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Objective. To develop and externally validate a CT-based radiomics nomogram for pretreatment prediction of relapse in
osteosarcoma patients within one year. Materials and Methods. In this multicenter retrospective study, a total of 80 patients
(training cohort: 63 patients from three hospitals; validation cohort: 17 patients from three other hospitals) with osteosarcoma,
undergoing pretreatment CT between August 2010 and December 2018, were identified from multicenter databases. Radiomics
features were extracted and selected from tumor regions on CT image, and then, the radiomics signature was constructed. The
radiomics nomogram that incorporated the radiomics signature and clinical-based risk factors was developed to predict relapse
risk with a multivariate Cox regression model using the training cohort and validated using the external validation cohort. The
performance of the nomogram was assessed concerning discrimination, calibration, reclassification, and clinical usefulness.
Results. Kaplan-Meier curves based on the radiomics signature showed a significant difference between the high-risk and the
low-risk groups in both training and validation cohorts (P < 0:001 and P = 0:015, respectively). The radiomics nomogram
achieved good discriminant results in the training cohort (C-index: 0.779) and the validation cohort (C-index: 0.710) as well as
good calibration. Decision curve analysis revealed that the proposed model significantly improved the clinical benefit compared
with the clinical-based nomogram (P < 0:001). Conclusions. This multicenter study demonstrates that a radiomics nomogram
incorporated the radiomics signature and clinical-based risk factors can increase the predictive value of the osteosarcoma relapse
risk, which supports the clinical application in different institutions.

1. Introduction

Osteosarcoma (OS) is the most common primary malignant
bone tumor [1]. 30-40% of patients with localized osteosar-
coma will subsequently develop relapse (including local
recurrence and distant metastasis, resulting in a 5-year sur-
vival rate of only 23% to 29%) [2]. Approximately 60% of

these patients will relapse in less than one year after sur-
gery [3]. The study from the Rizzoli Orthopaedic Institute
(Bologna, Italy) indicated that the relapse of osteosarcoma
was closely related to the correct margin of surgery and
the effectiveness of preoperative chemotherapy [4]. Previ-
ous documents have pointed out that the pivotal questions
to be answered were lack of biomarkers, a wide tumor
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heterogeneity, and a rapid metastasizing potential [5]. So,
seeking predictors of relapse within one year might be
very important to benefit osteosarcoma patients from
effective chemotherapy, additional surgery met the require-
ments, and supplementary radiotherapy [6]. However, it is
still a complex challenge to accurately predict the relapse
in osteosarcoma.

The probability of tumor relapse could be predicted using
the Huvos grading system in osteosarcoma patients; how-
ever, this grading system is assessed only in the resected
specimens after surgery [7]. Meanwhile, clinical risk factors
(such as patient age, tumor stage, alkaline phosphatase vascu-
lar invasion, and joint invasion) were also used to predict
relapse of osteosarcoma [8–11]. However, these clinical
pathology factors could not reflect the heterogeneity of
tumor, which is the main reason that leads to failure of
prediction accuracy for the relapse in osteosarcoma [12, 13].

Currently, previous studies have shown that radiomics
data contains strong prognostic information about cancers,
such as osteosarcoma, lung cancer, and head-and-neck
cancer, which are associated with potential gene expression
patterns. Radiomics combined with clinical factors has
improved the accuracy of survival prediction in cancer
patients [14, 15]. Computed tomography (CT) scans can
assess bone destruction and osteoid formation and have a
greater advantage in assessing osteosarcoma. In addition,
CT examination is a traditional, very conventional, low-cost
inspection for patients [16]. Therefore, integrating clinical
information into the radiomics model would be a promising
direction for the prediction of relapse in osteosarcoma
patients. However, regarding CT, research on the prediction
of osteosarcoma relapse using this radiomics is relatively lim-
ited. Although CT radiomics analyses have recently been
explored for evaluation of neoadjuvant chemotherapy
response [17] and prediction survival in high-grade osteosar-
coma [14], the results lacked essential multicenter external
validation.

The purpose of this study was to predict the risk of
relapse and to stratify the risks of relapse in patients with
osteosarcoma within one-year postsurgery, using radiomics
nomograms combined with radiomics features and clinical
risk factors based on multicenter data.

