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Background. Insomnia is an economic burden and public health problem. This study is aimed at exploring potential biological
pathways and protein networks for insomnia characterized by wakefulness after sleep. Method. Proteomics analysis was
performed in the insomnia group with wakefulness and the control group. The differentially expressed proteins (DEPs) were
enriched; then, hub proteins were identified by protein-protein interaction (PPI) network and verified by parallel reaction
monitoring (PRM). Results. Compared with the control group, the sleep time and efficiency of insomnia patients were
decreased, and awakening time and numbers after sleep onset were significantly increased (P < 0:001). The results of proteomic
sequencing found 68 DEPs in serum under 1.2-fold changed standard. These DEPs were significantly enriched in humoral
immune response, complement and coagulation cascades, and cholesterol metabolism. Through the PPI network, we identified
10 proteins with the highest connectivity as hub proteins. Among them, the differential expression of 9 proteins was verified by
PRM. Conclusion. We identified the hub proteins and molecular mechanisms of insomnia patients characterized by wakefulness
after sleep. It provided potential molecular targets for the clinical diagnosis and treatment of these patients and indicated that
the immune and metabolic systems may be closely related to insomnia characterized by wakefulness after sleep.

1. Introduction

Insomnia is defined as the difficulty in starting or maintain-
ing sleep or nonrestorative sleep and the consequences of
the day, such as fatigue, reduced attention, or daytime
distress [1]. Insomnia is a common health problem and the
second largest mental disorder [2]. About one-third of the
general population has insomnia symptoms, and the esti-
mated prevalence rate ranges from 10% (adults) to 22%
(elderly) [3, 4]. A high incidence rate worldwide reflects the
prevalence of insomnia [5]. Importantly, the effects of devel-
oping insomnia may not be limited to the long-term and
reproducibility of insomnia. Insomnia is associated with cog-
nitive impairment, decreased work efficiency, decreased

quality of life, mental illness complications, higher medical
costs, and higher risk of death [6, 7]. The mechanisms for
the development and maintenance of insomnia are crucial
for identifying treatment and prevention strategies to
improve insomnia and its associated incidence rate.

The clinical features of insomnia include difficulty in
falling asleep, difficulty in maintaining continuity of sleep
(waking up in the middle of the night, difficulty in resum-
ing sleep), or getting up earlier than required, regardless of
sleep status (early morning insomnia) [8]. The latter two
have the characteristics of easy to wake up after sleep and
have the characteristics of less sleep time. Epidemiological
studies have shown that short sleep time is associated with
increased obesity, diabetes, hypertension, and mortality [9].
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The neurobiological mechanism of insomnia may involve
changes in brain regions related to cognition, emotion
and sleep-wake, immune inflammation, and metabolism
[10–12]. Molecular factors of sleep-wake regulation include
sleep-promoting chemicals such as orexin, norepinephrine,
and histamine [8]. Several studies have documented ele-
vated metabolic parameters in patients with insomnia com-
pared to those who sleep well [12, 13]. Sleep wakefulness
promotes cerebral blood flow and glucose metabolism in
the thalamus, hypothalamus, basal forebrain, basal ganglia,
brainstem, and cerebellum [14]. Some studies believed that
inflammation was a potential pathway through which
insomnia and sleep deprivation could affect the risk of
adult onset [15].

At present, there are few studies on the mechanism of
insomnia in patients who are wakefulness after sleep. Here,
we identified potential dysregulation mechanisms and bio-
logical targets by proteomics analysis of patient serum.

2. Materials and Methods

2.1. Participants. Participants were from a prospective sur-
vey conducted by the Traditional Chinese Medicine hospi-
tal affiliated to Xinjiang Medical University. Among the
participants, 94 patients aged 20 to 50 years who met
the criteria of wakefulness after sleep and 80 patients with
good sleep were collected. The demographic, clinical char-
acteristics, and sleep quality of the subjects were evaluated
by effective research methods. To eliminate mental and
medical disorders, all participants received questionnaires
and interviews from certified clinicians and were assessed
by nocturnal polysomnography (PSG) and Pittsburgh sleep
quality index (PSQI). All experiments were carried out in
accordance with The Code of Ethics of the World Medical
Association. Research protocols were approved by the
ethics committee and human use subcommittee of The
First Affiliated Hospital of Xinjiang Medical University
(Protocol No. 20120220-133). All participants signed writ-
ten informed consent.

