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Assessing differential item functioning (DIF) using the ordinal logistic regression (OLR) model highly depends on the asymptotic
sampling distribution of the maximum likelihood (ML) estimators. The ML estimation method, which is often used to estimate
the parameters of the OLR model for DIF detection, may be substantially biased with small samples. This study is aimed at
proposing a new application of the elastic net regularized OLR model, as a special type of machine learning method, for
assessing DIF between two groups with small samples. Accordingly, a simulation study was conducted to compare the powers
and type I error rates of the regularized and nonregularized OLR models in detecting DIF under various conditions including
moderate and severe magnitudes of DIF (DIF = 0:4 and 0:8), sample size (N), sample size ratio (R), scale length (I), and
weighting parameter (w). The simulation results revealed that for I = 5 and regardless of R, the elastic net regularized OLR
model with w = 0:1, as compared with the nonregularized OLR model, increased the power of detecting moderate uniform
DIF (DIF = 0:4) approximately 35% and 21% for N = 100 and 150, respectively. Moreover, for I = 10 and severe uniform DIF
(DIF = 0:8), the average power of the elastic net regularized OLR model with 0:03 ≤w ≤ 0:06, as compared with the
nonregularized OLR model, increased approximately 29.3% and 11.2% for N = 100 and 150, respectively. In these cases, the
type I error rates of the regularized and nonregularized OLR models were below or close to the nominal level of 0.05. In
general, this simulation study showed that the elastic net regularized OLR model outperformed the nonregularized OLR
model especially in extremely small sample size groups. Furthermore, the present research provided a guideline and some
recommendations for researchers who conduct DIF studies with small sample sizes.

1. Introduction

In psychometric research such as health-related quality of
life (HRQoL), measurement invariance, also known as dif-
ferential item functioning (DIF), is a prerequisite assump-
tion for the valid comparison of HRQoL scores across
people from different subgroups (e.g., groups distinguished
by gender, age, race. or health conditions). In general, DIF
occurs when individuals from different groups respond dif-
ferently to specific items in a questionnaire after controlling
the construct being measured [1, 2]. The ordinal logistic
regression (OLR) model is one of the well-known methods

for the identification of DIF in psychometric research. The
OLR model can evaluate both uniform and nonuniform
DIF and can also control other categorical and continuous
variables which may affect the results of DIF analysis [3,
4]. Uniform DIF occurs when the difference in item
response probabilities remains constant across complete
construct domains, whereas nonuniform DIF is evident
when the direction of DIF differs across various parts of
the construct scale [5, 6].

It is well documented that statistical inference based on
the OLR model typically depends on the asymptotic proper-
ties of the maximum likelihood (ML) estimator [7]. When
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the sample size is relatively large, the sampling distribution
of the ML estimators for the OLR coefficients is asymptoti-
cally normal and unbiased. However, when the sample size
is very small, the robustness of the ML procedure and the
asymptotic assumptions are violated. This in turn limits
the use of the OLR model for DIF detection in small samples
[4, 7]. Hence, it is essential to determine the extent to which
the conventional OLR model is an efficient method for asses-
sing DIF in the context of small sample sizes. A simulation
study has shown that the OLR model needs sample sizes of
about 200 for each group to obtain an adequate power and
type I error rate in assessing DIF [8]. However, in HRQoL
studies, researchers frequently encounter small sample sizes
due to practical limitations such as prohibitive costs or low
prevalence of a disease [9, 10].

Nowadays, a wide range of regularized or bias correction
methods, known as machine learning approaches, have been
proposed to overcome the problem of small sample size in
binary and ordinal logistic regression models [7, 11–14]. In
the binary logistic regression model, Firth’s penalized maxi-
mum likelihood (PML) estimation approach was originally
introduced to correct or reduce the small sample bias of
the ML estimators [11]. The ML estimation method tends
to produce overfitted models with a poor prediction perfor-
mance in the presence of small or sparse samples, whereas
the PML procedure offers some improvements by shrinking
the regression coefficients. In reality, the PML method pro-
duces unbiased and finite estimates of regression coefficients
for small sample situations in which ordinary ML estimation
fails [11, 13, 15]. Recently, for ordinal response data, the
elastic net regularized OLR model has been proposed by
Wurm et al. to improve the estimation of the regression
coefficients, as well as to perform variable selection [14].
The elastic net is another regularized regression technique
that linearly combines the penalties used in the ridge and
least absolute shrinkage and selection operator (LASSO)
regression models [16]. The ridge and LASSO regressions
are two well-known members of the regularization family
of methods [12, 17]. The major difference between the two
algorithms is that while the ridge method shrinks all of the
regression coefficients to a nonzero value, the LASSO
method shrinks some of the coefficients exactly to zero.
The differences lie in the penalty terms used by each
method. While the LASSO regression adds the sum of the
absolute value of the magnitude of the regression coefficients
to the ordinary likelihood function, the ridge regression adds
the sum of the squared magnitude [12, 17].

A new psychometric study has shown that regularization
techniques, as a special type of machine learning methods,
outperform the conventional DIF detection procedures
when the sample size is extremely small [18]. Although the
effect of regularization methods on the performance of
binary logistic regression models in detecting DIF has been
evaluated by Lee in small sample size groups [5], such a sta-
tistical description has never been provided for the OLR
model. For the binary logistic regression model, Lee has
shown that when the sample size is relatively small, there
is no difference between the conventional ML and PML esti-
mation methods in terms of power and type I error rate for

detecting DIF [5]. Hence, in the present study, we intended
to propose a new application of the elastic net regularized
OLR model, as a special type of machine learning approach,
in assessing DIF when the sample sizes for one or both
groups of interest are relatively small. Accordingly, by pre-
senting a comprehensive simulation study, we investigated
whether the statistical properties (power and type I error)
of the OLR model for evaluating DIF, with and without
applying regularized techniques, could be affected by the
sample size, sample size ratio, DIF amount, scale length,
and the value of the weighting parameter across the focal
and reference groups. Furthermore, a real data set was also
used to validate the simulation results.

