
Research Article
A New Stemness-Related Prognostic Model for Predicting the
Prognosis in Pancreatic Ductal Adenocarcinoma

Xiao-Yan Huang,1 Wen-Tao Qin,2 Qi-Sheng Su ,3 Cheng-Cheng Qiu,1 Ruo-Chuan Liu,1

Shan-Shan Xie,1 Yang Hu,2 and Shang-Yong Zhu 1

1Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, 530021 Nanning,
Guangxi, China
2Department of Bone and Joint Surgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, 530021 Nanning,
Guangxi, China
3Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, 530021 Nanning,
Guangxi, China

Correspondence should be addressed to Shang-Yong Zhu; zhushangyongsound@163.com

Received 10 November 2020; Revised 17 June 2021; Accepted 24 September 2021; Published 11 October 2021

Academic Editor: Xiaoping Liu

Copyright © 2021 Xiao-Yan Huang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Objective. This study is aimed at identifying stemness-related genes in pancreatic ductal adenocarcinoma (PDAC). Methods. The
RNA-seq data of PADC patients were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression
(GTEx) databases. The mRNA expression-based stemness index (mRNAsi) and epigenetically regulated mRNAsi (EREG-
mRNAsi) of PADC patients were evaluated. The mRNAsi-related gene sets in PADC were identified by weighted gene
coexpression network analysis (WGCNA). The key genes were further analyzed using functional enrichment analysis. The
Kaplan-Meier survival analysis and the Cox proportional hazards model were used to evaluate the prognostic value of the key
genes. Prognostic hub genes were used to establish nomograms. The receiver operating characteristic (ROC) curves,
concordance index (C-index), and calibration curves were used to assess the discrimination and accuracy of the nomogram.
Finally, these results were validated in the Gene Expression Omnibus (GEO) database. Results. A total of 36 key genes related
to mRNAsi were identified by WGCNA. A prognostic gene signature compromising seven genes (TPX2, ZWINT, UBE2C,
CCNB2, CDK1, BUB1, and BIRC5) was established to predict the overall survival (OS) of PADC patients. The Cox regression
analysis revealed that the risk score was an independent prognostic factor for PADC. Patients were then divided into the high-
risk and low-risk groups. The ROC curves, C-index, and calibration curves indicated good performance of the prognostic
signature in the TCGA and GEO datasets. Moreover, the nomogram incorporating clinical parameters showed better
sensitivity and specificity for predicting the OS of PADC patients. Conclusion. The stemness-related prognostic model
successfully predicted the OS of PADC patients and could be used for the treatment of PADC.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most prev-
alent type of pancreatic neoplasm, accounting for more than
90% of the total number of pancreatic tumors. The 5-year
survival rate of PDAC is less than 10%. Moreover, PDAC
is expected to become the second leading cause of cancer-
related death by 2030 [1, 2]. Surgical resection represents
the only chance for cure and the advances in adjuvant che-

motherapy have improved the long-term outcomes of
PDAC patients [3]. Early diagnosis and effective interven-
tion are the major factors for favorable outcomes in PADC.
However, current treatments often cause trauma, which
impairs the quality of life of patients. Molecular targeted
therapy, which inhibits cancer growth, progression, and
metastasis by targeting specific molecular biomarkers, has
emerged as a promising treatment strategy with better effi-
cacy and fewer trauma-related complications [4]. However,
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the identification of molecular biomarkers remains challeng-
ing due to insufficient understanding of the pathogenic
mechanisms of PDAC.

Cancer stem cells (CSCs) have been shown to promote
tumor recurrence, metastasis, and drug resistance owing to
their self-renewal ability, proliferation capacity, and multili-
neage differentiation potential [5]. Emerging evidence has
indicated that the stemness of CSCs is associated with high
intratumoral heterogeneity in most types of cancers, includ-
ing PADC [6, 7]. Intratumoral heterogeneity, which includes
phenotypic diversity (e.g., cell surface markers and epige-
netic abnormality), has been reported to drive disease pro-
gression and cause treatment failure. These markers and
gene mutation types are often used for pathological classifi-
cation and clinical treatment of tumors [8]. Pancreatic CSCs,
first described in 2007 [9], account for less than 1% of all
pancreatic cancer cells [10]. They are responsible for the
development, metastasis, and chemoresistance of PDAC.
The activation of CSC-related biomarkers and signaling
pathways, including CD133, CD24, CD44, MYC, WNT/β-
catenin, and Notch, has been reported in PDAC [11].
Although previous studies have explored the unlimited
self-renewal capacity of pancreatic CSCs and their roles
in tumorigenesis and chemoresistance, investigations on
the molecular mechanisms of pancreatic CSCs are still
warranted. In this study, we aimed to uncover the hetero-
geneity of PADC from the perspective of the stemness fea-
tures of CSCs.

