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Assessing differential item functioning (DIF) using the ordinal logistic regression (OLR) model highly depends on the asymptotic
sampling distribution of the maximum likelihood (ML) estimators. The ML estimation method, which is often used to estimate
the parameters of the OLR model for DIF detection, may be substantially biased with small samples. This study is aimed at
proposing a new application of the elastic net regularized OLR model, as a special type of machine learning method, for
assessing DIF between two groups with small samples. Accordingly, a simulation study was conducted to compare the powers
and type I error rates of the regularized and nonregularized OLR models in detecting DIF under various conditions including
moderate and severe magnitudes of DIF (DIF =0.4and0.8), sample size (N), sample size ratio (R), scale length (I), and
weighting parameter (w). The simulation results revealed that for I =5 and regardless of R, the elastic net regularized OLR
model with w=0.1, as compared with the nonregularized OLR model, increased the power of detecting moderate uniform
DIF (DIF = 0.4) approximately 35% and 21% for N =100 and 150, respectively. Moreover, for I =10 and severe uniform DIF
(DIF=0.8), the average power of the elastic net regularized OLR model with 0.03 <w<0.06, as compared with the
nonregularized OLR model, increased approximately 29.3% and 11.2% for N =100and 150, respectively. In these cases, the
type I error rates of the regularized and nonregularized OLR models were below or close to the nominal level of 0.05. In
general, this simulation study showed that the elastic net regularized OLR model outperformed the nonregularized OLR
model especially in extremely small sample size groups. Furthermore, the present research provided a guideline and some
recommendations for researchers who conduct DIF studies with small sample sizes.

1. Introduction

In psychometric research such as health-related quality of
life (HRQoL), measurement invariance, also known as dif-
ferential item functioning (DIF), is a prerequisite assump-
tion for the valid comparison of HRQoL scores across
people from different subgroups (e.g., groups distinguished
by gender, age, race. or health conditions). In general, DIF
occurs when individuals from different groups respond dif-
ferently to specific items in a questionnaire after controlling
the construct being measured [1, 2]. The ordinal logistic
regression (OLR) model is one of the well-known methods

for the identification of DIF in psychometric research. The
OLR model can evaluate both uniform and nonuniform
DIF and can also control other categorical and continuous
variables which may affect the results of DIF analysis [3,
4]. Uniform DIF occurs when the difference in item
response probabilities remains constant across complete
construct domains, whereas nonuniform DIF is evident
when the direction of DIF differs across various parts of
the construct scale [5, 6].

It is well documented that statistical inference based on
the OLR model typically depends on the asymptotic proper-
ties of the maximum likelihood (ML) estimator [7]. When
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the sample size is relatively large, the sampling distribution
of the ML estimators for the OLR coefficients is asymptoti-
cally normal and unbiased. However, when the sample size
is very small, the robustness of the ML procedure and the
asymptotic assumptions are violated. This in turn limits
the use of the OLR model for DIF detection in small samples
[4, 7]. Hence, it is essential to determine the extent to which
the conventional OLR model is an efficient method for asses-
sing DIF in the context of small sample sizes. A simulation
study has shown that the OLR model needs sample sizes of
about 200 for each group to obtain an adequate power and
type I error rate in assessing DIF [8]. However, in HRQoL
studies, researchers frequently encounter small sample sizes
due to practical limitations such as prohibitive costs or low
prevalence of a disease [9, 10].

Nowadays, a wide range of regularized or bias correction
methods, known as machine learning approaches, have been
proposed to overcome the problem of small sample size in
binary and ordinal logistic regression models [7, 11-14]. In
the binary logistic regression model, Firth’s penalized maxi-
mum likelihood (PML) estimation approach was originally
introduced to correct or reduce the small sample bias of
the ML estimators [11]. The ML estimation method tends
to produce overfitted models with a poor prediction perfor-
mance in the presence of small or sparse samples, whereas
the PML procedure offers some improvements by shrinking
the regression coefficients. In reality, the PML method pro-
duces unbiased and finite estimates of regression coeflicients
for small sample situations in which ordinary ML estimation
fails [11, 13, 15]. Recently, for ordinal response data, the
elastic net regularized OLR model has been proposed by
Wurm et al. to improve the estimation of the regression
coeflicients, as well as to perform variable selection [14].
The elastic net is another regularized regression technique
that linearly combines the penalties used in the ridge and
least absolute shrinkage and selection operator (LASSO)
regression models [16]. The ridge and LASSO regressions
are two well-known members of the regularization family
of methods [12, 17]. The major difference between the two
algorithms is that while the ridge method shrinks all of the
regression coefficients to a nonzero value, the LASSO
method shrinks some of the coeflicients exactly to zero.
The differences lie in the penalty terms used by each
method. While the LASSO regression adds the sum of the
absolute value of the magnitude of the regression coefficients
to the ordinary likelihood function, the ridge regression adds
the sum of the squared magnitude [12, 17].

A new psychometric study has shown that regularization
techniques, as a special type of machine learning methods,
outperform the conventional DIF detection procedures
when the sample size is extremely small [18]. Although the
effect of regularization methods on the performance of
binary logistic regression models in detecting DIF has been
evaluated by Lee in small sample size groups [5], such a sta-
tistical description has never been provided for the OLR
model. For the binary logistic regression model, Lee has
shown that when the sample size is relatively small, there
is no difference between the conventional ML and PML esti-
mation methods in terms of power and type I error rate for
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detecting DIF [5]. Hence, in the present study, we intended
to propose a new application of the elastic net regularized
OLR model, as a special type of machine learning approach,
in assessing DIF when the sample sizes for one or both
groups of interest are relatively small. Accordingly, by pre-
senting a comprehensive simulation study, we investigated
whether the statistical properties (power and type I error)
of the OLR model for evaluating DIF, with and without
applying regularized techniques, could be affected by the
sample size, sample size ratio, DIF amount, scale length,
and the value of the weighting parameter across the focal
and reference groups. Furthermore, a real data set was also
used to validate the simulation results.

