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The purpose of this study was to propose a machine learning model and assess its ability to classify TMJ pathologies on magnetic
resonance (MR) images. This retrospective cohort study included 214 TMJs from 107 patients with TMJ signs and symptoms. A
radiomics platform was used to extract (Huiying Medical Technology Co., Ltd., China) imaging features of TMJ pathologies,
condylar bone changes, and disc displacements. Thereafter, different machine learning (ML) algorithms and logistic regression
were implemented on radiomic features for feature selection, classification, and prediction. The following radiomic features
included first-order statistics, shape, texture, gray-level cooccurrence matrix (GLCM), gray-level run length matrix (GLRLM),
and gray-level size zone matrix (GLSZM). Six classifiers, including logistic regression (LR), random forest (RF), decision tree
(DT), k-nearest neighbors (KNN), XGBoost, and support vector machine (SVM) were used for model building which could
predict the TMJ pathologies. The performance of models was evaluated by sensitivity, specificity, and ROC curve. KNN and RF
classifiers were found to be the most optimal machine learning model for the prediction of TMJ pathologies. The AUC,
sensitivity, and specificity for the training set were 0.89 and 1, while those for the testing set were 0.77 and 0.74, respectively, for
condylar changes and disc displacement, respectively. For TMJ condylar bone changes Large-Area High-Gray-Level Emphasis,
Gray-Level Nonuniformity, Long-Run Emphasis Long-Run High-Gray-Level Emphasis, Flatness, and Volume features, while for
TMJ disc displacements Average Intensity, Sum Average, Spherical Disproportion, and Entropy features, were selected. This
study has proposed a machine learning model by KNN and RF analysis on TMJ MR images, which can be used to classify
condylar changes and TMJ disc displacements.

1. Introduction

Temporomandibular joint (TMJ) problems are general in
the general population and can affect up to one-third of all
adults at some stage in their life. In previous population-
based studies, temporomandibular disorders (TMD) as well
as subgroups of these are often evaluated through clinical
examination [1–3]. Magnetic resonance imaging (MRI) is a
common diagnostic method of choice for TMD which serves

a gold standard for examining the disc status, especially for
soft tissue pathologies [4].

MRI examination of TMJ is usually performed using con-
ventional sequences such as T1-weighted (T1W) and proton-
weighted or T2-weighted (T2W) pulse sequences. It should be
stated that TMJ is considerably smaller compared to other
joints, thereby, utilization of conventional diagnostic methods
make it difficult to detect joint inflammatory changes before
the morphological changes [5].
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The evaluation of an MR image is generally subjective, and
the interpretation can be changed due to interpreter experience
level, MR sequences, etc. The observers can also make different
diagnoses for the same patient depending on the examination
conditions and imaging modality. Thus, it is essential to estab-
lish a standardized MRI outcome for appropriate diagnosis for
repeatability and reproducibility of diagnosis [6]. In addition to
this, MRI interpretations are still falling short of showing a
clear association with reported symptoms [7]. Furthermore,
the impact of potential imaging findings on treatment choice
and clinical outcome is still controversial, suggesting that the
depiction of TMJ in clinical routine is still unsatisfactory and
may benefit from further optimization [8]. Moreover, it was
also indicated that, often, there is still an unclear correlation
between clinical signs and symptoms and imaging findings in
all TMD patient groups [9, 10].

Machine learning (ML) is a subfield of AI in which rather
than explicit programming of instructions, the machine learns
how to accomplish a task by mathematical analysis of datasets
provided [11–13]. Medical image computing benefits from
advances in machine learning to develop data-driven model-
based image analysis strategies that are less biased by heuristic
assumptions about the appearance of the objects in the images
[14]. Studies about mathematical models based on AI
techniques to support certain diagnoses can be found in the
literature [15–17].

Applications of machine learning to dental imaging have
been relatively sparse. Only limited studies were done for
radiomic features, especially for TMJ. A recent investigation
has shown that CBCT Texture Analysis can be used for differ-
entiating mandibular condyle changes [18]. However, to the
best of our knowledge, no study was done on TMJ MRI
images. Thus, the purpose of this study was to propose a
machine learning model and assess its ability to classify TMJ
pathologies on magnetic resonance (MR) images.