The stemness properties of CSCs are mainly character-
ized by mRNA expression-based stemness index (mRNAsi),
such as epigenetically regulated mRNAsi (EREG-mRNAsi)
[5]. The mRNAsi score has been used to identify new CSC
markers and to indicate carcinogenic dedifferentiation [12].
Previous studies have reported that the mRNAsi score is
associated with the stemness features of CSCs and can be
calculated by the one-class logistic regression (OCLR)
machine learning algorithm, suggesting a significant correla-
tion between mRNAsi and the prognosis of PADC [5]. How-
ever, genes related to the stemness features of CSCs have not
been fully identified and the biological functions of these
genes remain largely unknown. The analysis of differentially
expressed genes (DEGs) has been used to identify key genes
related to tumorigenesis, but it is unable to elaborate the
connections between those genes. The gene network analysis
is a tool used to investigate the complex process of tumori-
genesis [8]. The weighted gene coexpression network analy-
sis (WGCNA) has been used to explore coexpression
modules associated with the clinical characteristics of cancer
patients, including mRNAsi [13, 14].

In the current study, WGCNA was used to identify
stemness-related modules and key genes. The functions of
these genes during the development of PADC were explored
using Gene Ontology (GO) analysis, Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis, and Gene Set Enrich-
ment Analysis (GSEA). A novel prognostic model compris-
ing seven genes (i.e., TPX2, ZWINT, UBE2C, CCNB2,
CDK1, BUB1, and BIRC5) was then constructed and vali-
dated using the TCGA and GEO databases. Finally, prognos-
tic genes were used to establish nomograms. The new model

and nomogram might be a powerful tool for the prediction
of the prognosis of PADC patients.

2. Material and Methods

2.1. Dataset Sources. Patients who met the following criteria
were selected from the TCGA PADC cohort: (1) patients
with histologically confirmed primary PADC, (2) patients
with RNA-seq data, and (3) patients with complete clinico-
pathological data, such as age, gender, TNM stage, grade,
and overall survival (OS). The corresponding RNA-seq data
and clinicopathological information of PADC patients were
collected from the TCGA in the GDC database (https://
portal.gdc.cancer.gov/). The expression of genes in normal
tissues was obtained from the GTEx database. All data were
available on September 9th, 2020. The RNA-seq data, includ-
ing 169 normal samples and 142 tumor samples, were
merged into a matrix file using a merge script in Perl lan-
guage (https://www.perl.org/).

2.2. mRNAsi in PADC and Its Clinical Significance. The
mRNAsi used for assessing the degree of oncogenic dediffer-
entiation was obtained from previous studies [5]. The
mRNAsi score of PADC samples was calculated using the
PADC dataset in the TCGA database by OCLR. The gene
expression-based stemness index ranges from low (zero) to
high (one) stemness. Significant differences in mRNAsi
between tumors and nontumors were determined by the
Wilcoxon test. To evaluate the prognostic value of the
mRNAsi score, an OS analysis according to the mRNAsi
score was performed using the “survival” package in the R
software (v3.6.1, https://CRAN.R-project.org/package=
survival). The Kaplan-Meier (K-M) analysis of samples with
high or low mRNAsi scores was carried out. The Wilcoxon
test was then performed to investigate the correlation
between the mRNAsi score and patient’s age.

2.3. DEGs in PADC. The Wilcoxon test was used to identify
DEGs between PADC and normal tissue samples. A false
discovery rate (FDR) of <0.05 and a ∣log2 fold change ðFCÞ
∣ of ≥ 1 were set as the cut-off criteria for defining DEGs.