2. Methods

The cumulative ordinal logistic regression (OLR) model,
also known as the proportional odds model, was used to
identify DIF across the two groups [4]. Moreover, the Monte
Carlo simulation method was utilized to compare the statis-
tical properties (power and type I error) of the regularized
and nonregularized OLR models for detecting DIF.

2.1. DIF Detection Method Based on the Nonregularized OLR
Model. The uniform and nonuniform DIF can be assessed by
comparing three different nested OLR models as follows:

Model 1 : Logit P Y ≤ jð Þ½ � = log P Y ≤ jð Þ
1 − P Y ≤ jð Þ

� �
= γ0j + β11θ

Model 2 : Logit P Y ≤ jð Þ½ � = log P Y ≤ jð Þ
1 − P Y ≤ jð Þ

� �
= γ0j + β12θ + β22G

Model 3 : Logit P Y ≤ jð Þ½ � = log P Y ≤ jð Þ
1 − P Y ≤ jð Þ

� �
= γ0j + β13θ + β23G + β33 θ × Gð Þ

ð1Þ

Here, PðY ≤ jÞ denotes the probability of choosing cate-
gory j or below, G is a covariate indicating group member-
ship with two levels (i.e., reference and focal groups), and
θ is the observed ability of an examinee usually demon-
strated by the total test score [3, 4].

The regression coefficients (γs and βs) are unknown con-
stants and are estimated by maximizing the log-likelihood
(ML) function [7]. According to the above models, the
presence of uniform DIF can be checked by testing whether
the coefficient of group membership (H0 : β22 = 0) differs sig-
nificantly from zero. This can be done by comparing the -2
log-likelihood values for models 1 and 2 with chi-square distri-
bution with one degree of freedom. The interaction regression
coefficient between the ability and group membership
(H0 : β33 = 0) can be tested to evaluate nonuniform DIF by
comparing the -2 log-likelihood values formodels 2 and 3 with
chi-square distribution with one degree of freedom [4]. It
should be noted that since the DIF direction is different along
the latent ability scale in nonuniform DIF, the nonuniform
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DIF items cancel each other out at the test level [19]. There-
fore, the focus in this simulation study is on uniform DIF
detection.

2.2. DIF Detection Method Based on the Elastic Net
Regularized OLR Model. In this section, a new machine
learning approach is proposed for DIF detection based on
the elastic net regularized OLR model [14]. Detecting DIF
through the regularized (elastic net) and nonregularized
OLR models is exactly the same except that in the elastic
net regularized OLR model, the uniform and nonuniform
DIF can be detected by comparing the penalized log-
likelihood values of models 1 and 2 and models 2 and 3,
respectively [5].

The elastic net regularized OLR model is a linear com-
bination of the LASSO and ridge regression models, and
its penalized log-likelihood function can be formulated as
follows:

lelastic net = −
1
N

× logL + λ w〠
p

j=1
βj

��� ��� + 1
2 1 −wð Þ〠

p

j=1
β2
j

" #
, ð2Þ

in which N is the total sample size, log L denotes the con-
ventional version of the log-likelihood function, and λ ≥ 0
and 0 ≤w ≤ 1 are the regularization and weighting param-
eters, respectively [14, 16]. In this equation, βj indicates

the regression coefficients, and ∑p
j=1β

2
j (squared L2-norm

of βj) and ∑p
j=1jβjj (L1-norm of βj) represent the ridge

and LASSO penalty terms, respectively [12, 17]. The elastic
net OLR model is simplified to the LASSO OLR model
when w = 1 and to the ridge OLR model when w = 0. It
should also be noted that when λ = 0, the elastic net pen-
alty term is eliminated, and the usual log-likelihood func-
tion of the ML method is obtained. The “ordinalNet”
package in the R software was used to fit the elastic net
regularized OLR model [14, 16].

In this simulation study, for any fixed value of w in the
interval 0 ≤w ≤ 1, the optimal value of λ was determined
by the Bayesian information criterion (BIC). For the elastic
net regularized OLR model, the BIC was calculated by the
following equation:

BIC = −2 log Lλ + log Nð Þ ×Nnonzero, ð3Þ

where log Lλ represents the log-likelihood value for the
regression parameters estimated with regularization param-
eter λ, N is the total sample size, and Nnonzero indicates the
estimated total number of nonzero parameters including
the intercepts [14]. For a regular sequence of λ values, which
is automatically generated by the “ordinalNet” package, the
corresponding BIC values are calculated and sorted in a
descending order according to their magnitude. Then, the
package chooses the optimal value of λ in a way that the
BIC value is minimized [14].

2.3. Generation of Simulated Data. In this study, Samejima’s
graded response model (GRM) [20], which is suitable for
simulating items with ordered response categories, was used

to produce five-category response data for measures with
five or ten items. The mathematical equation for GRM is
as follows:

Pij θð Þ = Pi Y ≥ j ∣ θð Þ = 1
1 + exp −ai θ − bij

� �� � , ð4Þ

where PijðθÞ is the probability of responding in or above cat-
egory j of item i, ai is the item discrimination parameter, θ is
the latent trait (ability), and bij denotes the item difficulty
(threshold) parameter for category j of item i. The item dis-
crimination parameters were randomly generated from the
uniform distribution over the interval (1, 2), and the diffi-
culty and ability parameters were sampled from the standard
normal distribution [1].