2. Methods

The cumulative ordinal logistic regression (OLR) model,
also known as the proportional odds model, was used to
identify DIF across the two groups [4]. Moreover, the Monte
Carlo simulation method was utilized to compare the statis-
tical properties (power and type I error) of the regularized
and nonregularized OLR models for detecting DIF.

2.1. DIF Detection Method Based on the Nonregularized OLR
Model. The uniform and nonuniform DIF can be assessed by
comparing three different nested OLR models as follows:

_ , P(Y <]
Model 1 : Logit [P(Y <j)] =log <%) =Yg + P10

Model 2 : Logit [P(Y <j)] = log (%)

=Yoj + B0+ B G

Model 3 : Logit [P(Y <j)] =log (%)

=Yo; + Bis0 + P3G + B33 (0 x G)
(1)

Here, P(Y < j) denotes the probability of choosing cate-
gory j or below, G is a covariate indicating group member-
ship with two levels (i.e., reference and focal groups), and
0 is the observed ability of an examinee usually demon-
strated by the total test score [3, 4].

The regression coefficients (ys and fs) are unknown con-
stants and are estimated by maximizing the log-likelihood
(ML) function [7]. According to the above models, the
presence of uniform DIF can be checked by testing whether
the coeflicient of group membership (H,, : 3,, = 0) differs sig-
nificantly from zero. This can be done by comparing the -2
log-likelihood values for models 1 and 2 with chi-square distri-
bution with one degree of freedom. The interaction regression
coefficient between the ability and group membership
(Hy : B33 =0) can be tested to evaluate nonuniform DIF by
comparing the -2 log-likelihood values for models 2 and 3 with
chi-square distribution with one degree of freedom [4]. It
should be noted that since the DIF direction is different along
the latent ability scale in nonuniform DIF, the nonuniform
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DIF items cancel each other out at the test level [19]. There-
fore, the focus in this simulation study is on uniform DIF
detection.

2.2. DIF Detection Method Based on the Elastic Net
Regularized OLR Model. In this section, a new machine
learning approach is proposed for DIF detection based on
the elastic net regularized OLR model [14]. Detecting DIF
through the regularized (elastic net) and nonregularized
OLR models is exactly the same except that in the elastic
net regularized OLR model, the uniform and nonuniform
DIF can be detected by comparing the penalized log-
likelihood values of models 1 and 2 and models 2 and 3,
respectively [5].

The elastic net regularized OLR model is a linear com-
bination of the LASSO and ridge regression models, and
its penalized log-likelihood function can be formulated as
follows:

1 L 1 L
lelusticnet:_ﬁ XlOgL-i-/‘ wzl’ﬁ]' + E(l_w)zlﬁ] ’ (2)
= =

in which N is the total sample size, log L denotes the con-
ventional version of the log-likelihood function, and A >0
and 0 <w <1 are the regularization and weighting param-
eters, respectively [14, 16]. In this equation, §; indicates
the regression coefficients, and Z?:l /3]2 (squared L,-norm
of ;) and lej:l|ﬁj| (Ly-norm of f3;) represent the ridge
and LASSO penalty terms, respectively [12, 17]. The elastic
net OLR model is simplified to the LASSO OLR model
when w=1 and to the ridge OLR model when w=0. It
should also be noted that when A =0, the elastic net pen-
alty term is eliminated, and the usual log-likelihood func-
tion of the ML method is obtained. The “ordinalNet”
package in the R software was used to fit the elastic net
regularized OLR model [14, 16].

In this simulation study, for any fixed value of w in the
interval 0 <w <1, the optimal value of A was determined
by the Bayesian information criterion (BIC). For the elastic
net regularized OLR model, the BIC was calculated by the
following equation:

BIC=-2 10g L/\ + log (N) X Nnonzero’ (3)

where log L) represents the log-likelihood value for the
regression parameters estimated with regularization param-
eter A, N is the total sample size, and N,,,.,, indicates the
estimated total number of nonzero parameters including
the intercepts [14]. For a regular sequence of A values, which
is automatically generated by the “ordinalNet” package, the
corresponding BIC values are calculated and sorted in a
descending order according to their magnitude. Then, the
package chooses the optimal value of A in a way that the
BIC value is minimized [14].

2.3. Generation of Simulated Data. In this study, Samejima’s
graded response model (GRM) [20], which is suitable for
simulating items with ordered response categories, was used

to produce five-category response data for measures with
five or ten items. The mathematical equation for GRM is
as follows:

1

1+exp (—a;(0 - bij)) @

P;(0)=Pi(Y 2j10) =

where P;;(6) is the probability of responding in or above cat-
egory j of item i, g; is the item discrimination parameter, 8 is
the latent trait (ability), and b;; denotes the item difficulty
(threshold) parameter for category j of item i. The item dis-
crimination parameters were randomly generated from the
uniform distribution over the interval (1, 2), and the diffi-
culty and ability parameters were sampled from the standard
normal distribution [1].

In the present simulation study, four factors including
the total sample size (N), sample size ratio (R), scale length
(I), and magnitude of uniform DIF that could influence
the performance of the regularized and nonregularized
OLR models were manipulated. Out of five or ten items in
the scale, one item (item 1) was flagged with uniform DIF
across the reference and focal groups. In order to simulate
the moderate and severe uniform DIF, 0.4 and 0.8 were,
respectively, added to the difficulty parameters (b;;) of item
1 in the focal group. Five sample sizes (N =100, 150, 200,
300, and 400) and three levels of sample size ratio (R=1,2,
and 3) were considered. When N =100, for example, the
conditions n,/n; =50/50, 67/33,and 75/25 were generated.
In addition, two tests with 5 and 10 items (I = 5and 10) were
generated. Each item had five response categories (J =5).
The data were simulated using the “catlrt” package [21] as
well as the “runif” and “rnorm” functions in the R statistical
software (version: 4.0.2).