2. Materials and Methods

2.1. Patients. This multicenter retrospective study was con-
ducted by the main large-scale six hospitals in Guangdong
Province and obtained ethical approval from the institutional
review board (IRB) of the Third Affiliated Hospital of South-
ern Medical University, and the need for informed consent
from the patients was waived. The entire design of this study
is illustrated in Figure 1. The selection process of patients is
illustrated in Supplementary Figure S1. According to the
inclusion and exclusion criteria, a total of 80 osteosarcoma
patients (49 males and 31 females; mean age, 25:59 ± 15:74
years; range, 5–71 years) with postoperative histopathology
were retrospectively enrolled from multiple centers between
August 2010 and December 2018. Treatments included
preoperative neoadjuvant chemotherapy and surgery to

achieve a wide excision. All patients received the treatments
following the National Comprehensive Cancer Network
(NCCN) guidelines (Supplementary 2) and were followed
up in a timely fashion in the different hospitals
(Supplementary 3) [18]. The patients with osteosarcoma
who suffered a local early recurrence or distant metastasis
within one year were defined as the relapse cohort, whereas
the patients without relapse within one year were classified
as the nonrelapse cohort. Supplementary 4 describes the
criteria of serum markers (alkaline phosphatase and
hemoglobin). Tumor-invading joints were determined as
surface destruction and irregular edges in subarticular bone
and overlying articular cartilage, joint space widened, or
soft tissue mass in the close joint [19]. The differences in
sex, age, HGB, ALP, pathological fracture, tumor location,
morphology (including solidity, sphericity, and irregularity),
and joint invasion between the two cohorts were assessed by
using independent sample t-test or chi-squared test, where
appropriate (P < 0:05).

2.2. Image Acquisition, Segmentation, and Feature Extraction.
No preprocessing or normalization methods were used on the
original images. The details regarding the CT acquisition
parameters are shown in Table S1. ITK-SNAP software
(http://www.itksnap.org) was used to obtain a region of
interest (ROI) segmentation result. All ROI areas are
delineated manually slice by slice of each osteosarcoma in
transverse orientation around the gross tumor volume
(GTV) on CT images without contrast-enhanced by
doctors. The ROI-based radiomics features were extracted
according to the methods described in Supplementary 5.
All features conform to the definitions in the Image
Biomarker Standardization Initiative (IBSI) [20]. The
interobserver reproducibility and stability for feature
extraction were initially analyzed with 40 randomly
selected patients through ROI segmentation by two
experienced radiologists, respectively (radiologists 1 and 2,
with 20 and 12 years of experience in OS CT interpretation,
respectively). The intraclass correlation coefficient (ICC) was
used to assess the agreement of two radiologists in the CT
characteristics. We interpreted an ICC of 0.80-1.00 as almost
perfect agreement, 0.61-0.79 as substantial agreement, 0.41-
0.60 as moderate agreement, 0.21-0.40 as fair agreement, and
0-0.20 as poor or no agreement. The segmentation for the
remaining images was completed by radiologist 1.

2.3. Radiomics Feature Selection and Construction of the
Radiomics Signature. Optimal feature reduction and selec-
tion were performed in two steps from the training cohort
(Supplementary 6). According to the Harrell guideline, the
number of events should exceed the number of included
covariates by at least 10 times in a multivariate analysis
[21]. Features with the almost perfect agreement remained
for further screening. Features with low correlation with
labels and highly redundant to each other were excluded
using the Minimum Redundancy Maximum Relevance
(MRMR) method [22]. The least absolute shrinkage and
selection operator (LASSO) Cox regression model was used
to select the most predictive features [23]. The selected
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features were then combined into a radiomics signature.
Specifically, a radiomics score (Rad-score) was computed
for each patient through a linear combination of the selected
features weighted by their respective coefficients.

2.4. Validation of the Radiomics Signature. The potential
association of radiomics signature and relapse risk was
assessed in the training cohort and then validated in the
validation cohort by using Kaplan-Meier survival analysis.
The patients were classified into high-risk or low-risk groups
according to the Rad-score; the threshold of which was iden-
tified by using X-tile [24]. The difference in the relapse curves
of the high-risk and low-risk groups was evaluated by using a
weighted log-rank test (the G-rho rank test, rho = 1) [25].

2.5. Construction and Assessment of the Radiomics
Nomogram. To demonstrate the incremental value of the
radiomics signature for an individualized assessment of
relapse risk in patients with OS, both a radiomics nomogram

and a clinical-based nomogram were constructed for the
training cohort using the multivariate Cox analysis. The
radiomics nomogram incorporated the radiomics signature
and the clinical-based risk factors (including clinical and
CT-accessed risk factors). The clinical-based nomogram
contained only the clinical-based risk factors.