In the present simulation study, four factors including
the total sample size (N), sample size ratio (R), scale length
(I), and magnitude of uniform DIF that could influence
the performance of the regularized and nonregularized
OLR models were manipulated. Out of five or ten items in
the scale, one item (item 1) was flagged with uniform DIF
across the reference and focal groups. In order to simulate
the moderate and severe uniform DIF, 0.4 and 0.8 were,
respectively, added to the difficulty parameters (b1j) of item
1 in the focal group. Five sample sizes (N = 100, 150, 200,
300, and 400) and three levels of sample size ratio (R = 1, 2,
and 3) were considered. When N = 100, for example, the
conditions nr/nf = 50/50, 67/33, and 75/25 were generated.
In addition, two tests with 5 and 10 items (I = 5 and 10) were
generated. Each item had five response categories (J = 5).
The data were simulated using the “catIrt” package [21] as
well as the “runif” and “rnorm” functions in the R statistical
software (version: 4.0.2).

The main objective of this simulation study was to deter-
mine what the optimal value of the weighting parameter w
should be to obtain the adequate power and type I error rate
for the detection of DIF. In order to find the optimal value of
w, the following sequence of weighting parameters was con-
sidered: w = 0, 0:01, 0:02, 0:03, 0:04, 0:05, 0:06, 0:07, 0:1, 0:5,
and 1 (w = 0 and w = 1 corresponded to the ridge and LASSO
regressions, respectively). For each w, the BIC was used to
select the appropriate regularization parameter λ [14].

The power rate (true positive rate) is defined by the ratio of
the times that the uniform DIF is rightly flagged by various
methods across replications. Type I error rate (false-positive
rate) also indicates the ratio of non-DIF items wrongly identi-
fied as having DIF in 1000 replications. They are averaged over
all items without DIF [22].

3. Results

3.1. Uniform DIF Power and Type I Error Rates. Tables 1 and
2, respectively, show the power and type I error rates of the
regularized (elastic net) and nonregularized OLR models to
assess the presence of a moderate uniform DIF (DIF = 0:4)
under different combinations of scale length (I), total sample
size (N), sample size ratio (R), and response category num-
ber of five (J = 5).
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According to Table 1, for I = 5 and regardless of R, the
elastic net regularized OLR model with w = 0:1, as compared
with the nonregularized OLR model, increased the power of
detecting moderate uniform DIF (DIF = 0:4) approximately
35%, 21%, and 21.7% for N = 100, 150, and 200, respectively.
In this case, the type I error rates of the regularized and non-
regularized OLR models were close to the nominal level of
0.05 (Table 2). However, this amount of increase in power
was approximately 15.5% and 12.6% for N = 300 and 400,
respectively. In this situation, the average type I error rate

of the nonregularized OLR model was close to the nominal
level of 0.05, while it was approximately 0.07 for the elastic
net regularized OLR model.

As demonstrated in Table 1, for N ≥ 300, I = 5, and R = 1,
as compared with the nonregularized OLR model, increasing
the weighting parameter (w) from 0.1 to 0.5 resulted in an
increase of approximately 11.7% to 17.7% in the power of
the elastic net regularized OLR model for detecting moderate
uniform DIF (DIF = 0:4). In this case, the elastic net regular-
ized OLR model tended to reach the adequate power of 80%,

Table 1: The powers of the regularized (elastic net) and non-regularized OLR models in detecting moderate uniform DIF (DIF=0.4) when
J=5.

I Ratio N OLR
Ridge Elastic net OLR LASSO
w=0 w=0.01 w=0.02 w=0.03 w=0.04 w=0.05 w=0.06 w=0.07 w=0.1 w=0.5 w=1