The main objective of this simulation study was to deter-
mine what the optimal value of the weighting parameter w
should be to obtain the adequate power and type I error rate
for the detection of DIF. In order to find the optimal value of
w, the following sequence of weighting parameters was con-
sidered: w=0,0.01,0.02,0.03,0.04, 0.05, 0.06,0.07,0.1, 0.5,
and 1 (w =0 and w =1 corresponded to the ridge and LASSO
regressions, respectively). For each w, the BIC was used to
select the appropriate regularization parameter A [14].

The power rate (true positive rate) is defined by the ratio of
the times that the uniform DIF is rightly flagged by various
methods across replications. Type I error rate (false-positive
rate) also indicates the ratio of non-DIF items wrongly identi-
fied as having DIF in 1000 replications. They are averaged over
all items without DIF [22].

3. Results

3.1. Uniform DIF Power and Type I Error Rates. Tables 1 and
2, respectively, show the power and type I error rates of the
regularized (elastic net) and nonregularized OLR models to
assess the presence of a moderate uniform DIF (DIF = 0.4)
under different combinations of scale length (I), total sample
size (N), sample size ratio (R), and response category num-
ber of five (J =5).
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TaBLE 1: The powers of the regularized (elastic net) and non-regularized OLR models in detecting moderate uniform DIF (DIF=0.4) when

J=5.
. Ridge Elastic net OLR LASSO

I Ratio N OLR w:go w=0.01 w=0.02 w=0.03 w=004 w=005 w=006 w=007 w=0.1 w=0.5  w=1
100 0179 0100 0098 0146 0175 0192 0215 0224 0233 0247 0277 0281

150 0317 0184 0177 0265 0310 0332 0347 0357 0361 0370 0412 0413

5 ne=n, 200 0365 0217 0210 0190 0360 0389 0400 0409 0418 0433 0479  0.483
300 0559 0409 0392 0518 0572 0594 0610 0621 0625 0632 0673 0677

400 0702 0550 0528  0.673 0734 0754 0770 0773 0772 0774 0808  0.811

100 0161 0068 0065 0126 0155 0174 0188 0199 0207 0215 0257  0.260

150 0279 0140 0129 0230 0266 0291 0300 0309 0320 0333 0366  0.366

5 n=2n; 200 0334 0204 0196 0287 0333 0360 0375 0385 0397 0409 0439  0.441
300 0497 0344 0329 0452 0498 0527 0544 0556 0562 0579 0626  0.632

400 0.629 0499 0474 0598  0.644 0661 0683 0694 0700 0708 0737 0739

100 0143 0067 0064 0108 0135 0149 0158 0167 0175 0190 0221 0225

150 0219 0108 0103 0176 0211 0232 0244 0249 0257 0278 0306  0.308

5  n=3n;, 200 0279 0171 0160 0250 0280 0300 0314 0322 0331 0346 0379 0379
300 0430 0279 0265 0373 0432 0457 0472 0481 048 0503 0543  0.546

400 0539 0397 0381 0507 0556 0583 0596 0604 0610 0619 0652  0.655

pI— - 0380 0381 0190 0130 0095 0076 0063 0054 0038 0008  0.004
100 0117 0075 0072 0116 0143 0153 0161 0163 0166 0171 0189  0.190

150 0173 0138 0.133 0184 0216 0232 0235 0240 0245 0256 0272 0277

10 n=n, 200 0248 0.189 0.8 0262 0285 0305 0318 0324 0333 0343 0355  0.358
300 0350 0283 0276 0360  0.405 0424 0432 0440 0442 0452 0472 0473

400 0462 0410 0394 0502 0531 0548 0558 0562 0563 0565 0587  0.587

100 0102 0072 0070 0112 0123 0135 0142 0145 0147 0156 0165 0.166

150 0.167 0121 0120 0172 0198 0211 0222 0228 0232 0238 0258 0258

10 n=2n, 200 0207 0.44 0142 0218 0241 0250 0259 0263 0267 0275 0293 0293
300 0314 0256 0242 0332 0364 0380 0394 0401 0403 0410 0432 0434

400 0389 0333 0324 0417 0456 0479 0487 0492 0499 0511 0537 0537

100 0099 0064 0062 0098 0119 0133 0141 0146 0148 0150 0158  0.159

150 0146 0098 0096 0150 0175 0188 0194 0199 0203 0211 0220 0222

10 n=3n, 200 0168 0.14 0110 0165 0200 0220 0224 0229 0234 0245 0274 0276
300 0264 0204 0196 0272 0300 0318 0330 0336 0345 0354 0375 0376

400 0349 0281 0265 0367 0390 0411 0426 0433 0441 0459 0482 0483

Aprc* - 0315 0315 0160 0105 0080 0063 0052 0045 0032 0006  0.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection
operator; A: regularization parameter; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference
groups; n; and n, indicate the sample sizes in the focal and reference groups, respectively; N: the total sample size (N=n; +n ). *These A values were

obtained according to the Bayesian information criterion (BIC).

According to Table 1, for I =5 and regardless of R, the
elastic net regularized OLR model with w = 0.1, as compared
with the nonregularized OLR model, increased the power of
detecting moderate uniform DIF (DIF = 0.4) approximately
35%, 21%, and 21.7% for N =100, 150, and 200, respectively.
In this case, the type I error rates of the regularized and non-
regularized OLR models were close to the nominal level of
0.05 (Table 2). However, this amount of increase in power
was approximately 15.5% and 12.6% for N =300 and 400,
respectively. In this situation, the average type I error rate

of the nonregularized OLR model was close to the nominal
level of 0.05, while it was approximately 0.07 for the elastic
net regularized OLR model.