To compare the prediction performance of the radiomics
nomogram, the performance was assessed in both the train-
ing and the validation cohorts with respect to discrimination,
calibration, and clinical usefulness [26]. The Harrell concor-
dance index (C-index) was measured to quantify the predic-
tive performance of the nomograms [27]. The calibration
curve, representing the agreement between the predicted
and observed probabilities of relapse, was plotted to assess
the calibration of the nomograms [28]. Decision curve anal-
ysis (DCA) was used to evaluate whether the nomograms
were sufficiently robust for clinical practice. The net benefit
was derived by calculating the difference between the true
positive rate and the weighted false positive rate across

Indentiying the patients with clinicopathologically confirmed osteosarcoma 
who received chemotherapy and surgery from six hospitals
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preoperative CT images
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(n = 4)
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with Cox proportional

hazards model
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Figure 1: The work flow of this study.
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different threshold probabilities [29]. To quantify the useful-
ness of the radiomics nomogram added by the radiomics
signature, a net reclassification improvement (NRI) calcula-
tion was also applied [30].

2.6. Statistical Analysis. All statistical analyses were per-
formed with R software (version 3.5.2, http://www.R-
project.org) and X-tile software (version 3.6.1, Yale Univer-
sity School of Medicine, New Haven, Conn). LASSO Cox
regression analysis was performed by using the “glmnet”
package; we used “nlambda = 100” and “maxit = 1000” to
calculate the signature; we used the “lambda.1se” to select
critical features. Nomograms and calibration plots were per-
formed with the “rms” package. The “hmisc” package was
used for comparisons between C-indices. NRI was performed
by using the “nricens” package. DCA was performed by using
the “stdca” package. The reported statistical significance
levels were all two-sided, with the statistical significance level
set at 0.05.

3. Results

3.1. Clinical Characteristics. The patients were divided into
two cohorts on the basis of hospitals: a training cohort and
an independent validation cohort. The training cohort
included 63 patients (36 men and 27 women; mean age,
24:10 ± 14:79 years; range, 5–71 years) from the first three
hospitals. The external validation cohort consisted of 17
patients (13 men and 4 women; mean age, 31:12 ± 18:30
years; range, 14–64 years) from the other three hospitals.
Thirty-three patients relapsed in one year, and 47 patients
did not during the follow-up.

Clinical characteristics in the training and validation
cohorts are summarized in Table 1. The clinical risk factors
showed no significant differences between the relapse group
and the nonrelapse group within the training and validation
cohorts (P = 0:119 – 0:837) besides the HGB level in the
training cohort (P = 0:018). For CT-assessed candidate char-
acteristics, joint invasion showed significant differences
within the two cohorts (P = 0:004 and 0.036, respectively).
However, for CT-assessed morphology characteristics, solid-
ity, sphericity, and irregularity had significant differences
only for the training cohort (P = 0:003, 0.039, and 0.011,
respectively).

The interobserver reproducibility of the extracted fea-
tures was a perfect agreement with ICC > 0:80. Therefore,
all segmentation results were based on the delineation of
the first radiologist.

3.2. Construction of the Radiomics Signature. A total of 8750
features were extracted from each CT image. Among these
features, 5675 reliable features with an ICC greater than
0.80 were selected for further analysis. After using the
MRMR method, the top 200 prominently features remained.
Of these top-ranked features, four features with nonzero
coefficients in the LASSO Cox regression model were associ-
ated with relapse (Table 2). The radiomics signature was
developed, based on the four selected features and their coef-
ficients (Figure 2). The optimal value (the black vertical

dotted lines) of the LASSO tuning parameter (λ) was 0.179.
The radiomics signature was constructed, with a Rad-score
calculated by using the following formula:

Rad‐score = morph pca elongation ∗ 0:2360
+ HLL 64 Uniform stat var ∗ 0:6851
+ LLL 64 Lloyd cm clust tend ∗ 0:3164
+ LHH 32 Lloyd szm glnu ∗ −0:6421ð Þ:

ð1Þ

The distributions of the Rad-scores and state of relapse in
the training and validation cohorts are shown in Figure 3.
Patients in the relapse group generally had higher Rad-
scores than nonrelapse patients.

3.3. Validation of the Radiomics Signature. The optimum
cutoff between patients generated by the X-tile plot was
−0.63 on the basis of the training cohort (Figure S2).
Accordingly, patients were classified into the high-risk group
(Rad − score ≥ −0:63) and low-risk group (Rad − score <
− 0:63). Relapse rates in the high-risk and low-risk groups
of the training and validation cohorts are listed in Table 3.