2. Material and Methods

The Research Ethics Committee UZ/KU Leuven (Reference
no.: MP010867) approved this retrospective analysis of anon-
ymous data and waived the requirement for informed consent.

2.1. Patients and Data Management. A total of 214 TMJs from
107 patients (34 male and 73 female; mean age: 38 years ±
17:97; range: 19-74 years) were included in this study. All
patients were examined clinically for TMJ disorders according
to “Diagnostic Criteria for Temporomandibular Disorders for
Clinical and Research Applications” [19] by the same clini-
cian. After each examination, the patients underwent bilateral
TMJ MRI. Inclusion criteria involved patients with anterior
disc displacement with and without reduction (Table 1). The
exclusion criteria for MRIs which were not diagnostically
suitable for evaluation include motion artifacts, patients with
sideway-partial or posterior disc displacements, and syndro-
mic disease or history of trauma.

The MRI of TMJs was taken bilaterally for all partici-
pants. The images were taken with 1.5T imaging units (Signa
Horizon, GE Electric, Milwaukee; Gyroscan Intera, Philips
Medical Systems, Washington; Magnetom SP4000, Siemens,

Erlangen) with the help of dual-surface coils (3-inch and 6
× 8 cm surface coils). All patients underwent imaging in
the axial, sagittal, and coronal planes using fast spin-echo
sequences (FSE). The images were taken in the closed, par-
tially opened, and maximally opened mouth positions to
detect disc displacements.

T1-, T2-, and proton density-weighted images were taken
from all patients with similar TR and TE values in different
MR machines; for Signa Horizon (GE Electric, Milwaukee)
and for Magnetom SP4000 (Siemens, Erlangen, Germany)
T1-weighted images were taken with TR = 150, TE = 4:2
while bilateral sagittal and coronal proton density-weighted
images and T2-weighted images were taken with TR = 2500
, TE = 17 and TR = 2500, TE = 102, respectively, with 10 cm
field of view, 192 × 256matrix, NEX = 2, bandwidth = 15:6
kHz, and 3mm slice thickness. For Gyroscan Intera (Philips
Medical Systems, Washington), T1-weighted images were
taken with TR = 300, TE = 16 while bilateral sagittal and
coronal proton density-weighted images and T2-weighted
images were taken with TR = 2000, TE = 19 and TR = 2000,
TE = 80, respectively, with the 10 cm field of view, 256 ×
128matrix, NEX = 2 bandwidth = 15:6 kHz, and 3mm slice
thickness.

The disc displacement of the TMJs was classified as nor-
mal, anterior disc displacement with reduction, and anterior
disc displacement without reduction again according to
Orhan et al.’s study [6]. Two radiologists separately evaluated
and interpreted the images twice without knowledge of the
prevailing clinical conditions of the patients. Moreover, TMJs
were classified as normal (without any osseous change) and
with osseous changes (flattening, erosive changes in the
morphology of the articular surfaces, anterior osteophytes,
and/or subchondral lacunas) and were classified as degenera-
tive joint diseases (ART) [3]. When the assessments differed,
a consensus was reached through a repeated evaluation and
a discussion between the radiologists. The conditions for con-
sensus were 3 anterior disc displacement without reduction
cases and 2 erosive changes which were verified in this session.

2.2. Data Management. Radiomics is an emerging field that
converts imaging data into a high dimensional mineable feature
space using a large number of automatically extracted data-
characterization algorithms. Thus, a radiomics platform (Huiy-
ingMedical Technology Co., Ltd., China, http://en.huiyihuiying
.com/) was used to manage imaging data, clinical data, and sub-
sequent radiomics statistics analysis. These radiomics platforms
have the potential to uncover the distinctive imaging algorithms
to quantify the state of diseases, and thereby provide valuable
information for personalized medicine. Moreover, they can
measure features in an imaging exam that include intensity,
shape, texture, wavelet, and LOG features to build predictive
or prognostic noninvasive biomarkers or imaging modalities
[13]. This platform can be used for the extraction of radiomics
features from 2D and 3D images and binary masks on different
imaging modalities such as CT and MRI.