As demonstrated in Table 1, for N > 300, =5,and R =1,
as compared with the nonregularized OLR model, increasing
the weighting parameter (w) from 0.1 to 0.5 resulted in an
increase of approximately 11.7% to 17.7% in the power of
the elastic net regularized OLR model for detecting moderate
uniform DIF (DIF = 0.4). In this case, the elastic net regular-
ized OLR model tended to reach the adequate power of 80%,
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TaBLE 2: The type I error rates of the regularized (elastic net) and non-regularized OLR models in detecting moderate uniform DIF (DIF=

0.4) when J=5.
. Ridge Elastic net OLR LASSO
I Ratio N OLR w:go w=0.01 w=0.02 w=0.03 w=004 w=005 w=006 w=007 w=0.1 w=0.5  w=1
100 0037 0007 0007 0020 0028 0033 0036 0040 0042 0048 0.066  0.068
150 0040 0009 0008 0021 0029 0038 0042 0046 0050 0056 0075 0076
5 ne=n, 200 0042 0008 0007 0018 0028 0038 0046 0050  0.056 0.063 0.080  0.081
300 0052 0011 0010 0023 0038 0045 0051 0057 0060 0070 0088  0.089
400 0.056 0009 0008 0023 0037 0046 0053 0061 0066 0077 0098  0.100
100 0038 0012 0011 0018 0027 0034 0040 0042 0044 0051 0067  0.068
150 0038 0006 0006 0018 0026 0034 0040 0045 0049 0058 0071  0.073
5 n=2n; 200 0035 0008 0006 0020 0030 0035 0040 0043 0046 0.054 0067  0.067
300 0053 0010 0010 0029 0037 0045 0053 0059 0061 0070 0087  0.089
400 0054 0012 0010 0021 0034 0046 0052 0056 0062 0070 0091  0.093
100 0036 0009 0009 0019 0029 0035 0039 0044 0046 0052 0069  0.071
150 0039 0008 0007 0018 0030 0034 0040 0048 0051 0058 0072 0074
5  n=3n;, 200 0036 0010 0008 0021 0030 0037 0041 0046  0.050 0.055 0.069  0.070
300 0041 0010 0009 0020 0030 0038 0044 0048 0053 0061 0075 0077
400 0052 0011 0008 0025 0036 0043 0049 0055 0059 0068 0088  0.090
pI— - 0380 0381 0190 0130 0095 0076 0063 0054 0038 0008  0.004
100 0029 0009 0008 0021 0029 0034 0037 0040 0041 0046 0056  0.056
150 0030 0010 0009 0020 0030 0035 0038 0042 0045 0050 0058  0.059
10 n=n, 200 0030 0012 0010 0022 0030 003 0040 0043 0045 0050 0058  0.059
300 0031 0010 0008 0022 0028 0034 0038 0041 0044 0048 0058  0.059
400 0031 0010 0009 0020 0027 0032 0035 0040 0041 0046 0055  0.056
100 0029 0009 0009 0020 0027 0031 0036 0038 0040 0045 0055  0.055
150 0031 0012 0011 0022 0032 0038 0043 0045 0047 0050 0059  0.059
10 n=2n, 200 0027 0009 0008 0019 0027 0034 0037 0040 0042 0046 0056  0.057
300 0027 0011 0009 0020 0028 0033 0037 0039 0041 0046 0055  0.056
400 0031 0010 0009 0021 0029 0035 0039 0041 0043 0047 0057  0.058
100 0029 0010 0009 0021 0028 0031 0035 0037 0040 0044 0053  0.053
150 0030 0009 0009 0022 0030 0034 0038 0041 0043 0048 0058  0.059
10 n=3n, 200 0024 0009 0008 0017 0024 0030 0033 003 0038 0042 0050  0.051
300 0.034 0011 0010 0023 0031 0036 0040 0043 0045 0049 0058  0.059
400 0.028 0009 0008 0021 0027 0032 0036 0038 0041 0045 0054  0.055
Aprc* - 0315 0315 0160 0105 0080 0063 0052 0045 0032 0006  0.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection
operator; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference groups; n; and n, indicate
sample sizes in the focal and reference groups, respectively; N: total sample size (N=n; +n,). *These A values were obtained according to the Bayesian

information criterion (BIC).

while its type I error rate was slightly above the nominal level
of 0.05. However, for I = 10, the maximum power for detect-
ing moderate uniform DIF (DIF = 0.4) was 0.587 and 0.462
for the LASSO and nonregularized OLR models, respectively.

Tables 3 and 4, respectively, represent the power and
type I error rates of the regularized (elastic net) and nonre-
gularized OLR models in detecting the presence of severe
uniform DIF (DIF = 0.8) under different combinations of I,
N, R, and J =5. As shown in Table 3, when =5 and R=1
, the elastic net regularized OLR model with w=0.05, as

compared with the nonregularized OLR model, increased
the power of detecting severe uniform DIF (DIF =0.8)
approximately 9% and 4.5% for N =100and 150, respec-
tively. In this case, the type I error rates of the elastic net reg-
ularized and nonregularized OLR models were 0.058 and
0.078 for N =100and 150, respectively. Similar findings
were also obtained for the elastic net regularized OLR model
with w =0.04and 0.06. Hence, for a relatively small sample
size (N <150), I =5, and R=1, the elastic net regularized
OLR model with 0.04 <w<0.06 achieved the adequate
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TaBLE 3: The powers of the regularized (elastic net) and non-regularized OLR models in detecting severe uniform DIF (DIF=0.8) when J=5.