5 nr=nf

100 0.179 0.100 0.098 0.146 0.175 0.192 0.215 0.224 0.233 0.247 0.277 0.281

150 0.317 0.184 0.177 0.265 0.310 0.332 0.347 0.357 0.361 0.370 0.412 0.413

200 0.365 0.217 0.210 0.190 0.360 0.389 0.400 0.409 0.418 0.433 0.479 0.483

300 0.559 0.409 0.392 0.518 0.572 0.594 0.610 0.621 0.625 0.632 0.673 0.677

400 0.702 0.550 0.528 0.673 0.734 0.754 0.770 0.773 0.772 0.774 0.808 0.811

5 nr=2nf

100 0.161 0.068 0.065 0.126 0.155 0.174 0.188 0.199 0.207 0.215 0.257 0.260

150 0.279 0.140 0.129 0.230 0.266 0.291 0.300 0.309 0.320 0.333 0.366 0.366

200 0.334 0.204 0.196 0.287 0.333 0.360 0.375 0.383 0.397 0.409 0.439 0.441

300 0.497 0.344 0.329 0.452 0.498 0.527 0.544 0.556 0.562 0.579 0.626 0.632

400 0.629 0.499 0.474 0.598 0.644 0.661 0.683 0.694 0.700 0.708 0.737 0.739

5 nr=3nf

100 0.143 0.067 0.064 0.108 0.135 0.149 0.158 0.167 0.175 0.190 0.221 0.225

150 0.219 0.108 0.103 0.176 0.211 0.232 0.244 0.249 0.257 0.278 0.306 0.308

200 0.279 0.171 0.160 0.250 0.280 0.300 0.314 0.322 0.331 0.346 0.379 0.379

300 0.430 0.279 0.265 0.373 0.432 0.457 0.472 0.481 0.486 0.503 0.543 0.546

400 0.539 0.397 0.381 0.507 0.556 0.583 0.596 0.604 0.610 0.619 0.652 0.655

λBIC∗ - 0.380 0.381 0.190 0.130 0.095 0.076 0.063 0.054 0.038 0.008 0.004

10 nr=nf

100 0.117 0.075 0.072 0.116 0.143 0.153 0.161 0.163 0.166 0.171 0.189 0.190

150 0.173 0.138 0.133 0.184 0.216 0.232 0.235 0.240 0.245 0.256 0.272 0.277

200 0.248 0.189 0.183 0.262 0.285 0.305 0.318 0.324 0.333 0.343 0.355 0.358

300 0.350 0.283 0.276 0.360 0.405 0.424 0.432 0.440 0.442 0.452 0.472 0.473

400 0.462 0.410 0.394 0.502 0.531 0.548 0.558 0.562 0.563 0.565 0.587 0.587

10 nr=2nf

100 0.102 0.072 0.070 0.112 0.123 0.135 0.142 0.145 0.147 0.156 0.165 0.166

150 0.167 0.121 0.120 0.172 0.198 0.211 0.222 0.228 0.232 0.238 0.258 0.258

200 0.207 0.144 0.142 0.218 0.241 0.250 0.259 0.263 0.267 0.275 0.293 0.293

300 0.314 0.256 0.242 0.332 0.364 0.380 0.394 0.401 0.403 0.410 0.432 0.434

400 0.389 0.333 0.324 0.417 0.456 0.479 0.487 0.492 0.499 0.511 0.537 0.537

10 nr=3nf

100 0.099 0.064 0.062 0.098 0.119 0.133 0.141 0.146 0.148 0.150 0.158 0.159

150 0.146 0.098 0.096 0.150 0.175 0.188 0.194 0.199 0.203 0.211 0.220 0.222

200 0.168 0.114 0.110 0.165 0.200 0.220 0.224 0.229 0.234 0.245 0.274 0.276

300 0.264 0.204 0.196 0.272 0.300 0.318 0.330 0.336 0.345 0.354 0.375 0.376

400 0.349 0.281 0.265 0.367 0.390 0.411 0.426 0.433 0.441 0.459 0.482 0.483

λBIC∗ - 0.315 0.315 0.160 0.105 0.080 0.063 0.052 0.045 0.032 0.006 0.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection
operator; λ: regularization parameter; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference
groups; nf and nr indicate the sample sizes in the focal and reference groups, respectively; N: the total sample size (N=nf +nr).

∗These λ values were
obtained according to the Bayesian information criterion (BIC).
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while its type I error rate was slightly above the nominal level
of 0.05. However, for I = 10, the maximum power for detect-
ing moderate uniform DIF (DIF = 0:4) was 0.587 and 0.462
for the LASSO and nonregularized OLR models, respectively.

Tables 3 and 4, respectively, represent the power and
type I error rates of the regularized (elastic net) and nonre-
gularized OLR models in detecting the presence of severe
uniform DIF (DIF = 0:8) under different combinations of I,
N , R, and J = 5. As shown in Table 3, when I = 5 and R = 1
, the elastic net regularized OLR model with w = 0:05, as

compared with the nonregularized OLR model, increased
the power of detecting severe uniform DIF (DIF = 0:8)
approximately 9% and 4.5% for N = 100 and 150, respec-
tively. In this case, the type I error rates of the elastic net reg-
ularized and nonregularized OLR models were 0.058 and
0.078 for N = 100 and 150, respectively. Similar findings
were also obtained for the elastic net regularized OLR model
with w = 0:04 and 0:06. Hence, for a relatively small sample
size (N ≤ 150), I = 5, and R = 1, the elastic net regularized
OLR model with 0:04 ≤w ≤ 0:06 achieved the adequate

Table 2: The type I error rates of the regularized (elastic net) and non-regularized OLR models in detecting moderate uniform DIF (DIF=
0.4) when J=5.

I Ratio N OLR
Ridge Elastic net OLR LASSO
w=0 w=0.01 w=0.02 w=0.03 w=0.04 w=0.05 w=0.06 w=0.07 w=0.1 w=0.5 w=1