2.4. WGCNA Construction and Module Preservation. An R
package “WGCNA” was used to investigate the correlations
among genes by constructing modules. The modules were
obtained by clustering genes with similar expression patterns
[14]. A total of 1750 DEGs with high precision and accuracy
were selected for subsequent analysis. To achieve high-scale
independence and mean connectivity, the soft-thresholding
power was calculated using a gradient test ranging from 1
to 20 and determined by the pickSoftThreshold function.
Then, the topological overlap matrix (TOM) was calculated
based on the corresponding soft-thresholding power. The
TOM was used to identify the modules of highly coexpressed
genes and to make the networks less sensitive to spurious
connections. Genes with high absolute correlations were fur-
ther clustered into the same module. The modules were
defined by cutting the clustering tree into branches using a
dynamic tree cutting algorithm and then assigned to differ-
ent colors for visualization. The module dendrograms were
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constructed using hierarchical clustering analysis based on
TOM-based dissimilarity. To avoid oversplitting, correlated
modules (r < 0:25) were merged, and each module was
labeled with the corresponding color [15].

2.5. Identification of Modules Associated with Clinical
Characteristics. Module eigengenes (MEs) are considered
the major components in the principal component analysis
for each gene module. The expression patterns of all genes
can be summarized as a single expression profile within a
given module [16]. The gene significance (GS) was calcu-
lated to demonstrate the correlation between genes and clin-
ical characteristics. The module significance (MS), referring
to the average GS of all genes in the module, was used to
determine the correlation between modules and the charac-

teristics of samples. The module with a higher correlation
with the MS was identified for further analysis.

2.6. Identification of Key Genes in the Red Module. The key
genes in the coexpressed network were highly intercon-
nected with the nodes in a module and were used to explore
the biological functions of identified dysregulated genes [17].
The module membership (MM) was defined as the correla-
tion of the gene expression profile with MEs. The key genes
in the module were defined as cor. GS > 0:5 and cor. gene
MM> 0:8. The R package “corrplot” was used to calculate
Pearson’s correlation coefficient among these genes.

2.7. Functional and Pathway Enrichment Analyses. To inves-
tigate the biological functions of the key genes, GO and
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Figure 1: The differentially expressed of mRNAsi in different PADC subtypes. (a) Boxplots of mRNAsi in individual samples with age (over
65 or not). (b) Kaplan-Meier survival analysis showed that there were significantly differences between high mRNAsi and low mRNAsi
groups in PADC. (c, d) The volcano and heatmap showed the upregulated (red) and downregulated (green) genes in PADC.
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KEGG analyses were performed using the R package “clus-
terProfiler” [18, 19]. An FDR of ≤0.05 was considered statis-
tically significant. A protein-protein interaction (PPI)
network of the key genes in key modules was constructed
using the STRING (https://www.string-db.org/) [20]. Hub
nodes were identified when the combined score was ≥0.8,
and the connectivity degree was ≥20.

2.8. Establishment of a Prognostic Model. The K-M survival
analysis and the stratified Cox proportional hazards analysis
were used to evaluate the prognostic value of the key genes.
Then, the risk score of each prognostic gene was calculated
based on the sum of Si (expression level of the key gene)
and β (corresponding coefficient) generated from the Cox
model. PADC patients were divided into the high-risk and
low-risk subgroups according to the median risk score, and
their OS was analyzed using the K-M analysis. According

to the method proposed by Blanche et al. [21], the predictive
accuracy of each prognostic signature was accessed by calcu-
lating Uno’s inverse-probability of censoring weighting esti-
mation of the time-dependent receiver-operator
characteristic (ROC) area under the curve (AUC) values
(time spanning from 6 to 24 months) using the “timeROC”
package (version 0.3). Finally, the expression of the signature
genes was visualized in the heatmap using the R package
“pheatmap.”

2.9. Prognostic Value of the Prognostic Model. The risk scores
and clinicopathological parameters, including age, gender,
TNM stage, grade, OS, postoperative radiotherapy (postopera-
tive_tx_tx), radiotherapy, and alcohol consumption history,
were included in the univariate and multivariate Cox regression
analyses. Based on the results of the multivariate Cox regression
analysis, a nomogram was established using the “rms” package
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Figure 2: Identification of the hub modules in TCGA PADC cohorts. (a, A) The left scale free index indicates the correlation scale free fit
index (y-axis) and soft-thresholding power (x-axis). (B) The average connectivity (y-axis) corresponding to different soft-thresholding
power (x-axis). The approximate scale-free topology can be attained the soft-thresholding power of 11. (b) The red represents the
mRNAsi scores; the darker the color, the higher the value. (c) Heatmap of the correlation between module eigengenes and clinical traits.
The clinical traits include mRNAsi and EGER-mRNAsi. Each cell contains the corresponding correlations and p values. (d) The red
module represents the highest positive correlation with stemness characteristics of cancer stem cells (CSCs).
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(version 5.1.2) [22]. The nanogram was used to predict the 6-,
12-, and 24-month OS of PADC patients in the TCGA dataset.
Subsequently, a time-dependent ROC curve was plotted to
assess the sensibility and specificity of the nomogram using
the R package “timeROC.” The AUC was also calculated. The
predictive accuracy of the nomogram was assessed by the
nomogram calibration curve and Harrell’s C-index. The cali-
bration curve was plotted to determine the consistency between
the predicted and observed OS. The C-index was calculated

using a bootstrap method with 1000 resamples to assess the dis-
crimination ability of the nomogram.