. Ridge Elastic-net OLR LASSO

[ Rato N OLR wj) w=0.01 w=0.02 w=0.03 w=0.04 w=0.05 w=0.06 w=0.07 w=0.1 w=05 w=1
100 0705 0564 0550 0679 0727 0754 0767 0774 0778 0790 0.808  0.809

150 0.867 0789 0781 0860  0.889 0901 0906 0910 0914 0917 0931 0932

5 n=n, 200 0940 0.894 0.885 0944 0958 0964 0966 0968 0969 0969 0971 0971
300 0995 0985 0984 0996 0997 0997 0997 0997 0997 0997 0997  0.997

400 0998 1.000 1.000  1.000 1000  1.000  1.000  1.000  1.000 1.000 1000  1.000

100 0622 0471 0464 0600 0646 0673 0691 0701 0703 0717 0738  0.744

150 0811 0733 0729 0817 0851 0862 0871 0873 0879 0886 0.898  0.899

5 n=2n, 200 0912 0850 0845 0920 0931 0940 0947 0951 0951 0953 0961  0.961
300 0989 0987 0975 098 0989 0990 0991 0992 0992 0993 0995  0.995

400 0999 0997 0997 0999  1.000  1.000  1.000  1.000  1.000  1.000 1.000  1.000

100 0557 0400 0393 0519 0567 0559 0613 0623 0631 0648 0.668  0.670

150 0747 0620 0610 0737 0770 0784 0794 0802  0.807 0815 0.840  0.841

5 n=3n, 200 0873 0785 0777 0862 0892 0907 0913 0915 0918 0918 0931  0.932
300 0968 0950 0947 0970 0978 0981 0983 0982 0982 0984 0988  0.988

400 0995 0985 0984 0995 0995 0996 0996 0997 0997 0997 0997  0.997

Apic* - 0380 0380 0190 0130 0095 0076 0063 0054 0.038 0008  0.004
100 0456 0383 0377 0486 0518 0543 0548 0554 0559 0576 0596  0.597

150 0.665 0592 0580 0687 0713 0726 0737 0746 0749 0760 0773  0.774

10 n=n, 200 0800 0763 0754 0835 0855 0860 0861 0864 0868 0872 0888  0.888
300 0940 0921 0913 0951 0963 0967 0967 0966 0967 0968 0976 0976

400 0979 0971 0968 0988 0990 0992 0991 0991 0991 0991 0993 0993

100 0341 0336 0331 0433 0485 0503 0518 0523 0522 0534 0545 0547

150 0.606 0530 0521 0619 0665 0674 0689 0698 0703 0712 0719 0719

10 n=2n; 200 0748 0687 0676 0770 079 0809 0813 0814 0820 0827 0832 0832
300 0907 0879 0870 0916 0929 0933 0935 0937 0940 0947 0950  0.950

400 0965 0958 0955 0973 0978 0979 0981 0981 0982 0982 0987  0.987

100 0341 0274 0263 0361 0400 0420 0432 0437 0441 0447 0464  0.464

150 0545 0459 0450 0558 0591  0.605 0612 0623 0626 0635 0643  0.644

10 n=3n;, 200 0.667 059 058 0678 0721 0737 0749 0757 0751 0761 0771 0771
300 0835 0804 0795 0857  0.882  0.895 0900 0902 0905 0909 0913 0913

400 0935 0905 0896 0941 0951 0958 0960 0960 0960 0960 0963  0.964

Agic* - 0315 0315 0160  0.105 0080 0063 0052 0045 0032 0.006  0.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection
operator; A: regularization parameter; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference
groups; ng and n, indicate sample sizes in the focal and reference groups, respectively; N: total sample size (N=n; +n,). *These A values were obtained

according to the Bayesian information criterion (BIC).

power of 80% and type I error rate of 0.05 for detecting
severe uniform DIF (DIF = 0.8). However, for N >200, I =
5, and R =1, the type I error rates were considerably higher
than the nominal level of 0.05 for the elastic net regularized
(w=>0.03) and nonregularized OLR models. In the same
conditions, the power of the elastic net regularized OLR
model with 0 <w <0.02 was equal to or greater than 80%
in detecting severe uniform DIF (DIF = 0.8), while its type
I error rate was below or close to the nominal level of 0.05.
In addition, for N >200 and I=5, similar findings were

obtained when the sample size was unequal (R=2and3)
between the focal and reference groups.

Moreover, regardless of R, for the severe magnitude of
DIF (DIF =0.8), I =10, and N > 200, the powers of the reg-
ularized and nonregularized OLR models were close to or
higher than 80%, and their type I error rates were below or
close to the nominal level of 0.05.

On the other hand, for a severe magnitude of DIF
(DIF=0.8), I=10, and a relatively small sample size
(N <150), when the weighting parameter (w) increased



BioMed Research International

TaBLE 4: The type I error rates of the regularized (elastic net) and non-regularized OLR models in detecting severe uniform DIF (DIF=0.8)

