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Background. Slow transit constipation (STC) is characterized by persistent, infrequent, or incomplete defecation. Systematic
analyses of mRNA, lncRNA, and circRNA expression profiling in STC provide insights to understand the molecular
mechanisms of STC pathogenesis. The present study is aimed at observing the interaction of mRNAs, lncRNAs, and circRNAs
by RNA sequencing in vivo of STC. Methods. A rat model of STC was induced by loperamide. The expression profiles of both
mRNAs and miRNAs were performed by RNA sequencing. Enrichment analyses of anomalous expressed mRNAs, lncRNAs,
and circRNAs were performed in order to identify the related biological functions and pathologic pathways through the Gene
Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results. In total, 26435 mRNAs,
5703 lncRNAs, and 7708 circRNAs differentially expressed were identified between the two groups. The analyses of GO and
KEGG show that (1) upregulated genes were enriched in a positive regulation of GTPase activity, cell migration, and protein
binding and lipid binding and (2) GO annotations revealed that most trans-target mRNAs are involved in the regulation process
of immune signal together with the proliferation and differentiation of immune cells. Additionally, the protein-protein
interaction (PPI) network of differentially expressed (DE) mRNAs was constructed. Interestingly, all of the core lncRNAs and
their coexpression mRNAs in this network are downregulated. Moreover, downregulated circRNAs have a set of target mRNAs
related to immunoreaction, which was consistent with the overall tendency. Conclusion. Our investigation enriches the STC
transcriptome database and provides a preliminary exploration of novel candidate genes and avenues expression profiles in vivo.
The dysregulation of mRNAs, lncRNAs, and circRNAs might contribute to the pathological processes during STC.

1. Introduction

Slow transit constipation (STC) is one of the refractory diges-
tive tract diseases. Commonly, this syndrome concludes slow
colonic peristalsis and delayed excretion of intestinal con-
tents, except normal rectal discharge and normal pelvic floor
function, which is the most common subtype of functional
constipation [1]. Reference investigation shows that the inci-
dence of chronic constipation is increasing, even though it
has become one of the key factors that affect people’s quality
of life globally. The epidemiological survey of chronic consti-

pation shows that the incidence of chronic constipation is
9.9% in southern China, besides the prevalence rate signifi-
cantly increases with age [2]. According to the statistical data
of Europe and the United States, the incidence of constipa-
tion may be higher than expected. At least 65% of constipa-
tion patients are treated with laxatives on their own [3].
Patients with chronic constipation often have progressive
difficulty in defecation, abdominal distension, sometimes
they will gain introverted personality even depression. The
above syndrome seriously declines life quality and could lead
to complications (i.e., myocardial infarction, stroke, and
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colorectal cancer) [4]. Meanwhile, patients with intractable
constipation show obvious psychological problems, which
are often accompanied by anxiety, paranoia, obsessive-
compulsive disorder and social maladjustment. It affects life
quality and physical and mental health; with these, it causes
serious burden to the social economy [5].

Current increasing studies have shown that STC has
numerous pathogenesis and complex mechanism. Therefore,
it is difficult to fully clarify the pathogenesis from one facet.
Additionally, the clinical treatment is not sufficient [6, 7].
Long noncoding RNAs (lncRNAs), a little understood type
of transcribed RNA molecules, have over 200 nucleotides in
length and no significant protein-coding capacity, which
have been identified as the key regulators of various biologi-
cal functions [8, 9]. circRNAs are a genetic element, which
are evolutionarily conserved and covalently closed. Some of
them are rich in eukaryotes possessing cell-specific and
tissue-specific expression profiles [10].

To disclose complex and heterogenous mechanisms of
STC, we used a rat model of STC induced by loperamide
and simultaneously performed mRNA, lncRNA, and cir-
cRNA microarray analyses to identify mRNA, lncRNA, and
circRNA interactions, plus explored how these interactions
influence on the pathogenesis of STC.

2. Materials

2.1. Drugs and Reagents. Loperamide hydrochloride and 4%
paraformaldehyde were obtained from Sigma-Aldrich Co.,
Ltd. (St. Louis, MO, USA). Enzyme-linked immunosorbent
assay (ELISA) kits of gastrin (GAS), motilin (MTL), substance
P (SP), and 5-hydroxytryptamine (5-HT) were purchased
from (Biolegend, San Diego, USA). The anti-C-kit antibody
and AQP3 primary antibody were purchased from Protein-
tech Company (IL, USA). Microcentrifuge tubes, charcoal
powder, and TRIzol reagent were obtained from Nanjing
Institute of Built Bioengineering, Ltd. (Nanjing, China).