2.10. Validation of the Prognostic Signature in the GEO
Database. To minimize bias caused by small sample size, the
prognostic capacity of the model was validated using the
GSE62452 dataset in the GEO database (http://www.ncbi.nlm
.nih.gov/geo/). The optimal risk score cut-off value for the
GEO dataset was the same as that for the primary TCGA
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Figure 3: The differential expression of 36 the stem cell signature genes in PADC. (a, b) The differential expression of 44 hub genes in red
module. (c) The interrelationship of the upregulated genes at transcriptional level.
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cohort. The survival curves of the low-risk and high-risk sub-
groups were plotted using the K-M method. The predictive
accuracy of the prognostic model was evaluated using ROC
curves. The performance of the diagnostic nomogram was
assessed by time-dependent ROC curves and calibration curves.

2.11. Gene Set Enrichment Analysis (GSEA). To identify the
potential function of the prognostic model, GSEA (https://
www.gsea-msigdb.org/gsea/index.jsp) was performed using
the GSEA software (v4.0.3). GSEA determines whether a
priori defined set of genes shows statistically significant, con-
cordant differences between two biological states [23]. Based
on the molecular signature database (v. 6.2), C2 (curated gene
sets), C5 (GO gene sets), and C6 (oncogenic signatures) were
analyzed to identify KEGG pathways, biological processes
(BP), cellular components (CC), molecular functions (MF),
and dysregulated oncogenic signatures. The samples in TCGA

were divided into two groups ( the high-risk score group vs.
low-risk score group) according to the median expression
value of each gene. An enriched gene set with a nominal p
value of <0.05, a |NES| of >1, and a FDR q value of <0.25
was considered statistically significant.

2.12. Statistical Analysis. Statistical analysis was performed
using the R software (v3.6.1). In the K-M survival analysis,
p value and hazard ratio (HR) with 95% confidence interval
(CI) were generated by the log-rank test and univariate Cox
proportional hazards regression analysis. Pearson’s Chi-
square test was performed to assess the significance between
groups. The results of multivariate Cox regression analysis
were visualized by the nomogram. C-index, time-dependent
ROC curves, and calibration curves were used to evaluate the
nomogram. A p value of <0.05 was considered statistically
significant.
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Figure 4: Functional enrichment analysis in the red module. (a, b) Functional analysis for 36 stemness-related genes of CSCs by GO and
KEGG analyses in PADC. (c) The protein-protein interaction network of 36 hub genes in PADC.
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3. Results

3.1. Data Processing and Survival Analysis. CSC-related
RNA-seq data were obtained from the TCGA PADC dataset,
including 142 PADC samples. The data of 169 normal sam-
ples were collected from the TCGA and GTEx databases.
The gene expression-based stemness index for PADC was
extracted by OCLR [5]. The mRNAsi indicates the degree
of similarity between tumor cells and stem cells. The
EGER-mRNAsi is an index that describes the epigenetic reg-
ulation of CSC-related genes. As shown in Figure 1(a), there
was a significant difference in age between those younger
than 65 and those older than 65 years. The survival analysis
showed that the level of mRNAsi was significantly different
from the survival time of PADC patients (Figure 1(b),
adjusted p < 0:0017), further suggesting that the stemness
features of CSCs were related to the survival outcomes of
PADC patients.

3.2. Identification of DEGs in PADC. A total of 1750 DEGs
were identified using the Wilcoxon test, including 845
downregulated genes and 905 upregulated genes. The
expression of these genes was visualized using the R package
“beeswarm.” The volcano plot and heatmap show the DEGs
between PADC and normal tissues (Figure 1(c)).