2.2. Sleep. Electroencephalogram (EEG), electrooculographic
(EOG), and electromyographic (EMG) were recorded by
PSG program. Participants sleep at their habitual bedtime.
Participants who met the screening criteria completed PSG
screening at home. PSG data were used to calculate the
amount of sleep in each phase of the standard sleep structure
variable, in minutes and percentages of total sleep time
(TST). In addition, sleep latency (time from light off to the
first stage of any sleep phase), number of awakenings,
wake-time after sleep onset, rapid eye movement (REM)
time, nonrapid eye movement (NREM) time, and sleep effi-
ciency (SE; total sleep time divided by total recorded time)
were also calculated.

The PSQI was used to assess sleep quality in the past
month. Pittsburgh sleep diary was used to measure the daily
sleep quality, fall asleep time, sleep time, sleep efficiency,
sleep disorders, sleep drugs, and daytime dysfunction scores,
and the total score of PSQI was calculated. Because each
score was the result of subjective sleep complaints, the higher

the score, the worse the sleep quality. A score greater than 10
has been recommended for the diagnosis of clinically signif-
icant insomnia.

2.3. Proteomic Detection. Serum samples of 9 patients of
insomnia patients with wakefulness (D group) and 9 patients
with good sleep (F group) were randomly selected. In the
presence of protease inhibitors, the samples were lysed, and
the total protein was extracted. For insomnia or control,
every three samples were mixed into one group, and the
fourth group was mixed with all samples. The protein con-
centration was determined by bicinchoninic acid (BCA)
(Beyotime, Shanghai, China) kit, and the protein quality
was detected by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE).

The qualified protein was hydrolyzed by enzyme. After
trypsin digestion, the peptide was desalted by Strata X C18
SPE column (Phenomenex) and vacuum-dried. Peptide
was reconstituted in 0.5M TEAB and processed according
to the manufacturer’s protocol for tandem mass tag
(TMT) kit (Thermo, Bremen, Germany). Briefly, one unit
of TMT reagent was thawed and reconstituted in acetoni-
trile. The peptide mixtures were then incubated for 2 h at
room temperature and pooled, desalted, and dried by vac-
uum centrifugation. Nine samples from each group were
randomly divided into three groups and a fourth group
with all nine samples mixed. The bound peptides were
eluted from the beads with 0.1% trifluoroacetic acid and
combined and vacuum-dried. For liquid chromatograph-
mass spectrometry/mass spectrometry (LC-MS/MS) analy-
sis, the resulting peptides were desalted with C18 ZipTips
(Millipore, Massachusetts, USA) according to the manu-
facturer’s instructions.

The peptides were dissolved in 0.1% formic acid,
directly loaded onto a reversed-phase analytical column.
The peptides were subjected to NSI source followed by tan-
dem mass spectrometry (MS/MS) in Q ExactiveTM Plus
(Thermo, Bremen, Germany) coupled online to the UPLC.
A data-dependent procedure that alternated between one
MS scan followed by 20 MS/MS scans with 15.0 s dynamic
exclusion. The resulting MS/MS data were processed using
the MaxQuant search engine (v.1.5.2.8). Tandem mass spec-
tra were searched against the SwissProt Human database
concatenated with the reverse decoy database.

The multiple of protein expression between the insom-
nia group and control group was greater than or equal to
1.2, and P < 0:05, then differentially expressed proteins
were obtained. Data analyzed in this study was submitted
to the PRIDE database (accession number: PXD023246).

2.4. Enrichment Analysis. Gene Ontology (GO) of differen-
tially expressed proteins was carried out by enrichGO func-
tions of the clusterProfiler package. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway was obtained from
ClueGo plug-in of Cytoscape software. Terms in GO and
KEGG pathways were identified according to the cut-off cri-
terion of P < 0:05. Gene set enrichment analysis (GSEA) soft-
ware was used to identify the KEGG signaling pathway of
differentially expressed proteins.

2 BioMed Research International



2.5. Protein Interaction. Based on the data of protein-protein
interaction (PPI) in the string database, we constructed the
PPI network of differentially expressed proteins. The PPI net-
work was visualized using Cytoscape software through the
combined score > 0:4 as the cut-off criterion.

2.6. Parallel Reaction Monitoring Data Acquisition. The
serum samples of 9 patients with insomnia patients with
wakefulness and 9 patients with good sleep were screened
again to detect DEPs. The protein was extracted, and tryptic
peptide is obtained according to the above method. After
mixing the samples, the peptides were subjected to NSI
source followed by tandem MS/MS in Q ExactiveTM Plus
(Thermo, Bremen, Germany) coupled online to the UPLC.
The predetermined parallel reaction monitoring (PRM)
method was used for data collection. The resulting MS data
were processed using Skyline (v.3.6).