when J=5.
. Ridge Elastic-net OLR LASSO
I Ratio N OLR w:go w=0.01 w=0.02 w=0.03 w=004 w=005 w=006 w=007 w=0.1 w=0.5  w=1
100 0058 0012 0010 0027 0038 0048 0058 0066 0075 0084 0104 0.106
150 0078 0014 0013 0034 0051 0065 0078 0086 0094 0108 0132 0134
5 ne=n, 200 0094 0013 0011 0038 0065 0080 0089 0098 0106 0.21 0.149  0.150
300 0135 0018 0017 0054 0082 0108 0124 0137 0147 0.166 0209 0213
400 0.172 0021 0018 0061 0099 0128  0.150  0.167  0.181 0206 0261  0.266
100 0059 0015 0014 0030 0042 0053 005 0067 0072 0081 0105  0.107
150 0076 0012 0012 0030 0049 0064 0072 0081 0088 0102 0127 0.128
5 n=2n; 200 0080 0014 0012 0035 0055 0071 0081 0091 0099 0112 0.143  0.145
300 021 0022 0020 0052 008 009 0111 0120 0.31 0.5 0194 0.197
400 0.155 0021 0018 0056 008 0112  0.135 051 0162 0.185 0232 0234
100 0059 0012 0012 0026 0039 0048 0056 0063 0068 0076 0.099  0.102
150 0072 0011 0009 0032 0047 0062 0070 0078 0084 0098 0122 0124
5  n=3n;, 200 0077 0015 0014 0033 0053 0065 0074 0082 0087 0.101 0.25 0.126
300 0103 0017 0015 0042 0062 0081 009 0108 0118 0.137 0.169 0.171
400 0131 0018 0016 0051 0078 009 009 0131 0143 0166 0202 0206
pI— - 0380 038 0190 0130 0095 0076 0063 0054 0038 0008  0.004
100 0032 0011 0009 0023 0032 0037 0041 0044 0048 0052 0061  0.062
150 0037 0010 0010 0025 0034 0042 0047 0050 0053 0058 0069  0.070
10 n=n, 200 0039 0014 0012 0027 0037 0045 0050 0054 0057 0062 0074  0.075
300 0044 0013 0011 0027 0039 0047 0053 0057 0060 0067 0078  0.079
400 0047 0012 0010 0026 0039 0048 0053 0059 0063 0070 0083  0.085
100 0033 0010 0009 0023 0030 0035 0040 0043 0045 0050 0060  0.061
150 0038 0012 0011 0026 0035 0041 0045 0050 0052 0059 0069  0.069
10 n=2n, 200 0036 0010 0009 0024 0034 0041 0045 0049 0051 0057 0068  0.069
300 0041 0011 0010 0025 0035 0044 0049 0054 0058 0064 0076 0.077
400 0049 0012 0011 0027 0040 0048 0054 0058 0063 0070 0085  0.086
100 0031 0011 0010 0023 0029 0034 0038 0041 0043 0048 0058  0.058
150 0035 0010 0009 0024 0033 0039 0044 0048 0051 0056 0065  0.066
10 n=3n, 200 0031 0009 0009 0020 0029 0035 0040 0044 0046 0050 0060  0.061
300 0045 0013 0012 0028 0038 0047 0050 0054 0058 0064 0077 0.078
400 0042 0011 0009 0024 0035 0045 0050 0054 0058 0066 0078  0.078
Aprc* - 0315 0315 0160 0105 0080 0063 0052 0045 0032 0006  0.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection
operator; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference groups; n; and n, indicate
sample sizes in the focal and reference groups, respectively; N: total sample size (N=n; +n,). *These A values were obtained according to the Bayesian

information criterion (BIC).

from 0.03 to 1, the power of the elastic net regularized
OLR model, as compared with the nonregularized OLR
model, increased from 11.2% to 24.8%. In this case, the
regularized and nonregularized OLR models preserved
the type I error rates approximately close to the nominal
level of 0.05.

Figures 1 and 2 demonstrate the average powers and
type I error rates of the regularized and nonregularized
OLR models on measures with five and ten items for moder-
ate and severe DIF, respectively. According to these figures,

regardless of DIF magnitude, sample size ratio, and the
number of items, the elastic net regularized OLR model with
w =0 (ridge) and w =1 (LASSO) had the lowest and highest
power for detecting uniform DIF, respectively. Moreover,
the nonregularized OLR model and the elastic net regular-
ized OLR model with w=0.03 had an approximately equal
power. Additionally, as shown in Figures 1 and 2, the
average type I error rate was generally below or close to
the nominal level of 0.05 for the elastic net regularized
(w=0,0.03,and 0.05) and nonregularized OLR models
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FiGUrk 1: The average powers and type I error rates of the nonregularized OLR model (solid lines), elastic net OLR model with w =0
(ridge) (dashed lines), elastic net OLR model with w =0.03 (dotted lines), elastic net OLR model with w =0.05 (dot-dashed lines), and
elastic net OLR model with w =1 (LASSO) (long-dashed lines) on measures with five and ten items for moderate DIF (DIF =0.4). (a)
DIF=0.4 and n, = ny. (b) DIF=0.4 and n, = 2n;. (c) DIF=0.4 and n, = 3ny. (d) DIF=0.4 and n, = ny. (e) DIF=0.4 and n, = 2n;. (f)
DIF=0.4 and n, = 3n;.
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FIGURE 2: The average powers and type I error rates of the nonregularized OLR (solid lines), elastic net OLR model with w =0 (ridge)
(dashed lines), elastic net OLR model with w =0.03 (dotted lines), elastic net OLR model with w =0.05 (dot-dashed lines), and elastic
net OLR model with w=1 (LASSO) (long-dashed lines) on measures with five and ten items for severe DIF (DIF =0.8). (a) DIF=0.8
and n, = ny. (b) DIF=0.8 and n, = 2n;. (c) DIF=0.8 and #n, = 3n;. (d) DIF=0.8 and n, = n. (e) DIF=0.8 and n, = 2n;. (f) DIF=0.8
and n, =3n;.

(range: 0.029-0.069). However, it was above the nominal  3.2. Real Data Analysis. In the present section, a real data
level of 0.05 for the elastic net regularized OLR model with ~ set was employed to validate the simulation results. The
w=1 (range: 0.073-0.127). data set was composed of 72 children and adolescents with
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TasLE 5: The results of the DIF analysis for the PedsQL™ 4.0 across children with ADHD and their parents based on the regularized (elastic

net) and non-regularized OLR models.