2.2. Animals.Male Sprague-Dawley rats aged 6-9 weeks were
purchased from the Jiangsu Laboratory Animal Centre in
Suzhou, China (License approval No.: SCXK [Su] 2017-
0007). They were fed at a room temperature of 26°C with
45%-55% of the humidity and 12 h light/dark cycles. The
environment was clean and quiet (low noise level ≤ 60dB)
in a well-ventilated place. All experiments involved in this
study were performed under the requirements of the Provi-
sion and General Recommendation of the Chinese Labora-
tory Association. The study was approved by the Medical
Research Committee on Animal Care and Use of Suzhou
TCM Hospital Affiliated to Nanjing University of Chinese
Medicine.

2.3. Methods

2.3.1. Loperamide-Induced Constipation Model. In this study,
animals were randomized into two groups: the control group
(n = 5) and Lop group (n = 5). Rats were given normal saline
in the control group, while the Lop group were induced with
4mg/kg loperamide (an antidiarrheal drug) suspension to

make the STC models (oral administration, twice per day:
09:00 and 17:00) for 14 days [11].

2.3.2. Parameters Evaluated. Fecal pellets of rats were col-
lected after treatment of 24h to collect their total number,
stool weight, and water content. All measurements were per-
formed five times.

2.3.3. Measuring Intestinal Charcoal Transit Ratio. The intes-
tinal motility by charcoal meal was assessed following Kim
et al. [12]. Briefly, on day 14, all rats were fasted for 12h
but no limited water, after which, they were fed charcoal
within 10% acacia gum. 0.5 hours later, the rats’ intestines
from pylorus to ileocecal junction were removed; then, the
total length of the truncated intestine and the charcoal trans-
port distance was measured. Finally, the rate of intestinal
motility was calculated using formula (1). Charcoal transit

ratio %ð Þ = Distance traversed by the charcoal cmð Þ
Total length of small intestine cmð Þ ð1Þ

2.3.4. Measuring the Serum Concentration of Neurotransmitter.
The blood of 5-10mL was collected from the abdominal aorta
and injected into the tube of EDTA anticoagulant. Then, it was
separated 2mL of plasma by centrifugation (3000 r/min,
30min) to detect indexes of gastrin (GAS),motilin (MTL), sub-
stance P (SP), and 5-hydroxytryptamine (5-HT) by commer-
cial ELISA kits (Biolegend, San Diego, USA). The procedure
was strictly performed according to the kit instructions.

2.3.5. Histopathological and Immunohistochemical Analyses.
Colon tissue samples were collected from the sacrificed
Sprague-Dawley rats. They were fixed at room temperature
with 10% buffered formalin for 48 hours. The fixed colonic
tissues were embedded in paraffin before being sliced into
5μm thick sections. Then, the slices were deparaffinized
and stained using hematoxylin and eosin (HE; Sigma-
Aldrich Co.). After that, we analyze their histological mor-
phology and the thickness of mucosa and muscle with the
Leica Application Suite (Leica Microsystems, Switzerland).
C-kit proto-oncogene protein (C-kit) and aquaporin 3
(AQP3) expression levels were analyzed with immunohisto-
chemistry (IHC). Then, the paraffin colon sections of rats
were routinely fix with 4% paraformaldehyde for 10 minutes;
after rinsing with phosphate-buffered saline for 3 times
(3 minutes per time), 50μL of peroxidase blocking solution
dropwise was added and incubated at room temperature for
10 minutes. Then, the slides were incubated consecutively
overnight at 4°C with anti-CD117 (1 : 1000) and AQP3
(1 : 1000) primary antibody and at room temperature with
HRP-conjugated anti-rabbit IgG incubation for 30 minutes.
They were then stained using diaminobenzidine (DAB). By
applying the high-power microscope (×200) and Image-Pro
Plus 6 graphic processing software, the expression of C-kit
and AQP3 per unit colon tissue area was observed and
analyzed. Each section was observed with 5 fields ran-
domly. The optical density values of C-kit and AQP3
expression of rats in both groups were statistically and,
respectively, assessed.

2 BioMed Research International



2.4. Statistical Analysis. All data were expressed as the mean
± standard deviation. They were subjected to a one-way
analysis of variance (ANOVA) and Dunnett’s t-test. P values
less than 0.05 indicated significant or very remarkable differ-
ences which were marked with ∗.