2.7. Western Blot Analysis. For western blot analysis, we
extracted proteins from whole blood samples of insomnia
patients with wakefulness and healthy controls using a pro-
tein extraction kit (BestBio, Shanghai, China). Equal
amounts of protein were separated using 10% SDS-PAGE
and transferred to polyvinylidene difluoride (PVDF) mem-
branes. The membrane containing the target protein was
incubated with the primary antibody (Bioswamp, Wuhan,
China) at 4°C for more than 10hours, followed by another
incubation with HRP-conjugated secondary antibodies
(Bioswamp, Wuhan, China). Using GAPDH as the internal
reference protein, the relative expression level of the protein
was estimated by ImageJ.

2.8. Statistical Analysis. SPSS19.0 (IBM, NY, USA) for win-
dows was used for statistical analysis. The continuous vari-
able is mean ± standard deviation (SD). The demographic
and sleep characteristics of each group were compared and
analyzed by Student t-test or chi-square test. Statistical tests
showed that P < 0:05 was significant.

3. Results

3.1. Sleep Characteristics. The flowchart of this study is shown
in Figure 1. The sociodemographic and PSG characteristics of
the samples were shown in Table 1. In short, insomniacs were
young to middle-aged adults (mean = 40:15 ± 6:601 y), with
33.0% of males. There was no significant difference in age
and gender between groups. Compared with those with good
sleep, insomnia patients were significantly worse in sleep qual-
ity and sleep time (PSQI, sleep efficiency, awakening time, and
numbers) (P < 0:001).

3.2. Differentially Expressed Proteins in Insomnia Patients
with Wakefulness. To screen for potential differences in
protein expression between insomnia patients and con-
trols, TMT proteomics of serum were performed. After
protein extraction, 8 groups of mixed samples (4 groups
of insomnia patients and 4 groups of controls) were eval-
uated by SDS-PAGE, which showed reliable protein integ-
rity (Figure 2(a)). After TMT labeling, all samples were
collected for peptide separation and identification. A total

of 275653 MS/MS spectra were obtained, of which 16595
were matched spectra. Then, 676 proteins were extracted
from 4305 unique peptides. The center axis of the peptide
mass axis is within 1 ppm, and the main body is within
±5 ppm, indicating that the mass axis of mass spectrome-
try is accurate and stable (Figure 2(b)).

To explore the potential changes of proteomic profiles
between insomnia patients and normal controls, 68 differen-
tially expressed proteins were identified with a 1.2-fold
change criterion (P < 0:05) (Figure 2(c), Table S1). There
were 18 DEPs with a 1.2-fold increase and 50 DEPs with a
1.2-fold decrease (Figure 2(d)).

3.3. Biological Function and Molecular Pathways of Insomnia
with Wakefulness. In the results of biological process (BP) in
enrichment, the differentially expressed proteins are mainly
involved in humoral immune response, complement activation,
etc. (Figure 3(a)). In cell components (CC), the differentially
expressed proteins were significantly involved in cytoplasmic
vesicle lumen, vascular lumen, etc. (Figure 3(b)). In the process
of molecular function (MF), the differentially expressed pro-
teins are mainly involved in heparin binding, glycosaminogly-
can binding, etc. (Figure 3(c)). In addition, we identified the
KEGG signaling pathways including complement and coagula-
tion cascades, cholesterol metabolism, glycolysis/gluconeogen-
esis, and staphylococcus aureus infection (Figure 3(d)). GSEA
results showed that the insomnia characteristics of wakefulness
related proteins were significantly clustered in the complement
and coagulation cascades (Figure 3(e)).

3.4. Interaction Network of Differentially Expressed Proteins.
String is a database for predicting protein binding, which is
used to predict protein interactions among identified differ-
entially expressed proteins. The DEPs were mapped to the
String website to obtain their PPI data. A PPI network with
49 nodes was obtained with a comprehensive score of ≥0.4
(Figure 4(a)). The 10 proteins with the highest connectivity
with other nodes were selected as the hub proteins of the
PPI network, suggesting that they may be closely related to
insomnia (Figure 4(b)). Among them, the expression of F2,
HP, FGA, FGB, FGG, and ApoB were upregulated in insom-
nia patients with wakefulness, and A2M, AHSG, APP, and
ApoA1 were downregulated (Figure 4(c)). Importantly,
through PRM analysis of 68 DEPs, 26 differentially expressed
proteins were identified, including 9 hub proteins (Table 2).
On the other hand, through Western blot experiments, we
verified that the expression of FGG, FGB, FGA, APOB,
F2, and HP was upregulated in insomnia patients with
wakefulness compared with the control, while the expres-
sion of A2M, AHSG, and APOA1 was downregulated
(Figure 5). A2M, F2, FGA, FGB, and FGG were significantly
involved in the complement and coagulation cascades, while
ApoA1 and ApoB were significantly involved in cholesterol
metabolism.