3.3. Construction of 14 Co-Expression Modules by WGCNA.
Based on DEGs, WGCNA was performed to identify
stemness-related modules. A power of β = 11 (scale-free R2

= 0:95) was set as soft threshold (power) to ensure a scale-
free network (Figure 2(a)). Then, we established a sample
dendrogram and a trait heatmap of mRNAsi and EGER-
mRNAsi (Figure 2(b)). According to the cluster analysis of
PADC, there were 14 different modules (module size ≥ 50,
cut height ≥ 0:25) in the network (blue, tan, brown, green-
yellow, cyan, green, magenta, red, purple, yellow, black, tur-
quoise, and grey) (Figure 2(c)). Three modules were related
to the mRNAsi. The red module showed the highest positive
correlation with the mRNAsi (Figure 2(c), r = 0:56, p = 2e
− 12). The blue module exhibited the most significant nega-
tive correlation with the mRNAsi (Figure 3(c), r = −0:78, p
= 4e − 28). Thus, the red module was used to further explore
the hub genes (Figure 2(d)).

3.4. Analysis of the Key Gene in the Red Module. Genes in the
same module exhibit common expression patterns. In the red
module, 36 key genes out of 1750 DEGs were related to the
mRNAsi. We further compared the DEGs with the minimum
p value (p < 0:01) in PADC and normal tissues and found that
all of them were upregulated in tumor tissues (Figure 3(a)).
Meanwhile, we generated a heatmap using the R package
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Figure 5: (a, b) Risk score analysis, survival status, and survival time between the two risk groups and expression distribution of the seven-
gene signature in the TCGA dataset.
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“ggpubr” to display the DEGs between tumor and normal tis-
sues (Figure 3(b)). Moreover, the relationships among key
genes were visualized in a heatmap (Figure 3(c), p < 0:01).

3.5. Functional Enrichment and PPI Network Analyses. To
further explore the biological functions of 36 key genes in
PADC, GO enrichment and KEGG pathway analyses were
performed. The functions of these genes were mainly
enriched in 30 pathways, including BP (biological process),
CC (cellular component), and MF (molecular function)
(Figure 4(a)). BP was found to be relevant to mitotic nuclear
division. CC was related to the spindle. MF includes micro-
tubule binding. As shown in Figure 4(b), KEGG pathway
analysis indicated that hub genes were enriched in the cell
cycle signaling pathway. The signaling pathway with an
FDR-corrected p value of <0.01 was considered significant.
Furthermore, a PPI network of key genes was constructed
to identify gene-gene interaction (Figure 4(c)).

3.6. Identification and Evaluation of the Stemness-Related
Prognostic Model. To evaluate the prognostic value of

stemness-related genes, a univariate Cox regression analysis
was performed. The results showed that 36 key genes were
associated with the OS of PADC patients. Among them, 35
OS-related genes were identified as risk factors
(Figure 5(a)). Next, a prognostic model comprising seven
genes was developed based on the red module using the
stepwise multivariate Cox regression analysis. The seven
genes were TPX2, ZWINT, UBE2C, CCNB2, CDK1, BUB1,
and BIRC5. The risk score was calculated based on the
Cox coefficients of these genes:

Risk score = 5:05684 ∗ Exp TPX2ð Þ − 4:06061 ∗ Exp ZWINTð Þ
− 3:02086 ∗ Exp UBE2Cð Þ + 3:3769 ∗ Exp CCNB2ð Þ
+ 3:716557 ∗ Exp CDK1ð Þ − 2:59406 ∗ Exp BUB1ð Þ
− 1:12413 ∗ Exp BIRC5ð Þ:

ð1Þ

Then, patients were divided into two groups, the high-
risk group (risk score ≥ 1:103) and the low-risk group
(risk score < 1:103). The survival of all PADC patients and
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Figure 6: Establishment and verification of the prognostic model. (a) The survival time of patients in the high-risk group was significantly
longer than that of patients in the low-risk group (p < 0:0001). (b) The AUC of the ROC and risk score models for predicting 6-, 12-, and 24-
month survival showed good accuracy. (c) Calibration plot for predicting probabilities of 6-, 12-, and 24-month OS of primary PADC
patients in the TCGA database.
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the heatmap of seven prognostic genes are shown in
Figure 5(b). The K-M curves revealed that the high-risk
group had a significantly worse prognosis compared to the
low-risk group (p < 0:0001) (Figure 6(a)). Furthermore, in
the validation dataset, the 6-, 12-, and 24-month AUCs of
the time-dependent ROC curves were 0.815, 0.767, and
0.744, respectively (Figure 6(b)), suggesting high efficiency
of the seven-gene prognostic signature in predicting the OS
of PADC patients. The C-index of the risk score was 0.718
(95% CI; 0.148–1.289). The calibration curves of the nomo-
gram for 6-, 12-, and 24-month survival probabilities are
shown in Figure 6(c).