2.5. RNA Extraction, Library Preparation, and Sequencing.
Total RNA extracts were obtained following the manufac-
turer’s instructions by TRIzol®. The clear supernatants con-
taining the total RNA extracts were transferred to fresh
tubes and stored at −80°C. A total of 3μg RNA was used
for each sample as input material. The RNA-Seq library
was generated using NEBNext® Ultra™ Directional RNA
Library Prep Kit for Illumina® (NEB, USA) following the
manufacturer’s instructions. Finally, the Illumina HiSeq
4000 system was used to sequence all the libraries and gener-
ate 150 bp paired-end reads.

2.6. Quality Control, Alignment, and Quantification of RNA-
seq Data. Raw data of fastq were processed through in-house
perl scripts to get the clean data. Reads with adapters or low
quality were removed, and Q20, Q30, and GC contents of the
clean data were calculated to evaluate the quality of sequencing.

Paired clean reads were mapped to the rat reference
genome (rn6) with HISAT2 (v2.1.0). The transcript of each
sample was assembled from the mapped reads by StringTie
(v1.3.3) based on annotated transcript file from ENSEMBL.
For unannotated transcripts (novel transcripts), we used
CNCI (Coding-Non-Coding-Index) (v2), Pfam Scan (v1.3),
and CPAT (Coding Potential Assessment Tool) (v1.2.4) to
predict coding potential. Novel mRNAs or lncRNAs were
defined while the three above tools simultaneously reported
with or without coding potential. Subsequently, FPKMs
(fragments per kilobase of transcript per million mapped
fragments) of both mRNAs and lncRNAs were calculated
by StringTie (v1.3.3).

When identifying circRNA, CIRCexplorer (v2.2.3) was
used to find circularizing junction and spliced sequence with
the fusion junctions obtained from TopHat2. Candidates
with junction reads ≥ 2 were considered bonafide circRNAs,
and the expression levels of circRNAs were estimated by
TPM (transcript per million).

2.7. Identification of Differentially Expressed Transcripts. The
mRNAs (DEmRNAs) and lncRNAs (DE lncRNAs) expressed
differentially between the STC and non-STC groups were
identified by DESeq2, and the different expressions of cir-
cRNAs (DE circRNAs) were identified using the limma
package in R. log2 fold change ∣ ≥1 and P value < 0.05 were
indicated.

2.8. Protein-Protein Interaction (PPI) Network Construction.
The STRING database (v 11.0) was used to predict the poten-
tial interactions among proteins translated of top 300 DE
mRNAs (|log2 fold change|rank), confidence score ≥ 0:7 were
selected. Visualization of PPI network was achieved through
Cytoscape software (v3.8.0, http://www.cytoscape.org/).

2.9. Analysis of Target Genes Regulated by lncRNAs. The
lncRNA function is mostly achieved by acting on target genes

in cis or trans. cis-acting elements were DNA sequences that
are adjacent to the structural portion of a gene that regulates
gene expression. Hence, we selected DE mRNAs within 100 k
upstream or downstream of DE lncRNAs. trans-acting
factors usually are proteins binding to cis-acting elements
to control gene expressions. Therefore, a coexpression net-
work of lncRNA-mRNA was constructed according to the
interregulatory correlation between DE lncRNAs and DE
mRNAs. The Pearson correlation coefficient (PCC) was
calculated using log2ðFPKMs + 1Þ, when ∣PCC ∣ ≥0:98 and
P value < 0.001 were considered meaningful. The network
was visualized by Cytoscape.

2.10. circRNAs-miRNAs-mRNAs Network Construction.
circRNA-miRNA-mRNA interactions were predicted by
miRanda (v3.3a). The upregulated and downregulated cir-
cRNAs/mRNAs were selected to construct a ceRNA network
by Cytoscape software.

2.11. Functional Enrichment Analysis. The enrichments of
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways were performed for the
host genes of DE mRNAs by using DAVID (v6.8) and
KOBAS (v3.0) software, respectively. P < 0:05 was recog-
nized significant.

3. Results

3.1. Effect of Loperamide on Fecal Pellets. The STC rat model
was established by loperamide inducing. The total number
and weight of feces were remarkable lower in the Lop group
than the control group (Figures 1(a) and 1(b)). In addition,
fecal water content was decreased more than the Lop group
(Figure 1(c)). The outcomes of fecal parameter changes indi-
cate that the in vivo model was built (Figure 1).