5 nr=nf

100 0.037 0.007 0.007 0.020 0.028 0.033 0.036 0.040 0.042 0.048 0.066 0.068

150 0.040 0.009 0.008 0.021 0.029 0.038 0.042 0.046 0.050 0.056 0.075 0.076

200 0.042 0.008 0.007 0.018 0.028 0.038 0.046 0.050 0.056 0.063 0.080 0.081

300 0.052 0.011 0.010 0.023 0.038 0.045 0.051 0.057 0.060 0.070 0.088 0.089

400 0.056 0.009 0.008 0.023 0.037 0.046 0.053 0.061 0.066 0.077 0.098 0.100

5 nr=2nf

100 0.038 0.012 0.011 0.018 0.027 0.034 0.040 0.042 0.044 0.051 0.067 0.068

150 0.038 0.006 0.006 0.018 0.026 0.034 0.040 0.045 0.049 0.058 0.071 0.073

200 0.035 0.008 0.006 0.020 0.030 0.035 0.040 0.043 0.046 0.054 0.067 0.067

300 0.053 0.010 0.010 0.029 0.037 0.045 0.053 0.059 0.061 0.070 0.087 0.089

400 0.054 0.012 0.010 0.021 0.034 0.046 0.052 0.056 0.062 0.070 0.091 0.093

5 nr=3nf

100 0.036 0.009 0.009 0.019 0.029 0.035 0.039 0.044 0.046 0.052 0.069 0.071

150 0.039 0.008 0.007 0.018 0.030 0.034 0.040 0.048 0.051 0.058 0.072 0.074

200 0.036 0.010 0.008 0.021 0.030 0.037 0.041 0.046 0.050 0.055 0.069 0.070

300 0.041 0.010 0.009 0.020 0.030 0.038 0.044 0.048 0.053 0.061 0.075 0.077

400 0.052 0.011 0.008 0.025 0.036 0.043 0.049 0.055 0.059 0.068 0.088 0.090

λBIC∗ - 0.380 0.381 0.190 0.130 0.095 0.076 0.063 0.054 0.038 0.008 0.004

10 nr=nf

100 0.029 0.009 0.008 0.021 0.029 0.034 0.037 0.040 0.041 0.046 0.056 0.056

150 0.030 0.010 0.009 0.020 0.030 0.035 0.038 0.042 0.045 0.050 0.058 0.059

200 0.030 0.012 0.010 0.022 0.030 0.036 0.040 0.043 0.045 0.050 0.058 0.059

300 0.031 0.010 0.008 0.022 0.028 0.034 0.038 0.041 0.044 0.048 0.058 0.059

400 0.031 0.010 0.009 0.020 0.027 0.032 0.035 0.040 0.041 0.046 0.055 0.056

10 nr=2nf

100 0.029 0.009 0.009 0.020 0.027 0.031 0.036 0.038 0.040 0.045 0.055 0.055

150 0.031 0.012 0.011 0.022 0.032 0.038 0.043 0.045 0.047 0.050 0.059 0.059

200 0.027 0.009 0.008 0.019 0.027 0.034 0.037 0.040 0.042 0.046 0.056 0.057

300 0.027 0.011 0.009 0.020 0.028 0.033 0.037 0.039 0.041 0.046 0.055 0.056

400 0.031 0.010 0.009 0.021 0.029 0.035 0.039 0.041 0.043 0.047 0.057 0.058

10 nr=3nf

100 0.029 0.010 0.009 0.021 0.028 0.031 0.035 0.037 0.040 0.044 0.053 0.053

150 0.030 0.009 0.009 0.022 0.030 0.034 0.038 0.041 0.043 0.048 0.058 0.059

200 0.024 0.009 0.008 0.017 0.024 0.030 0.033 0.036 0.038 0.042 0.050 0.051

300 0.034 0.011 0.010 0.023 0.031 0.036 0.040 0.043 0.045 0.049 0.058 0.059

400 0.028 0.009 0.008 0.021 0.027 0.032 0.036 0.038 0.041 0.045 0.054 0.055

λBIC∗ - 0.315 0.315 0.160 0.105 0.080 0.063 0.052 0.045 0.032 0.006 0.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection
operator; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference groups; nf and nr indicate
sample sizes in the focal and reference groups, respectively; N: total sample size (N=nf +nr).

∗These λ values were obtained according to the Bayesian
information criterion (BIC).
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power of 80% and type I error rate of 0.05 for detecting
severe uniform DIF (DIF = 0:8). However, for N ≥ 200, I =
5, and R = 1, the type I error rates were considerably higher
than the nominal level of 0.05 for the elastic net regularized
(w ≥ 0:03) and nonregularized OLR models. In the same
conditions, the power of the elastic net regularized OLR
model with 0 ≤w ≤ 0:02 was equal to or greater than 80%
in detecting severe uniform DIF (DIF = 0:8), while its type
I error rate was below or close to the nominal level of 0.05.
In addition, for N ≥ 200 and I = 5, similar findings were

obtained when the sample size was unequal (R = 2 and 3)
between the focal and reference groups.

Moreover, regardless of R, for the severe magnitude of
DIF (DIF = 0:8), I = 10, and N ≥ 200, the powers of the reg-
ularized and nonregularized OLR models were close to or
higher than 80%, and their type I error rates were below or
close to the nominal level of 0.05.

On the other hand, for a severe magnitude of DIF
(DIF = 0:8), I = 10, and a relatively small sample size
(N ≤ 150), when the weighting parameter (w) increased

Table 3: The powers of the regularized (elastic net) and non-regularized OLR models in detecting severe uniform DIF (DIF=0.8) when J=5.

I Ratio N OLR
Ridge Elastic-net OLR LASSO
w=0 w=0.01 w=0.02 w=0.03 w=0.04 w=0.05 w=0.06 w=0.07 w=0.1 w=0.5 w=1

5 nr=nf

100 0.705 0.564 0.550 0.679 0.727 0.754 0.767 0.774 0.778 0.790 0.808 0.809

150 0.867 0.789 0.781 0.860 0.889 0.901 0.906 0.910 0.914 0.917 0.931 0.932

200 0.940 0.894 0.885 0.944 0.958 0.964 0.966 0.968 0.969 0.969 0.971 0.971

300 0.995 0.985 0.984 0.996 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997