OLR Ridge Elastic net OLR LASSO
w=0 w=0.01 w=0.02 w=0.03 w=0.04 w=0.05 w=0.06 w=0.07 w=0.1 w=05 w=1

Physical Functioning P-value
1. Hard to walk more than a block 0.453 1.000 1.000 1.000 1.000 0.791 0.714 0.663 0.628 0.566 0.467 0.459
2. Hard to run 0.553 1.000 1.000 1.000 1.000 0.838 0772 0729 0.699 0.649 0567 0.560
3. Hard to do sports or exercises ~ 0.929 0.543 0.551 0723 0.844 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4. Hard to lift something heavy 0.007 0.146 0.154 0059 0.035 0.024 0.019 0.016 0.014 0.011 0.007 0.007
5. Hard to take a bath or shower  0.001 0.006 0.007 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
6. Hard to do chores around house 0.070 0.276 0.290 0.169 0.130 0.108 0.098 0.091 0.087 0.080 0.071 0.070
7. Hurt or ache 0572 0442 0452 0494 0519 0536 0546 0552 0557 0564 0575 0.575
8. Low energy 0129 0.114 0.118 0112 0114 0118 0120 0122 0.123 0.126 0.129 0.129
Emotional Functioning
1. Feel afraid or scared 0.160 0514 0537 0367 0299 0257 0234 0218 0208 0.189 0.163 0.161
2. Feel sad or blue 0.012 0.037 0.039 0.023 0.019 0.017 0.015 0.015 0.014 0.013 0.012 0.012
3. Feel angry 0.003 0.014 0.014 0.007 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.003
4. Trouble sleeping 0909 0.820 0.823 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.963
5. Worry about what will happen ~ 0.003 0.074 0.078 0.027 0.015 0.010 0.008 0.006 0.006 0.004 0.003 0.003
Social Functioning
1. Trouble getting along with peers 0.024 0.074 0077 0.047 0.038 0.033 0.031 0.029 0.028 0.026 0.024 0.024
?r'igﬁ]:r kids not wanting to be 0985 0925 0928 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3. Teased 0.167 0298 0309 0250 0226 0210 0201 0.195 0.190 0.182 0.169 0.168
4. Doing things other peers do 0226 0442 0459 0357 0316 0289 0275 0264 0258 0246 0229 0227
z'th}ijsrd to keep up when play with ¢ 30> 0 041 0.043 0.016 0010 0.007 0005 0.005 0.004 0.003 0.002 0.002
School Functioning
1. Hard to concentrate 0576 0.644 0.648 1.000 1.000 1.000 1.000 1.000 1.000 0.889 0.605 0.587
2. Forget things 0301 1.000 1.000 1.000 0813 0.644 0562 0507 0469 0.405 0311 0.304
3. Trouble keeping up with 0773 0510 0517 0758 1.000 1.000 1.000 1.000 1.000 1.000 0.830 0.795
schoolwork
4. Miss school — not well 0550 0261 0267 0376 0436 0476 0497 0511 0519 0533 0553 0.554
5. Miss school - doctor appointment 0.935 0445 0452 0.645 0762 0.847 0.898 0931 0950 0957 0942 0.973
Total number of uniform DIF items 7 4 4 6 7 7 7 7 7 7 7 7

Note: DIF: differential item functioning; LASSO: least absolute shrinkage and selection operator; OLR: ordinal logistic regression; w: weighting parameter; the

bold numbers show the p-values for items that demonstrate a uniform DIF.

attention-deficit/hyperactivity disorder (ADHD) (aged 8-
18; 81.9% females; 18.1% males) who had referred with
their parents to the Child and Adolescent Psychiatry
Clinics affiliated with Shiraz University of Medical Sci-
ences, Shiraz, Iran. The children and their parents, respec-
tively, completed the child self-reports and the proxy
reports of the Persian version of the PedsQL™ 4.0 Generic
Core Scales [23]. The 23-item PedsQL™ 4.0 questionnaire
consists of 4 subscales: physical functioning (8 items),
social functioning (5 items), emotional functioning (5
items), and school functioning (5 items). A 5-point Likert
scale from 0 (never) to 4 (almost always) is used to mea-
sure the respondents’ perception on each item.

The results of the DIF analysis of the PedsQL™ 4.0
instrument across children with ADHD and their parents
based on the regularized and nonregularized OLR models
are summarized in Table 5. Our results showed that while
the elastic net regularized OLR model with w>0.03 and
the nonregularized OLR model exhibited seven out of
the 23 items with uniform DIF, the elastic net regularized
OLR model with w=0,0.01,and 0.02 identified four, four,
and six items with uniform DIF, respectively. In addition,
according to Table 5, increasing the value of the weighting
parameter (w) from 0 to 1 resulted in an increase in the
power of the elastic net regularized OLR model for detect-
ing uniform DIF. These results were consistent with the
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simulation findings in Tables 1 and 3, especially when the
sample size was extremely small (N < 150).

4. Discussion

A small sample size is a challenging issue in assessing DIF
for ordinal response data. To the best of our knowledge, this
is the first study that introduces a new application of the
elastic net regularized OLR model, as a special type of
machine learning method, for detecting DIF in small sample
size groups. One of the main advantages of the elastic net
regularized OLR method over other regularization methods
for DIF detection is that it provides the researcher with a
wide range of models by varying the weighting parameter
(w) over the interval from 0 to 1. However, choosing an
optimal value for w is the key issue in using elastic net reg-
ularized models [14, 16]. The present simulation study dem-
onstrated that the elastic net regularized OLR model with
0.03 <w <0.06 generally outperformed the nonregularized
OLR model in terms of the statistical power to identify
DIF especially when the sample size was extremely small
(N <150), the number of items was 10 (I =10), and DIF
was severe (DIF =0.8). These findings were different from
those of Lee who showed that the nonregularized binary
logistic regression model performed slightly better than the
regularized logistic regression model (based on the PML
estimation method) in detecting DIF for small samples [5].

The current study also showed that when w was greater
than 0.1 (w=0.5and1), the value of the regularization
parameter (A) converged to zero, indicating that the likeli-
hood function of the elastic net regularized OLR model
was reduced to the likelihood function of the nonregularized
OLR model. This can lead to almost similar results for the
elastic net regularized (w>0.1) and nonregularized OLR
models in identifying DIF.