3.2. Effect of Loperamide on Intestinal Transit Rate. The
intestinal propelling movement of carbon ink displayed that
the intestinal transit rate in the Lop group was remarkably
lower than that in the control group (Figure 1(d)).

3.3. Effects of Loperamide on Neurotransmitter Concentration.
Commonly, constipation would lead to colonic motor dys-
functions, intestinal neurological abnormalities, and disease
states. The combination of myogenic, intestinal plexus, and
extrinsic neurons could affect colonic motor activity [12].
Gas, MTL, SP, and 5-HT play an important role in regulat-
ing gastrointestinal motility. Loperamide can significantly
reduce more Gas, MTL, SP, and 5-HT than the control
group (Figures 2(a)–2(d)).

3.4. Histopathology and Immunohistochemistry Findings. The
pathological changes in the colon tissue were observed in
the Lop group, with damage to colonic mucosa, thickening
of the submucosal muscle, and the decrease in intestinal
water (Figure 3). A group of cells, which exists in all layers
of the colon [13] and interstitial cells of Cajal (ICC), plays
an important role in regulating intestinal motility. C-kit
could maintain the normal phenotype of ICCs during devel-
opment and maturation [14]. AQPs have recently been
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observed to have an integral effect on human water transport
systems [15]. In the human colon, AQP3 has been demon-
strated to be important to colonic water transport, and it is
mainly expressed in mucosal epithelial cells [16]. In the con-

trol group, C-kit- and AQP3-positive immunoreactive struc-
tures are dyed in brown. The expressions of C-kit and AQP3
decreased more in the Lop group than the control group.

3.5. Quality Test and Alignment Analysis of RNA-seq Data.
The clean data of 9 samples were obtained with an average
of 56.63 million reads and 16.99G bases per sample
(Table 1). The Q30 ratio was >98%, and no GC bias was
observed, suggesting sequencing clean data are qualified.
Over 94% of the clean reads were perfectly mapped to the
rat reference genome (rn6), and 67.83-77.50% uniquely
mapped reads were obtained from the total reads from the
9 samples, which indicated an excellent performance of the
sequencing reads with high credibility of the results in down-
stream analysis.

3.6. Characterization of Transcripts. After assembly, a total of
26435 mRNAs, 5703 lncRNAs, and 7708 circRNAs were
identified in STC rats among 9 samples. Overall, the chromo-
somal distribution of mRNAs, lncRNAs, and circRNAs were
consistent. Most transcripts were mainly located on the first
10 chromosomes (Figure 4(a)), in which the larger chromo-
somes contained more lncRNAs. The transcript lengths of
mRNAs were longer than those of noncoding RNAs, espe-
cially the length greater than 1000 nt. 80% of the total num-
ber of noncoding RNAs was no longer than 2000 nt, while
60% of them were approximately 200 to 2000 nt in length
(Figure 4(b)). The amount of novel lncRNAs accounted for
nearly half proportion of mRNAs (Figures 4(c) and 4(d)),
which suggested that there were still many unknown regions
in the rat genome. We also classified noncoding RNAs that
were identified in this study and the numbers and propor-
tions of different types for lncRNAs (Figure 4(e)) and cir-
cRNAs (Figure 4(f)).

3.7. Differential Transcription Expression Profile Analyses.
Correlation coefficient and principal component analysis
(PCA) of all transcripts could represent the degree of similar-
ity between groups. The analysis results showed that within
group were highly correlated, while between groups were
clearly distinguished (Figure 5).