2.3. Imaging Segmentation. TMJ condyles and discs were
delineated on the MR images manually by a resident and
senior radiologist independently (LD and KO) who were
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blinded to the clinical information of the patients. The soft-
ware allows drawing contours using a Lasso tool that can draw
out a manually shaped area defined by the mouse. When the
tool travels, it can select objects within the contours delineated
and allows adjusting the borders. All contours were then
reviewed again and evaluated together for final adjustments
in consensus.

In each TMJ, 4 VOIs (volume of interests) were delin-
eated from MR images, Thus, for each patient, 4 right and
4 left VOIs were defined from MR scans. In total, 856 con-
dyles and disc VOIs were manually traced from 107 patients’
scans (214 TMJs) (Figure 1).

2.4. Feature Extraction and Selection. In total, 90 radiomic
features were identified from VOIs of MR images using the
radiomics platform. These radiomic features were under the

first-order, shape, and texture classifications. In particular,
the texture features containing gray-level cooccurrence
matrix (GLCM), gray-level run length matrix (GLRLM),
and gray-level size zone matrix (GLSZM) were used. Mean-
while, intensity and texture features were calculated on the
original image and derived images, obtained by applying
several filters such exponential, logarithm, square, square
root, and wavelet (wavelet-LHL, wavelet-L, wavelet-HLL,
wavelet-LLH, wavelet-HLH, wavelet- HHH, wavelet-HHL,
and wavelet-LLL). Features comply with definitions as
defined by the Imaging Biomarker Standardization Initiative
(IBSI) [20]. To reduce the dimensionality of features, vari-
ance threshold methods were used to gradually select the
optimal features. A variance threshold was also applied
(variance threshold = 0:8) to reduce the features.

2.5. Consensus Clustering. A consensus clustering was also
used to cluster the radiomic features extracted from the train-
ing sets TMJ condyle and disc. Consensus clustering is a
resampling-based clustering methodology, which quantifies
the consensus between several clustering iterations and pro-
vides means to estimate the number of clusters that best fit
the data [21]. It is also a method of finding clusters that are
more stable and less sensitive to starting values based on a
membership principle. It considers multiple input clusterings
where items have been clustered repeatedly in order to
remove bias [22].

Table 2: The distribution of the disc positions.

Disc positions Number of TMJs %

Normal 46 21.5
∗ADDwR 125 58.4
∗ADDwoR 43 20.1

Total 214 100
∗ADDwR: anterior disc displacement with reduction. ∗ADDwoR: anterior
disc displacement without reduction.

Figure 1: MRI images showing the tracings of TMJ disc and condyle in a radiomic platform.

Table 1: The classification of study group using DC/TMJ.

Normal: in the closed-mouth position, the posterior band of the disc is located superior to the condyle in which the posterior band of the TMJ
disc is at the apex of the condylar head (12 o’clock position). When the jaw is opened, the disc remains interposed between the osseous
components and moves anteriorly in a synchronized fashion. In the coronal plane of imaging, the disc is centered perfectly on the condylar
head.

Anterior disc displacement with reduction (ADDwR): an intracapsular biomechanical disorder involving the condyle-disc complex. In the
closed-mouth position, the disc is in an anterior position relative to the condylar head, and the disc intermittently reduces with the opening
of the mouth. When the disc does not reduce with the opening of the mouth, an intermittent limited mandibular opening occurs. When a
limited opening occurs, a maneuver may be needed to unlock the TMJ. Medial and lateral displacement of the disc may also be present.
Clicking, popping, or snapping noises may occur with disc reduction.

