
Hindawi
BioMed Research International
Volume 2021, Article ID 6673655, 11 pages
https://doi.org/10.1155/2021/6673655
Research Article
Integrated miRNA-mRNA Expression Profiles Revealing Key
Molecules in Ovarian Cancer Based on Bioinformatics Analysis
Chao Li , Zhantong Hong, Miaoling Ou, Xiaodan Zhu, Linghua Zhang, and Xingkun Yang

Department of Obstetrics Laboratory, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan,
Guangdong 528000, China

Correspondence should be addressed to Chao Li; lichao1990@hotmail.com

Received 28 December 2020; Revised 24 August 2021; Accepted 25 September 2021; Published 25 October 2021

Academic Editor: Wittaya Chaiwangyen

Copyright © 2021 Chao Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ovarian cancer is one of the leading causes of gynecological malignancy-related deaths. The underlying molecular development
mechanism has however not been elucidated. In this study, we used bioinformatics to reveal critical molecular and biological
processes associated with ovarian cancer. The microarray datasets of miRNA and mRNA expression profiles were downloaded
from the Gene Expression Omnibus (GEO) database. Besides, we performed target prediction of the identified differentially
expressed miRNAs. The overlapped differentially expressed genes (DEGs) were obtained combined with miRNA targets
predicted and the DEGs identified from the mRNA dataset. The Cytoscape software was used to design a regulatory network
of miRNA-gene. Moreover, the overlapped DEGs in the network were subjected to enrichment analysis to explore the
associated biological processes. The molecular protein-protein interaction (PPI) network was used to identify the key genes
among the DEGs of prognostic value for ovarian cancer, and the genes were evaluated via Kaplan-Meier curve analysis. A total
of 186 overlapped DEGs were identified. Through miRNA-gene network analysis, we found that miR-195-5p, miR-424-5p, and
miR-497-5p highly exhibited targeted association with overlapped DEGs. The three miRNAs are critical in the regulatory
network and act as tumor suppressors. The overlapped DEGs were mainly associated with protein metabolism, histogenesis,
and development of the reproductive system and ocular tissues. The PPI network identified 10 vital genes that promote tumor
progression. Survival analysis found that CEP55 and CCNE1 may be associated with the prognosis of ovarian cancer. These
findings provide insights to understand the pathogenesis of ovarian cancer and suggest new candidate biomarkers for early
screening of ovarian cancer.
1. Introduction

Ovarian cancer is one of the leading causes of deaths result-
ing from gynecological malignancies. The latest statistics
indicate that about 295,414 new cases of ovarian cancer were
reported globally in 2018 [1]. The overall 5-year survival rate
of ovarian cancer is below 45% mainly because distant
metastasis occurs earlier before diagnosis. Biomarkers such
as CA125 are currently in clinical use; however, they are
unspecific, and ultrasound examinations cannot identify
early cases [2, 3]. Therefore, there is an urgent need to reex-
cavate new diagnosed biomarkers for ovarian cancer and
reidentify the associated key molecules. This will be vital in
devising strategies to manage ovarian cancer at prevention
and control levels.
In recent years, the extensive application of expression
profiles has accumulated enormous omics data, which is
dependent on in-depth interpretation. Following relevant
researches in the past three years, a few reports on the use
of expression profiles linked with bioinformatics to discover
key genes of ovarian cancer have been published [4–7].
However, most of the research groups selected similar
microarray profiles thereby may cause lower accuracy and
gave false-positive results. The miRNAs are noncoding
RNAs that bound to complementary sequences in the
mRNA via base pairing. This promotes mRNA silencing
and negatively regulates downstream gene expression [8].
Many studies have found that miRNA disorders can occur
in nearly all types of tumors thereby affecting target gene
expression [9, 10]. A number of studies have evaluated that
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Figure 1: Volcanic map distribution of differential expression: (a) differentially expressed miRNA map; (b) differentially expressed gene
map. Horizontal axis: log2(FC); vertical axis: -log10(adj.P.Val). The FC represents the fold change in expression of tumor samples
compared to normal samples, and the adj.P.Val represents the calibrated p value. Green color indicates that differential expression is
downregulated; red color indicates that differential expression is upregulated.

Figure 2: The regulation network of miRNA-gene. The ovals
represent differential target genes; the triangles represent
differential miRNAs; the lines represent the existence of targeted
regulatory relationships. The red color shows upregulation while
the green color shows downregulation.