4. Discussion

The medical field of sleep disorders attempts to define the
subgroup of insomnia according to the etiology, age of onset,
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and the differences between objective and subjective sleep
outcomes [16]. Through the objective clinical observation
records of insomnia patients, this study found the insomnia
subgroup characterized by wakefulness after sleep. Proteo-
mics was used to identify the difference of serum protein

expression in patients with this subtype, and related biologi-
cal functions and signal pathways were identified. The hub
proteins were screened by bioinformatics methods, which
may be used as biomarkers and therapeutic targets for
insomnia patients characterized by wakefulness after sleep.

Insomnia patients
(n = 94)

Differentially
expressed proteins

Ten hub proteinsEnrichment analysis
of GO and KEGG

PPI networkGSEA

Proteomic sequencing of
serum for Insomnia (n = 9)

and Control (n = 9) samples 

Good sleep peoples
(n = 80)

PSQI and PSG

The differential
expression of proteins
was verified by PRM

Figure 1: Flowchart of study.

Table 1: The comparative characteristics of primary insomnia patients and sleep well control group.

Characteristic Insomnia (94) Control (80) t/χ2 P

Gender (M) 31 (33.0%) 26 (32.5%) χ2 = 0:004 0.947

Age (years) 40:15 ± 6:601 40:43 ± 7:425 t = 0:259 0.795

Body mass index 23:54 ± 2:989 23:81 ± 3:954 t = 0:510 0.611

PSQI 13:64 ± 2:381 4:83 ± 1:391 t = 29:130 <0.001
TST (min) 412:82 ± 58:178 446:49 ± 41:504 t = 4:323 <0.001
Time in bed, min 520:66 ± 65:468 488:76 ± 38:437 t = 3:831 <0.001
Sleep efficiency (%) 79:67 ± 9:085 91:32 ± 3:906 t = 10:660 <0.001
Sleep onset latency, min 19:2 ± 18:456 9:23 ± 12:053 t = 4:138 <0.001
REM sleep, min 63:37 ± 32:213 68:52 ± 36:036 t = 0:996 0.321

REM% 15:29 ± 7:462 15:29 ± 7:869 t = 0:005 0.996

NREM sleep, min 350:34 ± 56:899 374:89 ± 57:704 t = 2:818 <0.01
NREM% 84:93 ± 7:512 84:27 ± 11:969 t = 0:439 0.661

Wake-time after sleep onset, min 75:24 ± 43:523 29:41 ± 18:433 t = 8:769 <0.001
Number of awakenings 13:98 ± 6:694 4:19 ± 2:591 t = 12:330 <0.001
Awakening time in TST (%) 18:99 ± 12:753 6:75 ± 4:369 t = 8:184 <0.001
Stage 1, min 44:60 ± 25:279 69:50 ± 64:836 t = 3:431 <0.001
Stage 1, % 11:15 ± 7:005 15:81 ± 15:072 t = 2:677 <0.01
Stage 2, min 285:21 ± 63:053 257:45 ± 81:882 t = 2:523 <0.05
Stage 2, % 68:75 ± 9:859 57:42 ± 17:093 t = 5:452 <0.001
Stage 3, min 20:53 ± 22:722 47:94 ± 29:182 t = 6:959 <0.001
Stage 3, % 5:07 ± 5:452 10:80 ± 6:627 t = 6:255 <0.001
PSQI: Pittsburgh Sleep Quality Index; TST: total sleep time; REM: rapid eye movement sleep; NREM: Nonrapid eye movement sleep.
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This study found that patients with the characteristics of
wakefulness after sleep generally have short sleep time and
sleep fragmentation. In fact, this characteristic of insomnia
has been confirmed by other studies [17, 18]. The wakeful-
ness after sleep seriously affected the sleep time and sleep
quality of patients. Sleep duration defined by PSG was short,
which was associated with increased mortality [19]. Studies
had shown that sleep restriction and disruption had adverse
effects on appetite-regulating hormones, insulin sensitivity,

systemic inflammatory markers, and autonomic nerve regu-
lation and function [20–22].