Although all previous studies have used the LASSO reg-
ularized method for DIF assessment with binary-scored
items [18, 24-26], the findings of the current study showed
that we should be cautious about using the LASSO regular-
ized OLR model (w=1) for DIF analysis. This is because
when the number of items is five (I = 5), the LASSO regular-
ized OLR model inflates the type I error rate to 0.2. How-
ever, for larger scales (I = 10) and when the sample size is
relatively small (N <150), using the LASSO regularized
OLR model for the identification of severe uniform DIF
(DIF = 0.8) is strongly recommended. This finding also con-
firmed the results of a previous simulation study which
showed that the regularized logistic regression model with
LASSO penalty outperformed the conventional logistic
regression model in DIF detection when the sample size
was small and the number of items was 20 (I =20) [24].

A further novel finding of the present study is that the
elastic net regularized OLR model with 0.03 <w<0.07
becomes necessary for DIF analysis when the scale length
and sample size are relatively small (I=5 and N <150).
These findings are different from those in the previous study
conducted by Scott et al. where the nonregularized OLR
model was used to detect DIF when the sample size was
higher than or equal to 200 (N >200) [8]. They simulated

BioMed Research International

subscales with 2, 3, 4, 5, 10, and 20 items and showed that
the effect of the number of items in the scale was relatively
small on the results of DIF detection based on the nonregu-
larized OLR model [8]. Accordingly, further simulation
studies are needed to explore the effect of varying the length
of the scale on the performance of the LASSO OLR model
for DIF analysis.

Furthermore, the findings of the current study revealed
that when N <150 and DIF was moderate (DIF =0.4), the
ridge regularized OLR model (w =0) had the lowest power
in detecting DIF as compared with the other regularized
OLR model and the nonregularized OLR models. In these
conditions, we should be cautious about using the ridge reg-
ularized OLR model (w=0) for detecting uniform DIF
because it can lead to false negative results.

On the other hand, comparing the regularized and non-
regularized OLR models for the real ADHD data set con-
firmed the results of the present simulation for detecting
DIF. The current simulation study demonstrated that by
increasing the value of the weighting parameter (w), the
power of the elastic net regularized OLR model will be
increased. Accordingly, in the real data set, the elastic net
regularized OLR model with w equal to or greater than
0.03 was more sensitive in detecting uniform DIF across
children with ADHD and their parents than the elastic net
regularized OLR model with 0 <w <0.02.

One of the interesting findings of the current study was
that when N > 200 and DIF = 0.8 (severe DIF), the regular-
ized and nonregularized OLR models had an adequate
power for detecting DIF. These findings were similar to
those of Magis et al. who reported that when the sample size
was large, the regularized LASSO logistic regression and the
nonregularized logistic regression models yielded similar
results for identifying DIF in binary response data [24].
However, the current simulation study revealed that when
the magnitude of DIF was severe (DIF =0.8), N > 200, and
the number of items was five (I =5), the elastic net regular-
ized OLR model with w > 0.03 and the nonregularized OLR
model inflated type I error rate up to the unacceptable level
of 26.6%.

In the present study, we simulated data based on moder-
ate (DIF = 0.4) and severe (DIF = 0.8) DIF conditions. Sim-
ilar to our study, Hidalgo et al. manipulated two levels of
differences in threshold parameters (0.4 and 0.8) to simulate
moderate and large magnitudes of DIF [27]. Moreover,
according to Li and Zumbo, the magnitude of DIF equal to
0.4, 0.6, and 0.8 can be considered small, moderate, and large
DIF, respectively [28]. However, Scott et al. considered three
levels of DIF magnitude including 0.2, 0.5, and 1 to generate
items with small, moderate, and large DIF, respectively [8].
Although there is no consensus on the definition of DIF
magnitude, it seems that the magnitude of DIF from 0.4 to
1 is a feasible option to simulate items with moderate and
severe DIF.

Although various criteria including the Bayesian infor-
mation criterion (BIC) and cross-validation method can be
used to obtain the optimal tuning parameter A [14, 16, 18],
in the present research, the BIC was only used to assess
DIF. In DIF analysis, the cross-validation and BIC have
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technical and theoretical differences. The BIC has been
designed for variable selection, whereas cross-validation is
generally used to select the optimal model for prediction
[26]. Moreover, previous studies have demonstrated that
the cross-validation method tends to have higher false-
positive rates in detecting DIF than the BIC [18, 25]. Because
variable selection is much more important in DIF assess-
ment than prediction, the findings of the present study were
interpreted based on the BIC [26].

This research had some limitations which are as follows.
Although our simulation study was restricted to identifying
only the uniform DIF, the elastic net regularized OLR model
could also be extended to cover both uniform and nonuni-
form DIF. In addition, the regularized model used in the
present research contains a maximum of two predictors
which do not appear to be collinear either. Hence, in the
future study, the performance of the elastic net regularized
OLR model for DIF analysis should be assessed when several
highly correlated continuous and categorical covariates are
included in the model [14]. Finally, it should be noted that
traditional DIF detection approaches are very sensitive to
missing item responses and the questionnaires with missing
data are usually excluded from the DIF analysis [29]. Hence,
in the present study, we did not simulate items with missing
data. Accordingly, as a special type of machine learning
method, the elastic net regularized OLR model could be a
viable choice for identifying DIF with missing data and with-
out needing imputation [24].

5. Conclusion

Technically, the findings of the present study confirmed the
idea proposed by Belzak and Bauer where regularization
methods, as a special type of machine learning technique,
could compensate for the limitation of the conventional
DIF detection methods when the sample size is relatively
small [18]. This study provided a guideline for researchers
who conduct DIF studies with extremely small sample sizes.
In general, for extremely small sample sizes (N < 150), the
elastic net regularized OLR model with 0.03 <w < 0.1 out-
performed the nonregularized OLR model in terms of power
and type I error rate. Moreover, in future studies, the advan-
tages of the elastic net regularized OLR model in dealing
with missing data and collinearity problem in the context
of DIF analysis should be assessed.
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