3.7. Construction and Validation of a Prognostic Nomogram.
A prognostic nomogram for predicting the OS of PADC
patients was developed based on the clinical data of 311
patients from the TCGA database. The parameters of the
nomogram included risk score, gender, tumor size, TNM
stage, grade, postoperative_tx_tx, radiotherapy, and alcohol
consumption history. The forest plots of the univariate and
multivariate Cox regression analyses based on 8 clinicopath-
ological characteristics were used to evaluate the indepen-
dent prognostic value of the signature (Figures 7(a) and
7(b)). The univariate Cox regression analysis showed that
the risk group (HR = 1:975, p < 0:001), postoperative_rx_tx
(HR = 5:600, p < 0:001), and radiation therapy (HR = 0:398
, p = 1:435) were protective factors. Furthermore, the multi-
variable Cox regression analysis revealed that the risk group

(HR = 1:779, p < 0:001), tumor size (HR = 1:311, p < 0:043),
grade (HR = 0:866, p < 0:688), and postoperative_rx_tx
(HR = 4:026, p < 0:001) were statistically significant. The C
-index of the nomogram was 0.77373974 (0.6983633-
0.8491161). The ROC curves demonstrated that risk score
(0.706), gender (0.566), tumor size (0.618), grade (0.597), T
stage (0.501), N stage (0.530), M stage (0.507), stage
(0.539), postoperative_rx_tx (0.755), radiotherapy (0.580),
and alcohol consumption history (0.572) had a high predict-
ability (Figure 7(c)).

3.8. Validation of the Seven-Gene Prognostic Model. Next,
we evaluated the predictive power of the prognostic gene
signature in the PADC cohort from the GEO database
(GSE62452). Similar procedures were carried out to assess
the performance of the stemness index-associated signature.
Patients were divided into the low-risk and high-risk groups
according to their risk scores. Then, the OS of the two groups
was compared. As shown in Figure 8(a), the high-risk cohort
had a significantly poorer prognosis compared with the low-
risk cohort (p < 0:021). Also, the time-dependent ROC
showed that the AUC for 24-month OS was 0.714
(Figure 8(b)). The C-index for external validation set was
0.698 (95% CI, 0.625–0.770). The calibration curves of the
nomogram predicting the 6-, 12-, and 24-month OS are
shown in Figure 8(c). These results were consistent with
those obtained in the TCGA database, suggesting the
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Figure 7: Analysis of clinicopathological information with OS. (a) Univariate and (b) multivariate analyses of clinicopathological
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potential use of the seven-gene prognostic model in the diag-
nosis and treatment of PADC.

3.9. Gene Set Enrichment Analysis (GSEA). To further
explore the functions of the seven genes in PADC, GSEA
was performed. The results showed that these genes were
associated with cell cycle mitotic, homologous recombina-
tion, mitotic nuclear division, oocyte meiosis, DNA replica-
tion, and the p53 signaling pathway (Figure 9).

4. Discussion

PDAC is a heterogeneous malignancy with high morbidity
and mortality. CSCs, a small proportion of cells within the
tumor, possess unlimited proliferative potential and share
similar properties with cancer cells. Previous studies have
suggested that the regulatory mechanisms underlying the
self-renewal of stem cells and tumor cells are similar. More-

over, tumor cells may be derived from normal stem cells
[24–26]. CSCs were first identified in a leukemia model, in
which CD34+CD38− leukemic cells showed the characteris-
tics of bone marrow hematopoietic stem cells [27, 28]. Solid
tumor CSCs (CD44+CD24−/lowLineage− cells) have been
found in breast, ovarian, prostate, colon, pancreatic, liver,
and lung cancers, suggesting that CD34+ and CD44+ are typ-
ical CSC markers [29, 30]. In addition, CSCs in PDAC have
been identified using cell surface markers, including CD133,
CD44, CD24, and epithelial-specific antigen (ESA)/EpCAM
[31]. It has been shown that the metastasis, chemoresistance,
and relapse of PDAC are driven by CSCs. However, the
molecular mechanisms responsible for the stemness of pan-
creatic CSCs remain unclear. A better understanding of the
functions of these cells and the development of CSC inhibi-
tors may contribute to tumor eradication [32–34].