To identify the different expression of mRNAs (DE
mRNAs), lncRNAs (DE lncRNAs), and circRNAs (DE cir-
cRNAs), P ≤ 0:05 and ∣log 2 fold change ∣ ≥1 were used as
the threshold. Volcano plot showed a set of significantly dif-
ferentially expressed transcripts were aptly delimited both in
the STC and non-STC groups (Figures 6(a), 6(c), and 6(e)). A
total of 917 DE mRNAs were determined, including 298
upregulated and 619 downregulated mRNAs. DE lncRNA
analysis indicated 419 deregulated lncRNAs, among those,
significantly upregulated and downregulated lncRNAs were
96 and 323, respectively. For circRNAs, out of 112 deregu-
lated, 52 upregulated and 60 downregulated were observed.
Unsupervised cluster analysis of the DE mRNAs, DE
lncRNAs, and DE circRNAs also showed an obvious
expression patterns between two groups (Figures 6(b), 6(d),
and 6(f)). All differentially expressed transcripts were listed
in Table S1.
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Figure 1: Alterations of stool number (a), stool weight (b), water
content (c), and intestinal transit rate (d) in vivo. Data represent the
mean ± standard deviation from five replicates. ∗P < 0:05 versus the
control group.
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Figure 2: Gastrointestinal hormone levels in loperamide-induced
constipated rats. Data represent the mean ± standard deviation from
five replicates. ∗P < 0:05 versus the control group. GAS: gastrin,
MTL: motilin, SP: substance P, and 5-HT: 5-hydroxytryptamine.
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3.8. GO and KEGG Enrichment of DEmRNAs.We performed
GO and KEGG enrichment analyses for the host genes of DE
mRNAs to predict the potential biological function of
mRNAs. Figure 7 shows the top 10 enriched terms for each
category. Upregulated mRNAs were mostly enriched: biolog-
ical process (BP) that was related to positive regulation of
GTPase activity and cell migration, in terms of cellular
component (CC) related to the membrane and cytoplasm,
and molecular function (MF) related to protein binding

and lipid binding. Significantly enriched signaling pathways
were involved in phagosome and lycerolipid metabolism
(Figure 7(a)). For downregulated mRNAs, several terms
directly related to the immune system were consistently
observed, such as immune response and inflammatory
response in BP, immunological synapse and T cell receptor
complex in CC, and T cell receptor signaling pathway and
NF-kappa B signaling pathway (Figure 7(b)). Functions asso-
ciated with the immunoreaction, cell movement, and energy
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Figure 3: HE staining results for colon sections in rats of the control group and the Lop group (Figure 3(a)). C-kit and AQP3 protein
expressions at the colon site in the control and Lop groups were measured by immunohistochemical staining (Figures 3(b) and 3(c)). Data
represent the mean ± standard deviation from five replicates. ∗P < 0:05 versus the control group.

Table 1: Summary of the transcriptome sequencing data obtained in this study.

Sample name Raw reads Clean reads Clean bases Q20 (%) Q30 (%) GC content (%) Total mapped Uniquely mapped

K1 54767655 54434998 16.28G 98.75 96.31 52.40 51860222 (95.27%) 38980372 (71.61%)

K2 61081489 60695690 18.14G 98.75 96.34 52.41 57472748 (94.69%) 43010664 (70.86%)

K3 55462744 55116062 16.48G 98.65 96.00 49.77 51924842 (94.21%) 42681157 (77.44%)

K4 58025418 57717793 17.26G 98.78 96.34 50.45 54601032 (94.60%) 44730631 (77.50%)

M1 51348971 51116085 15.29G 98.76 96.29 53.18 48953874 (95.77%) 35627388 (69.70%)

M2 54848044 54544541 16.31G 98.66 96.07 53.36 51937311 (95.22%) 36996014 (67.83%)

M3 56249126 55882830 16.70G 98.74 96.30 52.31 53239572 (95.27%) 40143889 (71.84%)

M4 63916137 63522648 19.02G 98.83 96.56 53.09 60149595 (94.69%) 43119163 (67.88%)

M5 57250994 56608274 16.85G 98.74 96.43 53.44 53981650 (95.36%) 38764676 (68.48%)

Average 56994508 56626546 16.99G 98.74 96.3 52.27 53791205 (94.99%) 40450439 (71.43%)
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metabolism were significantly changed, which indicated that
the activation or inhibition of related gene expressions might
accelerate the pathological process.

3.9. Protein-Protein Interaction (PPI) Network of DE mRNAs.
To investigate the important role of protein interactions in

STC rats, a PPI network analysis were performed using the
STRING based on the top 300 DE mRNAs (Figure 8). We
found that 64 proteins formed a complex functional network,
and proteins which had high connectivity with other proteins,
including Dync1h1 (degree = 13), Cd19 (degree = 9), Ptprc
(degree = 9), Hsp90aa1 (degree = 9), Dync1i2 (degree = 8),
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Figure 4: Characterization of mRNAs, lncRNAs, and circRNA. (a, b) Chromosomal (a) and length (b) distribution of mRNAs, lncRNAs, and
circRNAs. (c, d) Proportion of novel transcripts for mRNAs (c) and lncRNAs (d). (e, f) Types of the identified lncRNAs (e) and circRNAs (f).
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Ccr7 (degree = 8), and Fn1 (degree = 8) were identified hub
proteins. Hub proteins were widely involved in important cell
cycle or immune-related pathways (Table 2), which indicated
that dysregulation in one of these proteins can have significant
effects on STC.

