. pneumoniae, and K. pneumoniae, suggesting
that NLRP12 has functional redundancy with other NLRs
or has small contribution to lung inflammation [20, 158,
184, 186] (Figure 2). In conclusion, the disadvantageous roles
of NLRP6 and NLRP12 have been depicted in innate immu-
nity of the lungs. Blocking NLRP6 and NLRP12 respectively
will augment immune-associated bacterial clearance, which
should be considered as a potential therapeutic intervention
strategy for attenuating the tissue injury induced by pulmo-
nary infectious diseases.

(4) Other Inflammasomes. As with other inflammasome-
forming NLR family members, such as NLRP3, the forma-
tions of the NLRP1 and NLRP7 inflammasomes lead to
caspase-1 activation that trigger the pyroptosis and activation
of IL-1β and IL-18, which eventually contribute to bacterial
clearance [187–190] (Figure 2). NLRP7 responds to bacterial
lipopeptides, Mycoplasma, and S. aureus infection by form-
ing inflammasome [20, 190]. The NOD-, LRR-, and CARD
domain-containing-5 (NLRC5) inflammasome is an impor-
tant regulator of major histocompatibility complex I (MHC
I) expression [191]. It was reported that NLRC5 is one of
the largest members of the NLR family. However, the role
of NLRC5 is unclear in pulmonary immune cells and
immune-related tissues of inflammatory response case [192,
193]. It should be noted that the NLRC4 inflammasome
can be activated by a wide range of pathogens or host-
derived factors such as lipopolysaccharide (LPS) [22]. Along
the same lines, it is possible that a wide range of pathogens
and/or their components or host-derived ligands can activate
NLRP5. However, the function of NLRC5 is redundant with
inflammasome receptors NLRP3 and NLRC4 in host defense
against Salmonella [194]. NLRC5 deficiency did not affect IL-
1β production in response to various stimulations, including
LPS and F. tularensis [194]. Indeed, the role of NLRC5 in pul-
monary bacterial infection is extremely poor and remains to
be improved. Likewise, the roles of the other members of the
NLR family are still unclear in the lungs. A future goal is to
explore the mechanisms of NLR and apply current under-
standing of NLR to reduce excessive inflammation while
enhancing host defense during respiratory infections.

4. Conclusions

The lung contains a complex system of defense mechanisms
during microbial infections. To protect the lung from
microbes, the immune system forms several lines of defense.
The first line of defense is established by innate immune cells
(e.g., AMs, DCs, neutrophils, and NK cells). In addition, suc-

cessful recognition and appropriate response of invading
pathogens in the lung is essential for effective lung host
defense. Recognition of cells can stimulate autophagy, phago-
cytosis, and clearance of necrotic cells and pathogens, further
affecting local inflammatory responses. However, due to the
complexity of the mechanisms, we still have a very limited
perspective about the innate immune recognition of micro-
bial pathogens and the interactions of different PRRs. There-
fore, increased understanding of the PRR signaling
recognition mechanisms during pulmonary pathogen infec-
tions will facilitate our knowledge of immune pathogenesis
and lay the foundation for developing effective therapeutic
measures.
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