400 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 nr=2nf

100 0.622 0.471 0.464 0.600 0.646 0.673 0.691 0.701 0.703 0.717 0.738 0.744

150 0.811 0.733 0.729 0.817 0.851 0.862 0.871 0.873 0.879 0.886 0.898 0.899

200 0.912 0.850 0.845 0.920 0.931 0.940 0.947 0.951 0.951 0.953 0.961 0.961

300 0.989 0.987 0.975 0.986 0.989 0.990 0.991 0.992 0.992 0.993 0.995 0.995

400 0.999 0.997 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 nr=3nf

100 0.557 0.400 0.393 0.519 0.567 0.559 0.613 0.623 0.631 0.648 0.668 0.670

150 0.747 0.620 0.610 0.737 0.770 0.784 0.794 0.802 0.807 0.815 0.840 0.841

200 0.873 0.785 0.777 0.862 0.892 0.907 0.913 0.915 0.918 0.918 0.931 0.932

300 0.968 0.950 0.947 0.970 0.978 0.981 0.983 0.982 0.982 0.984 0.988 0.988

400 0.995 0.985 0.984 0.995 0.995 0.996 0.996 0.997 0.997 0.997 0.997 0.997

λBIC∗ - 0.380 0.380 0.190 0.130 0.095 0.076 0.063 0.054 0.038 0.008 0.004

10 nr=nf

100 0.456 0.383 0.377 0.486 0.518 0.543 0.548 0.554 0.559 0.576 0.596 0.597

150 0.665 0.592 0.580 0.687 0.713 0.726 0.737 0.746 0.749 0.760 0.773 0.774

200 0.800 0.763 0.754 0.835 0.855 0.860 0.861 0.864 0.868 0.872 0.888 0.888

300 0.940 0.921 0.913 0.951 0.963 0.967 0.967 0.966 0.967 0.968 0.976 0.976

400 0.979 0.971 0.968 0.988 0.990 0.992 0.991 0.991 0.991 0.991 0.993 0.993

10 nr=2nf

100 0.341 0.336 0.331 0.433 0.485 0.503 0.518 0.523 0.522 0.534 0.545 0.547

150 0.606 0.530 0.521 0.619 0.665 0.674 0.689 0.698 0.703 0.712 0.719 0.719

200 0.748 0.687 0.676 0.770 0.796 0.809 0.813 0.814 0.820 0.827 0.832 0.832

300 0.907 0.879 0.870 0.916 0.929 0.933 0.935 0.937 0.940 0.947 0.950 0.950

400 0.965 0.958 0.955 0.973 0.978 0.979 0.981 0.981 0.982 0.982 0.987 0.987

10 nr=3nf

100 0.341 0.274 0.263 0.361 0.400 0.420 0.432 0.437 0.441 0.447 0.464 0.464

150 0.545 0.459 0.450 0.558 0.591 0.605 0.612 0.623 0.626 0.635 0.643 0.644

200 0.667 0.596 0.589 0.678 0.721 0.737 0.749 0.757 0.751 0.761 0.771 0.771

300 0.835 0.804 0.795 0.857 0.882 0.895 0.900 0.902 0.905 0.909 0.913 0.913

400 0.935 0.905 0.896 0.941 0.951 0.958 0.960 0.960 0.960 0.960 0.963 0.964

λBIC∗ - 0.315 0.315 0.160 0.105 0.080 0.063 0.052 0.045 0.032 0.006 0.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection
operator; λ: regularization parameter; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference
groups; nf and nr indicate sample sizes in the focal and reference groups, respectively; N: total sample size (N=nf +nr).

∗These λ values were obtained
according to the Bayesian information criterion (BIC).
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from 0.03 to 1, the power of the elastic net regularized
OLR model, as compared with the nonregularized OLR
model, increased from 11.2% to 24.8%. In this case, the
regularized and nonregularized OLR models preserved
the type I error rates approximately close to the nominal
level of 0.05.

Figures 1 and 2 demonstrate the average powers and
type I error rates of the regularized and nonregularized
OLR models on measures with five and ten items for moder-
ate and severe DIF, respectively. According to these figures,

regardless of DIF magnitude, sample size ratio, and the
number of items, the elastic net regularized OLR model with
w = 0 (ridge) and w = 1 (LASSO) had the lowest and highest
power for detecting uniform DIF, respectively. Moreover,
the nonregularized OLR model and the elastic net regular-
ized OLR model with w = 0:03 had an approximately equal
power. Additionally, as shown in Figures 1 and 2, the
average type I error rate was generally below or close to
the nominal level of 0.05 for the elastic net regularized
(w = 0, 0:03, and 0:05) and nonregularized OLR models

Table 4: The type I error rates of the regularized (elastic net) and non-regularized OLR models in detecting severe uniform DIF (DIF=0.8)
when J=5.

I Ratio N OLR
Ridge Elastic-net OLR LASSO
w=0 w=0.01 w=0.02 w=0.03 w=0.04 w=0.05 w=0.06 w=0.07 w=0.1 w=0.5 w=1