The existence of CSCs in tumor tissues and the stem-like
features of CSCs suggest that drugs targeting the stemness
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Figure 8: Validation of the seven-gene prognostic signature for PADC patients in GEO database. (a) Kaplan-Meier curves of OS for patients
in the low- and high-risk groups (p < 0:0001). (b) ROC curves for 24 months. (c) Calibration curves for 6-, 12-, and 24-month OS of PADC
patients in GEO datasets.
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characteristics of CSCs may be used for cancer treatment.
Tathiane et al. proposed the use of mRNAsi and EGER-
mRNAsi to evaluate the stemness characteristics of CSCs
[5]. Although the risk stratification of the stemness index
has been investigated in pancancer populations, the compre-
hensive prognostic value of the stemness index for PADC is
still unknown. Moreover, few studies have analyzed the
genes related to the stemness characteristics of CSCs in
PADC. Therefore, we aimed to develop a stemness-related
prognostic signature for patients with PADC.

In this study, the K-M curves showed that there was a
significant difference in the OS between the groups with
low and high mRNAsi (mRNAsi/tumor purity) scores. The
stemness index-related modules and genes were identified
using WGCNA. The red module showed the highest positive
correlation with the mRNAsi. A total of 36 genes related to
the stemness of CSCs were obtained from this module. The
GO, KEGG, and GSEA analyses showed that these genes
were enriched in mitotic nuclear division, nuclear chromo-
some segregation, spindle checkpoint function, microtubule
binding, and cell cycle. Next, a model comprising seven
key mRNAsi-related genes (i.e., TPX2, ZWINT, UBE2C,
CCNB2, CDK1, BUB1, and BIRC5) was constructed using
univariate and multivariate Cox regression analyses. We
found that the survival model accurately predicted the prog-
nosis of PADC patients in both the TCGA and GEO data-
bases. The ROC curves showed that this model has high
predictive power for predicting the OS of PADC patients.
Furthermore, some prognostic parameters (i.e., tumor size,
risk score, and radiotherapy) were significantly correlated
with the OS of PADC patients. Taken together, these results
indicated that these genes might be related to the occurrence
and development of PADC through regulating cell cycle,

which were consistent with the study by Bai et al. [35]. Pro-
spective studies are needed to verify the prognostic value of
the stemness index-related signature in PADC.

Previous studies have reported that the dysregulation of the
seven key genes contributes to the development of tumors
[36–38]. In addition, these hub genes are closely associated
with cell cycle events, such asmitotic cyclin destruction and cell
cycle progression, and may be involved in carcinogenesis.
TPX2 encodes a microtubule-associated protein. The upregula-
tion of TPX2 levels has been found to promote the proliferation
and invasion of renal cancer cells [39]. ZWINT and CDK1,
which correct erroneous centromere-microtubule attachment
and regulate the mitotic spindle checkpoint, are mainly
involved in cell cycle control in adrenocortical carcinoma
[40]. The dysregulation of UBE2C is associated with the upreg-
ulation of Ki-67, a proliferative marker, and poor overall sur-
vival in colorectal carcinoma [41, 42]. Aaron et al. showed
that aberrant expression of CCNB2 was closely related to cell
cycle-driven subpopulation in advanced prostate cancer [43].
The BIRC5 gene encodes survivin, an antiapoptotic protein
that has been defined as a target in many cancers, including
PDAC, and is overexpressed in PDAC [44, 45]. Few studies
have investigated the genes related to the stemness characteris-
tics of CSCs in PADC. Here, we showed that the seven genes
regulated cell division cycle in PADC, suggesting that they
may contribute to the initiation, metastasis, and recurrence of
PADC. These findings support the development of therapies
targeting the seven genes for PADC treatment. Future studies
on the molecular mechanisms of these genes and the develop-
ment of tailored targeted therapies are warranted.

5. Conclusion

In summary, we established a stemness index-related signa-
ture and developed a prognostic nomogram in combination
with prognosis-related clinicopathological characteristics.
This model might be used to predict the OS of patients with
PADC. Furthermore, TPX2, ZWINT, UBE2C, CCNB2,
CDK1, BUB1, and BIRC5 may orchestrate the stemness,
proliferation, and invasion of tumor cells. These genes might
be potential prognostic biomarkers and therapeutic targets
in PADC.
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