Anterior disc displacement without reduction (ADDwoR): an intracapsular biomechanical disorder involving the condyle-disc complex. In
the closed-mouth position, the disc is in an anterior position relative to the condylar head, and the disc does not reduce with the opening of
the mouth. Medial and lateral displacement of the disc may also be present. This disorder is associated with a persistent limited mandibular
opening that does not reduce with the clinician or patient performing a manipulative maneuver.
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The first task to build consensus clustering involves the
construction of an n × n “agreement matrix” based on input
clustering results. Thus, an estimation was made for the
range for the appropriate number of clusters using k-means
clustering.

k-means clustering is one of the most commonly used
unsupervised machine learning algorithm for partitioning a
given data set into a set of k groups, where k represents the
number of groups prespecified by the observers. It classifies
objects within the same cluster as similar as possible (i.e.,
high intraclass similarity), whereas it classifies objects from
different clusters as dissimilar as possible (i.e., low interclass
similarity). In k-means clustering, each cluster is represented
by its center which corresponds to the mean of points
assigned to the cluster [23].

After building up the range, the number of clusters that
gave the highest median cluster consensus over all clusters
was chosen. Cluster consensus was defined as the average
consensus between all pairs of features belonging to the same
cluster.

Cluster consensus (range [1,–1]) indicates the robustness
(stability) of a cluster over resampling. A qualitative categori-
zation of cluster stability was defined as follows: consensus
< 0:5, poor stability; 0:5 ≤ consensuses < 0:75, moderate
stability; and consensus ≥ 0:75, high stability. Consensus
clustering was performed using the Radcloud platform.

2.6. Statistical Analysis. All statistical analyses were per-
formed on the Radcloud platform. Computer-generated ran-
dom numbers were used to assign 80% of the VOIs to the

training data set and 20% of VOIs to the validation data set.
Six classifiers, including logistic regression (LR), random for-
est (RF), decision tree (DT), k-nearest neighbors (KNN),
XGBoost, and support vector machine (SVM) were used for
the model building which could predict the TMJ pathologies.
The performance of models was evaluated by sensitivity,
specificity, and ROC curve. The optimal cutoff value was
selected as the point when the sensitivity plus specificity

Closed mouth Opened mouth

(a)

(b)

(c)

(d)

(e)

Figure 3: MRI images demonstrating degenerative joint disease in
series.

Disk position

Normal

Anterior disc
displacement

with
reduction

Anterior disc
displacement

without
reduction

Closed mouth Open mouth

Figure 2: MRI images demonstrating normal and anterior disc
locations with and without reduction.
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was maximal. The AUC and prediction accuracy were
calculated in both the training and validation sets. Then,
we used four indicators as well including P
(precision = true positives/ðtrue positives + false positivesÞ),
R (recall = true positives/ðtrue positives + false negativesÞ),
F1-score (F1 − score = P ∗ R ∗ 2/ðP + RÞ), and support (total
number in test set) to evaluate the performance of classifiers.

3. Results

3.1. Subjective Evaluation. The distribution of disc displace-
ments in the patient group (n = 107) according to the exam-
ination criteria is shown in Table 2. MRI examination
showed that 78.5% of the patients had disc displacements.
It also showed that 46 joints (46/214) were normal in the sag-

ittal slices although they were symptomatic clinically. Disc
displacements were found in 168/214 (ADDwR+ADDwoR)
in the whole group. ADDwR was the most common with
74.4% (125/168), while ADDwoR was in 25.6% of the
patients (43/168). Normal function with the normal osseous
condition was noted in all the joints that had discs in the
superior position. Moreover, subjective evaluation of TMJ
condyle showed that ART was more common in patients
with ADDwoR than other types of disc displacement. ART
was observed in 49 TMJs with ADDwR (39.2%) and 27 TMJs
with ADD woR (62.7%).

3.2. Machine Learning and Radiomic Results. For further
analysis with machine learning, disc displacements were clas-
sified for machine learning as follows: normal and anterior

(a) (b)

Figure 4: Cluster consensus maps of (a) TMJ condyle and (b) TMJ disc. Note that condyle category 1 means normal (without any osseous
change) while category 2 means ART (with any osseous changes); TMJ disc category 1 means normal, while category 2 means anterior
disc displacement.

Table 3: Radiomic features selected for quantifying the heterogeneity differences.