5 nr=nf

100 0.058 0.012 0.010 0.027 0.038 0.048 0.058 0.066 0.075 0.084 0.104 0.106

150 0.078 0.014 0.013 0.034 0.051 0.065 0.078 0.086 0.094 0.108 0.132 0.134

200 0.094 0.013 0.011 0.038 0.065 0.080 0.089 0.098 0.106 0.121 0.149 0.150

300 0.135 0.018 0.017 0.054 0.082 0.108 0.124 0.137 0.147 0.166 0.209 0.213

400 0.172 0.021 0.018 0.061 0.099 0.128 0.150 0.167 0.181 0.206 0.261 0.266

5 nr=2nf

100 0.059 0.015 0.014 0.030 0.042 0.053 0.059 0.067 0.072 0.081 0.105 0.107

150 0.076 0.012 0.012 0.030 0.049 0.064 0.072 0.081 0.088 0.102 0.127 0.128

200 0.080 0.014 0.012 0.035 0.055 0.071 0.081 0.091 0.099 0.112 0.143 0.145

300 0.121 0.022 0.020 0.052 0.080 0.096 0.111 0.120 0.131 0.151 0.194 0.197

400 0.155 0.021 0.018 0.056 0.089 0.112 0.135 0.151 0.162 0.185 0.232 0.234

5 nr=3nf

100 0.059 0.012 0.012 0.026 0.039 0.048 0.056 0.063 0.068 0.076 0.099 0.102

150 0.072 0.011 0.009 0.032 0.047 0.062 0.070 0.078 0.084 0.098 0.122 0.124

200 0.077 0.015 0.014 0.033 0.053 0.065 0.074 0.082 0.087 0.101 0.125 0.126

300 0.103 0.017 0.015 0.042 0.062 0.081 0.096 0.108 0.118 0.137 0.169 0.171

400 0.131 0.018 0.016 0.051 0.078 0.099 0.096 0.131 0.143 0.166 0.202 0.206

λBIC∗ - 0.380 0.380 0.190 0.130 0.095 0.076 0.063 0.054 0.038 0.008 0.004

10 nr=nf

100 0.032 0.011 0.009 0.023 0.032 0.037 0.041 0.044 0.048 0.052 0.061 0.062

150 0.037 0.010 0.010 0.025 0.034 0.042 0.047 0.050 0.053 0.058 0.069 0.070

200 0.039 0.014 0.012 0.027 0.037 0.045 0.050 0.054 0.057 0.062 0.074 0.075

300 0.044 0.013 0.011 0.027 0.039 0.047 0.053 0.057 0.060 0.067 0.078 0.079

400 0.047 0.012 0.010 0.026 0.039 0.048 0.053 0.059 0.063 0.070 0.083 0.085

10 nr=2nf

100 0.033 0.010 0.009 0.023 0.030 0.035 0.040 0.043 0.045 0.050 0.060 0.061

150 0.038 0.012 0.011 0.026 0.035 0.041 0.045 0.050 0.052 0.059 0.069 0.069

200 0.036 0.010 0.009 0.024 0.034 0.041 0.045 0.049 0.051 0.057 0.068 0.069

300 0.041 0.011 0.010 0.025 0.035 0.044 0.049 0.054 0.058 0.064 0.076 0.077

400 0.049 0.012 0.011 0.027 0.040 0.048 0.054 0.058 0.063 0.070 0.085 0.086

10 nr=3nf

100 0.031 0.011 0.010 0.023 0.029 0.034 0.038 0.041 0.043 0.048 0.058 0.058

150 0.035 0.010 0.009 0.024 0.033 0.039 0.044 0.048 0.051 0.056 0.065 0.066

200 0.031 0.009 0.009 0.020 0.029 0.035 0.040 0.044 0.046 0.050 0.060 0.061

300 0.045 0.013 0.012 0.028 0.038 0.047 0.050 0.054 0.058 0.064 0.077 0.078

400 0.042 0.011 0.009 0.024 0.035 0.045 0.050 0.054 0.058 0.066 0.078 0.078

λBIC∗ - 0.315 0.315 0.160 0.105 0.080 0.063 0.052 0.045 0.032 0.006 0.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection
operator; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference groups; nf and nr indicate
sample sizes in the focal and reference groups, respectively; N: total sample size (N=nf +nr).

∗These λ values were obtained according to the Bayesian
information criterion (BIC).
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(range: 0.029-0.069). However, it was above the nominal
level of 0.05 for the elastic net regularized OLR model with
w = 1 (range: 0.073-0.127).

3.2. Real Data Analysis. In the present section, a real data
set was employed to validate the simulation results. The
data set was composed of 72 children and adolescents with
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Figure 1: The average powers and type I error rates of the nonregularized OLR model (solid lines), elastic net OLR model with w = 0
(ridge) (dashed lines), elastic net OLR model with w = 0:03 (dotted lines), elastic net OLR model with w = 0:05 (dot-dashed lines), and
elastic net OLR model with w = 1 (LASSO) (long-dashed lines) on measures with five and ten items for moderate DIF (DIF = 0:4). (a)
DIF = 0:4 and nr = nf . (b) DIF = 0:4 and nr = 2nf . (c) DIF = 0:4 and nr = 3nf . (d) DIF = 0:4 and nr = nf . (e) DIF = 0:4 and nr = 2nf . (f)
DIF = 0:4 and nr = 3nf .
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Figure 2: The average powers and type I error rates of the nonregularized OLR (solid lines), elastic net OLR model with w = 0 (ridge)
(dashed lines), elastic net OLR model with w = 0:03 (dotted lines), elastic net OLR model with w = 0:05 (dot-dashed lines), and elastic
net OLR model with w = 1 (LASSO) (long-dashed lines) on measures with five and ten items for severe DIF (DIF = 0:8). (a) DIF = 0:8
and nr = nf . (b) DIF = 0:8 and nr = 2nf . (c) DIF = 0:8 and nr = 3nf . (d) DIF = 0:8 and nr = nf . (e) DIF = 0:8 and nr = 2nf . (f) DIF = 0:8
and nr = 3nf .
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attention-deficit/hyperactivity disorder (ADHD) (aged 8-
18; 81.9% females; 18.1% males) who had referred with
their parents to the Child and Adolescent Psychiatry
Clinics affiliated with Shiraz University of Medical Sci-
ences, Shiraz, Iran. The children and their parents, respec-
tively, completed the child self-reports and the proxy
reports of the Persian version of the PedsQL™ 4.0 Generic
Core Scales [23]. The 23-item PedsQL™ 4.0 questionnaire
consists of 4 subscales: physical functioning (8 items),
social functioning (5 items), emotional functioning (5
items), and school functioning (5 items). A 5-point Likert
scale from 0 (never) to 4 (almost always) is used to mea-
sure the respondents’ perception on each item.

The results of the DIF analysis of the PedsQL™ 4.0
instrument across children with ADHD and their parents
based on the regularized and nonregularized OLR models
are summarized in Table 5. Our results showed that while
the elastic net regularized OLR model with w ≥ 0:03 and
the nonregularized OLR model exhibited seven out of
the 23 items with uniform DIF, the elastic net regularized
OLR model with w = 0, 0:01, and 0:02 identified four, four,
and six items with uniform DIF, respectively. In addition,
according to Table 5, increasing the value of the weighting
parameter (w) from 0 to 1 resulted in an increase in the
power of the elastic net regularized OLR model for detect-
ing uniform DIF. These results were consistent with the

Table 5: The results of the DIF analysis for the PedsQLTM 4.0 across children with ADHD and their parents based on the regularized (elastic
net) and non-regularized OLR models.

OLR
Ridge Elastic net OLR LASSO
w=0 w=0.01 w=0.02 w=0.03 w=0.04 w=0.05 w=0.06 w=0.07 w=0.1 w=0.5 w=1

Physical Functioning P-value

1. Hard to walk more than a block 0.453 1.000 1.000 1.000 1.000 0.791 0.714 0.663 0.628 0.566 0.467 0.459

2. Hard to run 0.553 1.000 1.000 1.000 1.000 0.838 0.772 0.729 0.699 0.649 0.567 0.560

3. Hard to do sports or exercises 0.929 0.543 0.551 0.723 0.844 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4. Hard to lift something heavy 0.007 0.146 0.154 0.059 0.035 0.024 0.019 0.016 0.014 0.011 0.007 0.007