3.10. Functional Identification of DE lncRNAs. Previous
studies reported that lncRNAs cis-regulated neighboring
and overlapping genes, or coexpression with their target
genes by trans-factors [17, 18]. To elucidate the potential
function of lncRNAs, DE mRNAs within a 100 kb of
upstream or downstream in the DE lncRNAs were consid-
ered cis-target, while targets in transwere predicted via calcu-
lating the expressed correlation.

A total of 109 possible cis-regulatory relationships were
identified (Table S2). Among them, the proportion of
downregulated lncRNAs exceeded 80%, and the number of
downregulated mRNAs also accounted for more than half.
Target genes were widely involved in immune-related
biological processes (Figure 9(a)), which indicated that
suppression of immune function in STC rats was mediated
by lncRNAs.

Based on the absolute Pearson correlation coefficient
over 0.98 and P values less than 0.001, we identified 904 pairs
of coexpressed lncRNAs and mRNAs; all of them showed
strong positive correlations (Figure 9(b)). Ranked by connec-
tivity with mRNAs, the top 10 core regulatory lncRNAs
identified were MSTRG.17256.1 (gene: LOC689757, degree =
101), ENSRNOT00000082578 (gene: AABR07025023.1,
degree = 101), MSTRG.17262.1 (gene: Clec2d2, degree = 87),
ENSRNOT00000092116 (gene: LOC102549869, degree = 84),
MSTRG.17262.2 (gene: Clec2d2, degree = 82), ENSRNOT0000
0092808 (gene: AABR07035470.1, degree = 76), ENSRNOT

00000093154 (gene: Fcrl5, degree = 75), MSTRG.4246.1 (gene:
Mir142, degree = 74), ENSRNOT00000065330 (gene: AABR
07044416.1, degree = 40), and MSTRG.10022.10 (gene:
Cmahp, degree = 37). Similar to cis action, the relationships
in the trans-regulatory network were mostly in the state of
cosuppression, and GO annotations showed that the vast
majority of the trans-targetmRNAs are involved in the regula-
tion process of immune signal and the proliferation anddiffer-
entiation of immune cells (Figure 9(a)). Interestingly, all the
core lncRNAs and their coexpressionmRNAs in this network
are downregulated (Figure 9(b)). It suggested that these
lncRNAs might be the key factors to reduce the immunity.

3.11. CeRNA Network Analysis. circRNAs generally act as the
sponge of miRNAs. By competing with mRNAs in a
sequence complementary manner to binding miRNAs, cir-
cRNAs relieve miRNAs from inhibiting mRNAs translation,
thereby exerting regulatory functions on protein coding
genes [17, 18]. Therefore, we predicted the circRNAs-
miRNAs-circRNAs binding relationship and constructed
networks between DE circRNAs and DE mRNAs that were
identified in this study.

The co-activated network contained 22 circRNAs and
178 mRNAs, and the cosuppressed network contained 30 cir-
cRNAs and 425 mRNAs (Figures 10(a) and 10(b)). More
than half of DE mRNAs had a potential regulatory relation-
ship with circRNAs, indicating that circRNAs were generally
involved in the regulation of related pathological processes.
GO enrichment analysis of the target mRNAs in the coacti-
vated network showed that many biological processes related
to the nervous system and intercellular signal transduction
were activated, such as regulation of establishment or main-
tenance of cell polarity, negative regulation of neuron death,
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Figure 5: Relationship analysis between the STC and non-STC transcriptome samples. (a) Hierarchical clustering heat map of transcriptomic
expression data; the color scale indicates the degree of the Pearson correlation. (b) The level of correlation or differentiation among samples
shown by the principal component analysis (PCA) plot.
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negative regulation of neuron projection development, and
cell-cell adhesion (Figure 10(c)). These functions were partic-
ularly more dominant than enriched functional of all upreg-
ulated mRNAs (Figure 10(a)), which implied that they were
more regulated by circRNAs. A significant set of target
mRNAs were related to immunoreaction (Figure 10(d)) in
downregulated circRNAs, which was consistent with the
overall trend of the functions for downregulating mRNAs
or lncRNAs. It was shown that immune and inflammatory
responses were universally regulated in STC rats.