2 BioMed Research International
miRNA expression profiles in patients with ovarian cancer
can be used as molecular markers of malignant tumors.
Functional experiments related to ovarian cancer have con-
firmed that many miRNAs have cancer-promoting or anti-
tumor effects, and miRNAs can inhibit the translation
process of target mRNAs to participate in the regulation of
many cell processes related to ovarian cancer [11–13].

Therefore, our study adopted integrated miRNA and
mRNA microarray expression profiles for joint analysis.
Through bioinformatics, we constructed regulatory net-
works to identify key molecules and biological processes
associated with ovarian cancer. This provides a scientific
and accurate theoretical basis to elucidate the mechanism
of ovarian cancer onset.

2. Materials and Methods

2.1. Data Sources. We searched for the microarray expres-
sion profiles of ovarian cancer in the GEO (a public func-
tional genomics database) by limiting the sample size to
more than 10 and compared tumor tissue with normal tissue
for the experiment type. GSE83693 and GSE36668 were the
two eligible profile datasets. The former was a miRNA pro-
file that included 4 normal tissues and 16 tumor tissues
whereas the latter was an mRNA profile that included 4 nor-
mal tissues and 8 tumor tissues.

2.2. Data Processing

2.2.1. Differential Expression. For the mRNA dataset, the
probe ID was converted to the corresponding gene name fol-
lowing its platform annotation file. The “limma” package of
R language was used to analyze the DEGs [14], where adj:
p:val < 0:05 and the absolute value of log2FC > 2 were
defined as a statistically significant expression. Further, we
used the R package “http://org.Hs.eg.db/” to convert the
gene name to the corresponding gene ID [15] and eventually
performed the subsequent enrichment analysis. The miRNA
dataset was processed using the same method and standard.

2.2.2. miRNA Target Prediction. The Funrich software 3.1.3
was used to predict the downstream targets of the identified
differentially expressed miRNAs [16]. The predicted gene
list was intersected with the DEGs identified from the
mRNA dataset. Thus, the overlapped DEGs were generated
for subsequent regulatory networks, used to identify the
key genes, and for functional enrichment analysis and so on.

2.2.3. Regulatory Network. The miRNAs negatively regulate
target genes; therefore, the combinations of matching
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Table 1: Function of the top 10 key genes at the hub core of the PPI network.

No Gene Full name Gene functions

1 TTK TTK protein kinase
Related to cell proliferation, encoding key protein for mitotic checkpoints. Abnormal mitotic
spindles are produced when expression is abnormal, resulting in tumor occurring possibly.

2 CEP55
centrosomal protein

55
Playing roles in mitosis and cytokinesis. Related pathways include DNA damage and cytoskeleton

signaling.

3 KIT KIT proto-oncogene
Encoded protein is a type III transmembrane receptor; genetic variation is related to

gastrointestinal stromal tumors and mast cells.

4 DTL
denticleless E3

ubiquitin protein
The homologue of E3 ubiquitin protein ligase, which maybe degrade PDCD4 and promote tumor

development. It may be a therapeutic target for ovarian epithelial cancer.

5 E2F8
E2F transcription

factor 8
A member of family encoding transcription factors, which regulate cell cycle-related gene

expression and is involved in the promotion of a variety of tumors

6 SOX9
SRY-box transcription

factor 9
Participated in identifying specific sequences. Related to bone deformity, nodular atypical

hyperplasia and other diseases.

7 ERCC6L excision repair 6 like
Members of family encoding protein belong to DNA transport enzymes and are necessary genes

for mitotic sister chromatid isolation; involved in cell proliferation.

8 KIF18B
kinesin family member

18B
A member of the kinetin family, which constitutes the main positive end of microtubule

depolymerization in mitotic cells, ensuring that the spindle is centered.

9 THY1
Thy-1 cell surface

antigen
Encoding cell surface glycoproteins and proteins, involving in adhesion and communication of

multiple cell types, which promotes nasopharyngeal carcinoma.

10 CCNE1 cyclin E1
Encoded protein belongs to cell cycle family. Overexpression of gene is observed in many tumors,

causing chromosomal instability and may promote tumorigenesis.

Note: The annotations in this table referred to the clear conclusions in NCBI (https://www.ncbi.nlm.nih.gov/gene), and relevant scattered reports weren’t
included in a single literature.
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Figure 3: Identifying the key DEGs. When the red color appears
darker, a higher score is noted, indicating a highly significant
biometric significance.
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miRNA-gene were screened to construct regulatory networks
and were visualized using the Cytoscape 3.7.1 software.