Radiomic group
Associated

filter
No. of features

(n = 56) Radiomic features

First-order
statistics

None 18
Energy, total energy, entropy, minimum, 10 percentile, 90 percentile, maximum, mean,
median, interquartile range, range, mean absolute deviation, robust mean absolute

deviation, root mean square, standard deviation, skewness, kurtosis, variance

Shape None 8
Volume, surface area, surface volume ratio, spherical disproportion, maximum 3D
diameter, maximum 2D diameter column, maximum 2D diameter row, elongation

Texture features GLCM 15
Autocorrelation, average intensity, cluster prominence, cluster shade, cluster tendency,

contrast, difference average, difference entropy, difference variance, dissimilarity, entropy,
sum average, sum entropy, sum variance, sum squares

Texture features GLSZM 8
Large-area emphasis, gray-level nonuniformity, size zone nonuniformity, gray-level
variance, zone entropy, high-gray-level zone emphasis, small-area high-gray-level

emphasis, large-area high-gray-level emphasis

Texture features GLRLM 7
Gray-level nonuniformity, run length nonuniformity, gray-level variance, run entropy,
high-gray-level run emphasis, short-run high-gray-level emphasis, long-run high-level

emphasis

Label: GLCM= gray-level cooccurrence matrix; GLSZM= gray-level size zone matrix; GLRLM= gray-level run length matrix.
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disc displacement (ADDw+ADDwoR). Condyles were classi-
fied as follows: (Figure 2) normal (without any osseous
change) and ART (with any osseous changes) (Figure 3).

Of all 90 identified radiomic features, the Radcloud plat-
form selected 56 features that can be calculated and associ-
ated with features for TMJ pathologies (both for condyle
and TMJ disc changes) from MR images (Table 3).

Figure 4 depicts a CI heat map of radiomic features in the
validation cohorts of TMJ condyle and TMJ, and it was
observed that 56 features had significant prognostic perfor-
mance (CI > 0:5) to differentiate from normal to ART and
from normal to ADD.

These features were grouped into three groups. Group 1
(first-order statistics) consisted of 18 descriptors that quanti-
tatively delineated the distribution of voxel intensities within
the MR image through commonly used and basic metrics.
Group 2 (shape- and size-based features) contained 8 two-
and three-dimensional features that reflect the shape and size
of the region. Calculated from gray-level run length and gray-
level cooccurrence texture matrices, there were 30 textural
features that can quantify region heterogeneity differences.

ROC curve analysis results are shown in Figure 5 for the
training set and validation set. For the selection of radiomic
features, the AUC of KNN and RFmachine learning methods
was high, with a range of 0.89 and 0.77 for the training set
and validation set, respectively. Table 4 summarizes the four
indicators (precision, recall, F1-score, and support) for six clas-
sifiers. For condylar changes in KNN and RF, classifiers were
the best methods in training and validation sets on diagnostic
performance by four indicators. Moreover, several radiomic
features were selected to identify condylar changes as Large-
Area High-Gray-Level Emphasis, Gray-Level Nonuniformity,
Long-Run Emphasis, and Long-RunHigh-Gray-Level Empha-
sis, and also Flatness and Volume for shape radiomics.

For disc displacement, ROC curve analysis results are
shown in Figure 6 for training and validation sets for disc dis-
placement. The AUC of the RF machine learning method
was medium to high, with a range of 0.99 and 0.74 for the
training set and validation set, respectively. The variance
threshold method was used to select theKbest methods from
56 features. In the final stage, the features that did not reach
statistical significance dropped, and finally, 4 features were
selected, namely, Average Intensity, Sum Average, Spherical
Disproportion, and Entropy (Figure 7). For disc displace-
ments, the RF classifier was the best method in the validation
set on diagnostic performance by four indicators (Table 5).
KNN and RF were found to be the best methods for identify-
ing the mandibular condyle changes (Figure 8), whereas the
RF classifier was the best machine learning approach for
quantifying TMJ disc placements (Figure 9) on MR images.

4. Discussion

The use of a machine learning system as an AI approach with
the application of radiomic features is limited in the dento-
maxillofacial field. Hence, in this study, a machine learning
approach to identify condyle bone changes and disc displace-
ments was presented.