4. Discussion

STC is an intestinal disease that affects the health and quality
of life of patients. To reduce the incidence of STC, it is essen-

tial to understand the underlying pathophysiological mecha-
nism. In this study, a group of differentially expressed
transcripts and some key factors were identified that may reg-
ulate STC at the molecular level using a whole-transcriptome
sequencing analysis in the colon tissue of STC rats.

There are larger amounts of deregulated mRNAs in STC
rats than normal rats (Figure 9). According to enrichment
analysis, the downregulated prominent functions are
immune cell receptor and inflammatory pathways with its
related signaling pathways (Figure 10(b)). Previous studies
have shown that inflammation is closely related to gastroin-
testinal motility disorders; moreover, the release of inflam-
matory mediators leads to changes in gastrointestinal
motility [19]. Our results are consistent with this, suggesting
that inflammation may play an important role in STC
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Figure 6: Analysis of differentially expressed mRNAs, lncRNAs, and circRNAs. (A, c, e) Volcano plot of DE mRNAs (a), DE lncRNAs (c),
and DE circRNAs (e). Red and green, respectively, indicate the upregulated and downregulated expressions. (b, d, f) Heat map shows the
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Figure 7: The GO and KEGG pathway annotations of differentially expressed mRNAs. Only the top 10 most significantly enriched terms
from biological process (BP), cellular component (CC), molecular function (MF), and KEGG categories were listed. The color corresponds
to the significance, and the size indicates the number of genes enriched in each term.
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progression. Interestingly, overexpressed mRNAs are also
involved in immune responses (Figure 10(a)). Disorders of
energy metabolism strongly affect the homeostasis of intesti-
nal environment, which can accelerate a series of diseases
progression such as intestinal inflammation and neoplastic
pathology [20]. The release of inflammatory mediators can
induce acute inflammatory cell infiltration and promote
NF-κB activity [21, 22], related pathways, which can be
observed from upregulated mRNAs. The mRNAs included
positive regulation of GTPase activity, cell migration and I-

kappaB kinase/NF-kappaB signaling, phagosome, and gly-
cerolipid metabolism (Figure 10 A).

Constipation symptoms are also inseparable with enteric
nervous system dysfunction and changes of neurotransmit-
ters that regulate intestinal motility [23]. In our study, the
nervous system development, immunological synapse, and
various cell receptor signaling pathway are downregulated
(Figure 10). Interstitial cells of Cajal (ICC) are involved in
intestinal neuromuscular signal transmission, which play an
important role in regulating intestinal smooth muscle
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Figure 8: STRING network visualizing the functional protein association in STC using top 300 DE mRNAs. Nodes in the network represent
proteins and the color of edges indicate known or predicted interactions.

Table 2: Top 7 hub proteins in protein-protein interaction network.

DE mRNAs Express Degree Pathway

Dync1h1 Up 13 Immune system, neutrophil degranulation, cell cycle

Cd19 Down 9 Diseases of signal transduction, B cell receptor signaling pathway

Ptprc Down 9
B cell receptor signaling pathway, T cell receptor signaling pathway,

neutrophil degranulation

Hsp90aa1 Down 9 Diseases of signal transduction, G2/M transition

Dync1i2 Up 8 Golgi-to-ER retrograde transport, G2/M transition, cell cycle

Ccr7 Down 8 Chemokine superfamily pathway, Akt signaling

Fn1 Up 8 ERK signaling, MAPK signaling, integrin pathway
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Figure 9: Functional identification of DE lncRNAs. (a) Gene enrichment analysis for the host genes of DE mRNAs as cis- or trans-target for
DE lncRNAs. Top 10 GO terms of biological process are shown, x-axis denotes the number of genes overlapping with each term, and color
corresponds to the significance. (b) Coexpression analysis for interaction between DE lncRNAs and DE mRNAs. V-shaped nodes and ellipse
represented lncRNA and mRNA, respectively. The node size represented the corrected P value (larger nodes for more signifcant P values).
Read and purple colors represented upregulated and downregulated lncRNAs, respectively. Orange and green colors represented
upregulated and downregulated mRNAs, respectively.
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Figure 10: Analysis of DEmRNAs regulated by DE circRNAs. The ceRNA networks with high-score interactions of up- (a) or downregulated
circRNAs (b). Triangles, diamonds, and circles represent circRNAs, miRNAs, and miRNAs, respectively. (c, d) Gene enrichment analysis for
the host genes of target mRNAs for up- (c) or downregulated (d) circRNAs. Top 10 GO terms of biological process are shown, y-axis denotes
the number of genes overlapping with each term, and color corresponds to the significance. Red and blue colors indicate upregulated and
downregulated RNAs, respectively. The details about abbreviations of genes are listed in Table S1 and Table S2.
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contraction and controlling gastrointestinal tract move-
ments. Loss and dysfunction of ICC related to inflammation
are the causes of STC [24–26].