The performances of the radiomics signature for relapse
risk stratification determined by Kaplan-Meier curves are
demonstrated in Figure 4. Kaplan-Meier curves showed a sig-
nificant difference between the high-risk and the low-risk
groups by using the G-rho rank test in both training and
validation cohorts (P < 0:001 and P = 0:015, respectively).
Patients with lower Rad-scores generally had the lower risk
of relapse, although six (15.4%) patients confirmed with
relapse were classified in the low-risk group in training and
validation cohorts; high Rad-scores had the higher risk of
relapse (66% and 56% patients with relapse were classified
in the high-risk group).

3.4. Construction and Performance of the Radiomics
Nomogram. A univariate Cox regression model was used to
assess the predictive ability of clinical-based risk factors.
HGB (HR: 2.3, 95% CI: 1.1–5) and joint invasion (HR: 3.9,
95% CI: 1.8–8.7) revealed significant predictive power
(P = 0:025 and <0.001, respectively). The two factors were
used to build the clinical-based nomogram and then
integrated with the radiomics signature to construct the
radiomics nomogram. The nomograms are presented in
Figures 5(a) and 5(b). The calibration curves of the nomo-
grams are shown in Figures 5(c) and 5(d); Radiomics calibra-
tion curve showed better agreement between the estimation
with the nomogram and actual observation than the
clinical-based curve. The discriminant performance of the
radiomics signature improved when it was integrated with
the radiomics nomogram along with the clinical-based risk
factors. The C-index for the radiomics nomogram was
0.779 (95% CI: 0.70, 0.85) in the training cohort and 0.710
(95% CI: 0.53, 0.89) in the validation cohort. Compared with
the clinical-based nomogram (C-index: 0.606; 95% CI: 0.51,
0.70 in the training cohort), the radiomics nomogram
showed better discriminant capability (P < 0:001 for each
comparison). Furthermore, the nomogram merged with sig-
natures showed improved prediction accuracy for relapse
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outcome regarding NRI (0.507; 95% CI: −0.129–0.688, P <
0:001) compared with the clinical-based nomogram. A deci-
sion curve analysis showed that the radiomics nomogram
had a higher overall net benefit than the clinical-based nomo-
gram across the majority of the range of reasonable threshold
probabilities (Figure 6).

4. Discussion

Due to the high heterogeneity of CT image acquisition in dif-
ferent institutions, there is widespread concern about the use
of CT 3D image-based models for multicenter applications
[31]. Therefore, based on multicenter data, we developed
and externally validated a radiomics nomogram combining
the radiomics signature and clinical-based risk factors for
pretreatment relapse risk estimation.

In our study, tumor morphology including solidity, sphe-
ricity, and irregularity had a significant difference (P < 0:05)
between patients with relapse and nonrelapse in the training
cohort, which is consistent with previous studies that tumor
morphology has been suggested as the risk factors for relapse
in patients with some types of cancer including osteosarcoma
by several studies [32, 33]. However, these morphological
features have no statistical differences in the external valida-
tion cohort. We could not extract information regarding the
response from other published series and immediately
explain these results besides the small cohort size. More oste-
osarcoma patients should be enrolled to elucidate this biolog-
ical phenomenon in the future.

We found HGB (HR: 2.3, 95% CI: 1.1–5) and joint inva-
sion (HR: 3.9, 95% CI: 1.8–8.7) to be useful for prediction of
relapse risk in osteosarcoma patients (P = 0:025 and <0.001,
respectively); thus, HGB and joint invasion were used to
build the clinical nomogram and integrate them with the
Rad-score to construct the radiomics nomogram. But neither
of them could be a single factor to predict relapse accurately
because even if the clinical risk factors to be used were avail-
able, a great deviation would be generated by using only one
clinical risk factor for prognosis in the imbalance cohort [34].
Although, previous studies have shown that clinical risk fac-
tors are independent prognostic factors for the survival of
patients with osteosarcoma [35].

In our study, the radiomics signature demonstrated that
about 43% of patients (Rad − score ≥ –0:63) were predicted
by the signature to relapse within a year. It is noteworthy that
variance, cluster tendency, and gray level nonuniformity
(GLN) were observed to be significantly correlated with
relapse in the combined whole dataset. Cluster tendency,
the measure of voxel clusters of similar gray level values,
has been confirmed to play critical roles in the survival pre-

diction and stratification of cancer patients [36]. Difference
variance is a measure of heterogeneity that places higher
weights on differing intensity level pairs that deviate more
from the mean. GLN measures the variability of gray level
intensity values in the image, with a higher value indicat-
ing more heterogeneity in intensity values. Our results
confirmed this concept that radiomics has emerged as a
potential solution to predict relapse for osteosarcoma
patients [37].