2.2.4. Key Genes. The string database was used to predict the
interaction network between proteins encoded by the DEGs
[17]. Then, the cytohubba module in the Cytoscape software
was used to identify key genes [18]; here, the source data
obtained from the network file was generated via the string
database. The MCC algorithm of the module was selected
to identify the top 10 key genes.

2.2.5. Functional Enrichment Analysis. The R package “clus-
terProfiler” was used to perform the GO and KEGG enrich-
ment annotation of the overlapped DEGs [15]. GO
annotation was grouped into three subcategories: molecular
function (MF), biological process (BP), and cellular compo-
nents (CC). KEGG is a comprehensive database that inte-
grates genomic, chemical knowledge, and system
functional information, which we used for enrichment
annotation of gene pathways. The p value cutoff = 0:05 of
the R package’s parameter was considered statistically
significant.

2.2.6. Subsistence Analysis. The TCGA database aided in the
diagnosis, treatment, and prevention of tumors through a
shared mechanism. The cbioportal is a visual analytics plat-
form developed based on the TCGA. To further evaluate the
pathogenesis of key genes we obtained, the cbioportal was
adopted to identify the association of key genes with the sur-
vival prognosis of ovarian cancer [19].

2.2.7. Expression Level Verification. GEPIA2 is an updated
version of GEPIA for analyzing the RNA sequencing expres-
sion data of 9,736 tumors and 8,587 normal samples from
the TCGA and the GTEx projects, using a standard process-
ing pipeline [20]. GEPIA2 provides customizable functions
such as tumor/normal differential expression analysis, pro-
filing according to cancer types or pathological stage, similar
gene detection, correlation analysis, and dimensionality
reduction analysis. Through this database, we verified
whether the expression levels of candidate genes in our study
were consistent.

3. Results

3.1. Differential Expression. A total of 53 differentially
expressed miRNAs were identified using the GSE83693

https://www.ncbi.nlm.nih.gov/gene
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Figure 4: Bubble chart of GO enrichment. Horizontal axis: the proportion of genes; vertical axis: enrichment items. The color of the point
corresponds to the value of p adjust, while the size of the point corresponds to the number of DGEs under the GO entry.
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dataset, out of which 35 were downregulated, while 18 were
upregulated. Besides, 680 differentially expressed mRNAs
were identified using the GSE36668 dataset, out of which
239 and 441 mRNAs were downregulated and upregulated,
respectively. The differentially expressed molecules are
shown in Figure 1.

3.2. Overlapped DEGs and Regulatory Networks. According
to the DEGs of mRNA dataset, combined with the target
genes of differentially expressed miRNA predicted by the
Funrich software, the 186 overlapped DEGs’ network files
were obtained (attachment S1 and S2 shown). The network
files were imported into the Cytoscape software for visual
analysis (Figure 2). It was found that miR-195-5p, miR-
424-5p, and miR-497-5p were in the hub core of network
regulation, of which number of target genes were the most.
All three key miRNAs had 16 target DEGs.

3.3. Identifying the Key Genes. The results showing the iden-
tified key genes in the overlapped DEGs via the string data-
base and cytohubba module are shown in Table 1. All the
key genes were overexpressed differential genes, of which
expressions were consistent with the GEPIA2 database.
The top 10 key genes were screened following the latest
MCC algorithm, namely, TTK, CEP55, KIT, DTL, E2F8,
SOX9, ERCC6L, KIF18B, THY1, and CCNE1. Notably,
TTK, CEP55, and KIT showed the highest scores and were
at the key core of the network (Figure 3).

3.4. Functional Enrichment Annotation. The results of GO
enrichment analysis using the “clusterProfiler” package are
shown in Figure 4. In BP, the DEGs were significantly
enriched in developing the reproductive structure, remodel-
ing of the reproductive system, positive regulation of protein
catabolism, retinal morphogenesis, and differentiation path-
ways of the ocular photoreceptor cell. In MF, DEGs were
enriched in DNA-binding transcriptional activation. Of
note, since we set the filtering parameter at
(p value cutoff = 0:05), KEGG analysis did not enrich the
entries with coherent biological meaning.