In addition, we observed a large number of transcripts,
which are related to encoding tumor necrosis factor ligands
(Tnfsf8, Tnfsf9, andTnfsf11) and receptors (Tnfrsf13c,Tnfrsf26,
and Tnfrsf9), are downregulated in STC rats (Table S1). Tumor
necrosis factor alpha (TNFα) and its related transcripts, usually
acting as pathogenic proinflammatory cytokines, have been
shown imbalanced in inflammatory intestinal tissues and
peripheral lymphocytes [27, 28]. TNF-α is also known to be
a particularly toxic agent to mitochondria, render whose
dysfunction, and lead to cytokine storm of inflammatory
activity [29]. Therefore, it is entirely plausible that the
downregulation of TNF-α-related transcripts through
affecting the mitochondrial function to shift energy
production and activity of the inflammatory tissue in STC.

Among PPI network, the hub proteins are encoding
products from vital mRNAs, and they were speculated to be
important factors regulating STC (Figure 8). Dync1h1
encodes a member of the dynein cytoplasmic heavy chain
family; its dysfunction can cause gut dysmotility [30]. Cd19
is a B cell coreceptor that is important for B cell development;
its low expression can negatively affect the intestinal physiol-
ogy under steady-state conditions [31]. Hsp90aa1 functions
as a molecular chaperone and assists in the assembly, folding,
and degradation of target proteins. The loss of Hsp90aa1
function is often accompanied by inflammation and other
diseases [32]. Fn1 encodes fibronectin, and overexpression
can cause fibrosis in various organs or tissues [33]. It is spec-
ulated that Fn1 may reduce the efficiency of intestinal transit
and increase the risk of STC.

There are thousands of noncoding RNAs in human
genome, which are widely involved in biological processes,
such as imprinting and chromosomal conformation [34], coor-
dination of cell status and differentiation [35, 36], enzymatic
regulation [37], and disease [38]. Thus, the dysregulation of
noncoding RNAs is closely related to diseases. However, there
are still many gaps between the current understanding of the
expression pattern and molecular process of noncoding RNAs
in a specific gut environment. In our research, we use rats as
animal models and focused on the regulation of two important
noncoding RNAs, lncRNAs, and circRNAs.

Firstly, we annotate all expressed transcripts at the whole
transcriptome level and describe their characterization
(Figure 4). Nearly 90% of the coding genes are already
recorded in related database, while half of the lncRNAs are
recently identified. It indicated that there are still many
unknown noncoding functional regions that need to be eluci-
dated in the rat genome. Transcriptome-wide studies have
shown that the expression of noncoding RNAs is usually
more specific and strictly regulated than protein coding genes
[39]. Thus, we speculate that these novel transcripts may be
somehow related to disease process and partially specifically
expressed in STC. Overall, our results further provided refer-
ence insights for the transcript expression of rats under STC
status and enriched the rat genome resources.

The complex interaction of noncoding RNAs and coding
genes are widely involved in the regulation of intestinal

homeostasis and physiological processes [40]. By predicting
the regulatory network of lncRNAs or circRNAs for coding
genes, we observed many noncoding RNAs are involved in
the pathological process of STC (Figures 9 and 10). The most
prominent functions of target genes are immune and inflam-
matory responses, followed by the nervous system and inter-
cellular signal transduction. This is consistent with the
overall function of mRNAs, suggesting that a considerable
portion of expression of the coding genes is regulated by non-
coding RNAs, both at the transcriptional and posttranscrip-
tional levels. Among networks, a group of key noncoding
RNAs were identified. They are the core regulator that has
more potential coding gene targets.

The current study illuminated the expression profiles of
mRNAs, lncRNAs, and circRNAs in the loperamide-
induced constipation in rats. We identified mRNAs,
lncRNAs, and circRNAs with differential expression between
the Lop group and the control group and elucidated the char-
acteristics of mRNAs, DE lncRNAs, and regulatory functions
of DE mRNAs. Besides, we tapped several core regulators
that may contribute to the maintenance of intestinal transit.
Our findings may provide useful insights into the molecular
mechanisms underlying the development of STC. Further
research is required to investigate the functions of mRNA,
lncRNA, and circRNA identified in the present study.
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