In recent studies, Lin et al. [17] and Wu et al. [14] have,
respectively, developed a CT-based radiomics nomogram
for evaluation of curative effect and prognosis in osteosar-
coma, which presented an AUC of 0.840 and 0.843 in the
validation cohort, respectively. Although they had more
numbers of patients in their study and the performance of
their radiomics model was superior to our research, they
did not have external validation, and they only analyzed
the patients with high-grade osteosarcoma while we studied
all-grade osteosarcoma patients. Furthermore, we included
patients from six different institutions and from different
CT devices, while the same CT scanner was selected in their
study. Different CT image acquisitions result in the difference
of radiomics features [38, 39], which might lead to bias and
could explain the poor performance of the radiomics model
we developed. Nevertheless, our study based on multicenter
data may make our results more incremental value than
single-center data trials. Without adjusting any key features
and their corresponding weights, a radiomics signature can
be built, so the application of the radiomics nomogram was
very straightforward. The calibration plots demonstrated
excellent agreement between risk stratification and nomo-
gram prediction. Furthermore, the integration of the
clinical-based risk factor with the nomogram showed
improved prediction accuracy for risk outcome regarding
NRI (0.507; 95% CI: −0.129–0.688, P < 0:001) for individual-
ized early relapse prediction comparing with the nomogram
without it. A decision curve analysis further confirmed the
potential value of this radiomics-based nomogram that
within most reasonable threshold probabilities, the radiomics
nomogram had a greater overall net benefit than the clinical
nomogram.

There were several limitations to the current study. First,
this study included a relatively small sample size. One reason
was that the incidence rate of osteosarcoma is very low and it
is very difficult to collect patient data. Another reason was
that one reason was that the incidence rate of osteosarcoma
is very low and it is very difficult to collect patient data.
Another reason was that the indications for surgery may have
differed among the participating hospitals, and this could
have resulted in a selection bias. Second, genetic research

Table 2: Radiomics feature selection results.

Feature family Feature name Tag Coefficients

Morphology Elongation morph_pca_elongation 0.2360

Wavelet-based statistics Variance HLL_64_uniform_stat_var 0.6851

Wavelet-based gray level cooccurrence matrix Cluster tendency LLL_64_lloyd_cm_clust_tend 0.3164

Wavelet-based gray level size zone matrix Gray level nonuniformity (GLN) LHH_32_lloyd_szm_glnu -0.6421
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Figure 2: Texture feature selection using LASSO Cox regression model. (a) The partial likelihood deviation was plotted versus log (λ). The
optimal parameter (λ) was selected using a sixfold cross-validation and 1 standard error rule. The optimal λ of 0.179 with log ðλÞ = −1:718
was selected. (b) LASSO coefficient profiles of 200 radiomics features were based on CT images. Finally, four features were selected, which
are shown with black vertical dotted lines in the figure.
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was not included in our study. Previous studies have found a
series of metastasis-related genes in osteosarcoma [40].
Third, the relapse potential may be related to the location
of osteosarcoma tumors. In future work, we will develop a

series of prediction models for different locations of tumors.
At last, the standard of care for pretreatment imaging in
patients with osteosarcoma is MRI, not CT, in some hospitals
limiting the clinical implication of our results.
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Figure 3: The radiomics score (Rad-score) for each patient in terms of the status of relapse for (a) training cohort and (b) validation cohort
based on CT images. The red bars indicate nonrelapse patients, whereas the blue bars show relapse patients.

Table 3: Relapse rate in high-risk and low-risk groups.

Parameter
Training cohort Validation cohort

High-risk group Low-risk group High-risk group Low-risk group

No. of patients 32 31 9 8

No. of patients with relapse 21 6 5 0

Rate of patients with relapse 66% 19% 56% 0%
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Figure 4: Kaplan-Meier survival curves according to the radiomics signature for patients with OS in (a) training cohort and (b) validation
cohort. Dashed lines are two-sided CI of the survival curves (solid line).
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In summary, this externally verified radiomics nomo-
gram that incorporated both the radiomics signature and
clinical-based risk factors can increase the predictive value
of the osteosarcoma patient’s relapse risk, which supports
the clinical application in different institutions.
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