3.5. Survival Analysis. Through cbioportal analysis of how
the genes were correlated with prognosis (Figure 5), we
observed improved overall survival rate of ovarian cancer
patients with CEP55 variation, with a statistically significant
difference (p = 0:012). Moreover, patients with CCNE1 vari-
ation showed poorer survival prognosis compared to non-
variant tumor patients (p = 2:397e − 6). However, no
significant differences were observed in the survival analysis
of other key genes between the two tumor groups.



100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Months survival

Logrank test p-value: 0.905

O
ve

ra
ll 

su
rv

iv
al

(a)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Months survival

Logrank test p-value: 0.0120

O
ve

ra
ll 

su
rv

iv
al

(b)

Figure 5: Continued.
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Figure 5: Continued.
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Figure 5: Continued.
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Figure 5: Kaplan-Meier survival curve. The red represents the ovarian cancer group with target gene mutation; blue represents the ovarian
cancer group without target gene mutation; p value < 0.05 is considered statistically significant.
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4. Discussion

Ovarian cancer is a common gynecological malignancy.
However, the molecular mechanism by which ovarian can-
cer is associated with pathogenicity has not been fully eluci-
dated. Notably, BRCA is one of the currently identified gene
that has a key role in ovarian cancer [21]. The BRCA muta-
tion frequency of ovarian cancer ranges from 3% to 27%; the
gene test provides precise guidelines for preventing, diagnos-
ing, and treating ovarian cancer [22]. However, there is a
need to identify other novel molecules to jointly screen for
most of the remaining cancer cases.

Current researches [10, 23, 24] indicate that besides
genes, the dysregulated expression of noncoding RNAs such
as miRNA can widely mediate various types of malignant
tumors. Therefore, to improve the prediction accuracy, our
study identified overlapped DEGs based on integrated
miRNA and mRNA expression profiles of ovarian cancer.
We constructed the miRNA-gene regulatory network to
identify three key miRNAs (miR-195-5p, miR-424-5p, and
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miR-497-5p) as tumor suppressors based on the principle of
complementary binding of miRNAs to the target mRNAs,
negatively regulating genes. Moreover, the 10 key genes were
predicted and screened by visualizing the overlapped DEGs
in the network using the Cytoscape software, whereby
TTK, CEP55, and KIT were at the center of the molecular
network. By querying the NCBI database, we found that
majority of the 10 genes were associated with specific tumor-
igenesis that mainly involves mitosis and cell proliferation
(Table 1). Additionally, the survival curve analysis revealed
that CEP55 and CCNE1 should be potential prognostic
genes. The biological processes involved in overlapped DEGs
were enriched through the R package. It was found that
22.6% (24/106) and 10.4% (11/106) of the DEGs were signif-
icantly enriched in biological processes of the reproductive
system and DNA transcription activation function, respec-
tively. These results concur with the actual functions and
roles of ovarian tissue thereby justifying the reliability of
our study. The abnormal expression of these differential
miRNAs and genes was likely to mediate the occurrence
and development of ovarian cancer. Besides, for the three
key miRNAs discovered as tumor suppressors, we conducted
an experimental literature search for recently published
reports. Notably, Luo et al. [25] identified that the expression
of miR-195-5p was significantly reduced in 40 breast cancers
through qPCR experiments. Also, he identified CCNE1 was
as the direct target of miR-195-5p in a dual-luciferase
reporter assay. Elsewhere, Kong et al. [26] found that miR-
195-5p played a tumor-suppressive role in endometrial can-
cer through similar methodologies. Moreover, Liu et al. [27]
identified that miR-424-5p directly targeted CCNE1 to
inhibit epithelial ovarian cancer through in vitro experi-
ments. Notably, we obtained similar findings on the miRNA
expression and target prediction. In addition, Liu et al. [28]
constructed a lentiviral miR-497-5p system, and through
qRT-PCR, she verified that its overexpression enhanced cell
apoptosis of ovarian cancer. Similarly, we reported that miR-
497-5p as a tumor suppressor molecule.

Conclusively, this study purposed to reveal the key mol-
ecules of ovarian cancer by analyzing the integrated miRNA-
mRNA expression profiles. Notably, the identified key miR-
NAs or genes require in-depth experimental verification
through in vitro studies. Nevertheless, the bioinformatics is
a reliable method to predict the expression profiles by nar-
rowing the scope of in vitro experiments and saving valuable
resources. In the future, we believe that global researchers
will be able to instantly reveal key molecules of many com-
plex and diverse tumors using the tumor big data strategy
which is dependent on computational biology.
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