Enrichment analysis showed that humoral immune
response, complement and coagulation cascades, and choles-
terol metabolism were the main molecular mechanisms
related to DEPs. Sleep-immune interaction is a well-known
phenomenon. By activating the immune system and releas-
ing cytokines such as tumor necrosis factor (TNF) and inter-
leukin-1- (IL-) 1 β, sleep regulation can be promoted [23]. In
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Figure 2: Calculation of differentially expressed proteins. (a) The protein integrity of 8 groups for mixed samples was detected by SDS-PAGE.
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humoral signal transmission, peripheral cytokines can be
transmitted to the brain central nervous system through a
variety of ways [24]. These neurons express cytokine recep-
tors that, once activated, send nerve signals to the brain.
These cytokines activate microglia, which transmit this sig-
nal, leading to changes in behavior and sleep [25, 26]. A study
found that during the whole night of sleep deprivation, the
levels of IgG, IgM, and IgA in the morning cycle of human
beings were increased, and the complement factors C3 and
C5 were also increased [27]. The complement system is
involved in the humoral immune response, and its improper
activation plays a harmful role in diseases [28]. Animal stud-
ies showed that after 96 hours of REM sleep deprivation, the
level of complement C3 increased temporarily [29]. Coagula-
tion and immune response are closely related and interde-
pendent processes. A study of middle-aged women with
multiethnic groups suggested that the procoagulant process
may be an important way of sleep disorders [30]. Improving
the balance of glucose and cholesterol not only helped to con-
trol weight but also improved brain function and mood,
which was essential for sleep [31]. A population-based study
reported the association between insomnia and metabolic
syndrome by comparing cholesterol metabolism [32].
Abnormal cholesterol metabolism may be associated with a
higher risk of cardiovascular disease associated with poor
sleep quality [33].

In the PPI network composed of DEPs, we identified 10
proteins with the highest degree of connectivity, and the dif-

ferential expression of 9 proteins was verified by PRM.
Among them, FGA, FGB, and FGG belong to fibrinogen,
and the more severe insomnia symptoms are related to
higher levels of fibrinogen [34]. Strengthening the balance
of fibrinogen may promote the recovery of regulatory sys-
tems, thus, improving sleep fragmentation [35]. The results
showed that the protein expression of ApoA 1 decreased in
insomnia patients, while the expression of ApoB increased.
Studies had shown that the increase of ApoA can improve
insomnia symptoms [36]. Short sleep time was significantly
associated with increased ApoB levels in women [37]. ApoA
was a metabolic marker of high-density lipoprotein choles-
terol (HDL-C). Increasing HDL-C level by 1mg/dl can
reduce the risk of cardiovascular disease by 2% to 3% [38].
α 2-Heremans Schmid glycoprotein (AHSG) is involved in
important cellular physiological functions, such as cellular
protein and fatty acid metabolism, and regulation of the
acute inflammatory response [39]. AHSG, A2M, F2, and
HP have not been reported to be associated with insomnia,
but our study showed that they are significantly associated
with insomnia. This needs further investigation by follow-
up experiments.

Although this study provided new data for understand-
ing the etiology of insomnia patients characterized by wake-
fulness after sleep, there were still some limitations. First, a
part of DEGs identified by proteomics was verified by
PRM, and these proteins may need to be replicated in other
samples. Second, the current research does not explore the
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relationship between hub protein and insomnia characteris-
tics. To sum up, through the comprehensive analysis of pro-
teomics, enrichment, and PPI network data of insomnia

patients, the current results showed that the disorder proteins
involved in the immune and metabolic systems may be
related to the pathogenesis of sleep characterized by
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Table 2: The results of PRM. D: insomnia group; F: control group.

Protein
accession

Protein
gene

Insomnia relative
abundance

Control relative
abundance

Insomnia/control
ratio

Insomnia/control ratio
(TMT)

P02679 FGG 2.00 0.00 ∞ 4.17

P01023 A2M 0.74 1.26 0.59 0.71

P02765 AHSG 0.91 1.09 0.84 0.83

P00734 F2 1.56 0.44 3.51 1.23

P04114 APOB 1.17 0.83 1.42 1.74

P02671 FGA 0.86 1.14 0.75 2.20

P02675 FGB 1.99 0.01 175.61 4.69

P02647 APOA1 0.91 1.09 0.83 0.80

P00738 HP 1.37 0.63 2.18 1.61
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wakefulness after sleep. The changes in immune and meta-
bolic systems may be the results or the causes of insomnia,
which need more research.

5. Conclusion

Compared with the good sleep group, the sleep quality
and sleep time of insomnia patients characterized by
wakefulness after sleep were significantly worse. The differ-
entially expressed proteins are mainly involved in humoral
immunity and cholesterol metabolism-related biological
functions and signaling pathways. The hub proteins may
be biomarkers and therapeutic targets for patients with
insomnia.

Data Availability

The data is available in Table S1.
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Figure 5: The expression of hub proteins in the insomnia and control group was detected by Western blot.
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