Several previous studies indicated the use of gray-level
texture analysis for TMD use using CT/CBCT images. Cara-
mella et al. [24] demonstrated gray-level texture analysis
should be taken carefully since there has been a difference
in CT or CBCT acquisition protocols and reconstruction
algorithms. A recent study by Bianchi et al. [18] standardized
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Figure 5: ROC analysis by six classifiers of the training set and the
validation set for mandibular condyle: “1” indicates normal; “2”
indicates degenerative joint diseases.

6 BioMed Research International



these variables and validated them using different software.
They found that the variables that did not present such
distinction between the sample averages were mainly correla-
tion for GLCM and GLRLM, i.e., Long-Run Emphasis and
Long-Run High-Gray-Level Emphasis. Based on their results,
they concluded that CBCT Texture Analysis can be used for
differentiating mandibular condyle changes. Recent studies
also showed that GLCM and GLRLM textural features are
potential diagnostic markers of TMJ osteoartrosis [25, 26].
The previous studies indicated a high and significant correla-
tion for bone morphometry and all the GLCM features, with
an exception for two GLRLM variables, namely, Gray-Level
Nonuniformity and Short-Run Emphasis in Bianchi et al.’s
study [18]. In this study, in line with previous studies, a high
correlation was found for all the GLCM features and correla-
tion was found for GLSZM features such as Large-Area
High-Gray-Level Emphasis and Gray-Level Nonuniformity
and GLRLM features Long-Run Emphasis and Long-Run
High-Gray-Level Emphasis. Our results also showed the
Gray-Level Nonuniformity feature for identifying the condy-
lar changes in contrast to Bianchi et al.’s [18] study. However,
it should be stated that previous studies were conducted
utilizing CT/CBCT imaging; however, in this study MRI,
was used for radiomic identification. For TMJ disc displace-
ment, so far no study attempted to identify the MRI radiomic
features. Based on the results of this study, Average Intensity,
Sum Average, Spherical Disproportion, and Entropy can be
used for disc displacement identification.

Different machine learning strategies, such as k-nearest
neighbors, support vector machines, or random forest deci-
sion trees, can be applied to construct the mapping of a given
training set and a given set of features. During training, the

parameters that define the mapping, whose representation
depends on the chosen learning strategy, are iteratively
refined such that estimation performance is maximized on
the training set itself; together with this evaluation, the differ-
ence between the given ground truth for each image and in
the training set can be evaluated. The KNN classifier is one
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Figure 6: ROC analysis by six classifiers of the training set and the
validation set for TMJ disc: “1” indicates normal. “2” indicates
anterior disc displacement.

Table 4: Evaluation for diagnostic performance by four indicators
for mandibular condyle: precision, recall, F1-score, and support in
the training set. “1” indicates normal. “2” indicates degenerative
joint diseases.

Indicators KNN SVM XGBoost RF LR DT

Training

1

Precision 0.83 0.79 0.91 0.95 0.81 0.88

Recall 0.92 1.00 0.98 1.00 0.98 0.98

F1-score 0.88 0.88 0.95 0.97 0.89 0.94

Support 53 53 53 53 53 53

2

Precision 0.50 0.00 0.90 1.00 0.67 0.80

Recall 0.29 0.00 0.64 0.79 0.14 0.74

F1-score 0.36 0.00 0.75 0.88 0.24 0.76

Support 14 14 14 14 14 14

Testing

1

Precision 0.81 0.78 0.81 0.78 0.78 0.70

Recall 0.93 1.00 0.93 1.00 1.00 0.86

F1-score 0.87 0.88 0.87 0.88 0.88 0.83

Support 14 14 14 14 14 14

2

Precision 0.50 0.00 0.50 0.00 0.00 0.33

Recall 0.25 0.00 0.25 0.00 0.00 0.25

F1-score 0.33 0.00 0.33 0.00 0.00 0.29

Support 4 4 4 4 4 4

LR: logistic regression; RF: random forest; DT: decision tree; KNN: k-nearest
neighbors; XGBoost; SVM: support vector machine.
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of the popular image classification algorithms that directly
calculates image to image distances in comparison with other
classifiers that need a training phase to calculate the distance
between an image and a class [27]. Meanwhile, random for-
ests or random decision forests are an ensemble learning
method for classification, regression, and other tasks that
operate by constructing a multitude of decision trees at train-
ing time and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of
the individual trees [28].

In a recent study [27], researchers classified TMJ con-
dyles as normal and TMD and used CBCT images. They
found that KNN has been the best classifier in detecting
patients from healthy individuals with a 92% accuracy, 94%
sensitivity, and 90% specificity. Our study is in line with
Haghnegahdar et al.’s study [29].

There are several limitations to the current study.
Although the results of this study are significant, the results

of this study remain suggestive and have to be confirmed
by a study with a larger sample size especially predicting
various disc displacements such as partial or sideway disc
displacements with and without reduction. In this study, we
did not attempt to differentiate ADDw and ADDwoR cases,
and further studies should be conducted for identifying the
reduction state. On the other hand, other clinical parameters
have to be correlated with radiomic features to understand
whether these parameters are related to the TMJ pathologies
such as biomarkers. This study may also be conducted using
magnetic resonance imaging (MRI) radiomic features.

Considering that machine learning is a subdivision of
artificial intelligence (AI), and taking into account that AI
software in general is only able to “learn” by itself after being
induced to that, possible diagnostic divergences made by
humans may constitute a bias to the software learning
process. More robust retrospective and prospective studies
will be required to ensure clinical applicability. Future studies

Table 5: Evaluation for diagnostic performance by four indicators set for TMJ disc: precision, recall, F1-score, and support in the training set.
“1” indicates normal. “2” indicates anterior disc displacement.

Indicators KNN SVM XGBoost RF LR DT

Training

1

Precision 0.84 0.77 0.88 0.999 0.80 0.78

Recall 0.95 1.00 0.90 0.999 0.93 0.89

F1-score 0.89 0.87 0.89 0.999 0.86 0.86

Support 40 40 40 40 40 40

2

Precision 0.71 0.00 0.64 1.00 0.50 0.54

Recall 0.42 0.00 0.58 1.00 0.25 0.28

F1-score 0.53 0.00 0.61 1.00 0.33 0.48

Support 12 12 12 12 12 12

Testing

1

Precision 0.77 0.79 0.85 0.79 0.79 0.73

Recall 0.91 1.00 1.00 1.00 1.00 0.81

F1-score 0.83 0.88 0.92 0.88 0.88 0.77

Support 11 11 11 11 11 11

2

Precision 0.00 0.00 1.00 0.00 0.00 0.50

Recall 0.00 0.00 0.33 0.00 0.00 0.33

F1-score 0.00 0.00 0.50 0.00 0.00 0.40

Support 3 3 3 3 3 3

F_classif scores of the features

Original_glcm_AverageIntensity

Original_glcm_SumAverage

Original_shape_SphericalDispropotion

Original_glcm_entropy

0 0.01 0.02 0.03 0.04

Figure 7: The selection of K best methods to further evaluate the radiomic with F classifier scores for TMJ disc displacements.
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will be aimed at exploring different approaches in presenting
radiologists with model output assessments, including TMD
risk calculations. Moreover, validation studies need to be car-
ried out for assessing the effect of different MRI protocols on

feature detection and AI performance. Another opportunity
would be to apply similar modeling techniques to routine
diagnostic CBCT, aiding detection and management of
TMD pathologies.

Patient
result

Target class
resulting class

Closed mouth

Opened mouth

Normal
Normal

Anterior displacement
Anterior displacement

Normal
Anterior displacement

Classified correctly
(a) (b) (c)

Classified correctly Classified correctly

Figure 9: Examples of classifications made with the random forest model to determine the disc location.

Patient
result

Target class
resulting class

Closed mouth

Opened mouth

Normal
Normal

Degenerative joint disease
Degenerative joint disease

Normal
Degenerative joint disease

Classified correctly
(a) (b) (c)

Classified correctly Classified correctly

Figure 8: Examples of classifications made with a random forest model for degenerative joint disease.
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5. Conclusions

This study has proposed a machine learning model by KNN
and RF analysis on TMJ MR images, which can classify the
condylar changes and TMJ disc displacements. This study
also demonstrated that the combination of specific MRI-
based radiomic features with image variables can predict
TMJ pathologies.
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