5. Hard to take a bath or shower 0.001 0.006 0.007 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001

6. Hard to do chores around house 0.070 0.276 0.290 0.169 0.130 0.108 0.098 0.091 0.087 0.080 0.071 0.070

7. Hurt or ache 0.572 0.442 0.452 0.494 0.519 0.536 0.546 0.552 0.557 0.564 0.575 0.575

8. Low energy 0.129 0.114 0.118 0.112 0.114 0.118 0.120 0.122 0.123 0.126 0.129 0.129

Emotional Functioning

1. Feel afraid or scared 0.160 0.514 0.537 0.367 0.299 0.257 0.234 0.218 0.208 0.189 0.163 0.161

2. Feel sad or blue 0.012 0.037 0.039 0.023 0.019 0.017 0.015 0.015 0.014 0.013 0.012 0.012

3. Feel angry 0.003 0.014 0.014 0.007 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.003

4. Trouble sleeping 0.909 0.820 0.823 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.963

5. Worry about what will happen 0.003 0.074 0.078 0.027 0.015 0.010 0.008 0.006 0.006 0.004 0.003 0.003

Social Functioning

1. Trouble getting along with peers 0.024 0.074 0.077 0.047 0.038 0.033 0.031 0.029 0.028 0.026 0.024 0.024

2. Other kids not wanting to be
friends

0.985 0.925 0.928 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3. Teased 0.167 0.298 0.309 0.250 0.226 0.210 0.201 0.195 0.190 0.182 0.169 0.168

4. Doing things other peers do 0.226 0.442 0.459 0.357 0.316 0.289 0.275 0.264 0.258 0.246 0.229 0.227

5. Hard to keep up when play with
others

0.002 0.041 0.043 0.016 0.010 0.007 0.005 0.005 0.004 0.003 0.002 0.002

School Functioning

1. Hard to concentrate 0.576 0.644 0.648 1.000 1.000 1.000 1.000 1.000 1.000 0.889 0.605 0.587

2. Forget things 0.301 1.000 1.000 1.000 0.813 0.644 0.562 0.507 0.469 0.405 0.311 0.304

3. Trouble keeping up with
schoolwork

0.773 0.510 0.517 0.758 1.000 1.000 1.000 1.000 1.000 1.000 0.830 0.795

4. Miss school – not well 0.550 0.261 0.267 0.376 0.436 0.476 0.497 0.511 0.519 0.533 0.553 0.554

5. Miss school – doctor appointment 0.935 0.445 0.452 0.645 0.762 0.847 0.898 0.931 0.950 0.957 0.942 0.973

Total number of uniform DIF items 7 4 4 6 7 7 7 7 7 7 7 7

Note: DIF: differential item functioning; LASSO: least absolute shrinkage and selection operator; OLR: ordinal logistic regression; w: weighting parameter; the
bold numbers show the p-values for items that demonstrate a uniform DIF.
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simulation findings in Tables 1 and 3, especially when the
sample size was extremely small (N ≤ 150).

4. Discussion

A small sample size is a challenging issue in assessing DIF
for ordinal response data. To the best of our knowledge, this
is the first study that introduces a new application of the
elastic net regularized OLR model, as a special type of
machine learning method, for detecting DIF in small sample
size groups. One of the main advantages of the elastic net
regularized OLR method over other regularization methods
for DIF detection is that it provides the researcher with a
wide range of models by varying the weighting parameter
(w) over the interval from 0 to 1. However, choosing an
optimal value for w is the key issue in using elastic net reg-
ularized models [14, 16]. The present simulation study dem-
onstrated that the elastic net regularized OLR model with
0:03 ≤w ≤ 0:06 generally outperformed the nonregularized
OLR model in terms of the statistical power to identify
DIF especially when the sample size was extremely small
(N ≤ 150), the number of items was 10 (I = 10), and DIF
was severe (DIF = 0:8). These findings were different from
those of Lee who showed that the nonregularized binary
logistic regression model performed slightly better than the
regularized logistic regression model (based on the PML
estimation method) in detecting DIF for small samples [5].

The current study also showed that when w was greater
than 0.1 (w = 0:5 and 1), the value of the regularization
parameter (λ) converged to zero, indicating that the likeli-
hood function of the elastic net regularized OLR model
was reduced to the likelihood function of the nonregularized
OLR model. This can lead to almost similar results for the
elastic net regularized (w > 0:1) and nonregularized OLR
models in identifying DIF.

Although all previous studies have used the LASSO reg-
ularized method for DIF assessment with binary-scored
items [18, 24–26], the findings of the current study showed
that we should be cautious about using the LASSO regular-
ized OLR model (w = 1) for DIF analysis. This is because
when the number of items is five (I = 5), the LASSO regular-
ized OLR model inflates the type I error rate to 0.2. How-
ever, for larger scales (I = 10) and when the sample size is
relatively small (N ≤ 150), using the LASSO regularized
OLR model for the identification of severe uniform DIF
(DIF = 0:8) is strongly recommended. This finding also con-
firmed the results of a previous simulation study which
showed that the regularized logistic regression model with
LASSO penalty outperformed the conventional logistic
regression model in DIF detection when the sample size
was small and the number of items was 20 (I = 20) [24].

A further novel finding of the present study is that the
elastic net regularized OLR model with 0:03 ≤w ≤ 0:07
becomes necessary for DIF analysis when the scale length
and sample size are relatively small (I = 5 and N ≤ 150).
These findings are different from those in the previous study
conducted by Scott et al. where the nonregularized OLR
model was used to detect DIF when the sample size was
higher than or equal to 200 (N ≥ 200) [8]. They simulated

subscales with 2, 3, 4, 5, 10, and 20 items and showed that
the effect of the number of items in the scale was relatively
small on the results of DIF detection based on the nonregu-
larized OLR model [8]. Accordingly, further simulation
studies are needed to explore the effect of varying the length
of the scale on the performance of the LASSO OLR model
for DIF analysis.

Furthermore, the findings of the current study revealed
that when N ≤ 150 and DIF was moderate (DIF = 0:4), the
ridge regularized OLR model (w = 0) had the lowest power
in detecting DIF as compared with the other regularized
OLR model and the nonregularized OLR models. In these
conditions, we should be cautious about using the ridge reg-
ularized OLR model (w = 0) for detecting uniform DIF
because it can lead to false negative results.

On the other hand, comparing the regularized and non-
regularized OLR models for the real ADHD data set con-
firmed the results of the present simulation for detecting
DIF. The current simulation study demonstrated that by
increasing the value of the weighting parameter (w), the
power of the elastic net regularized OLR model will be
increased. Accordingly, in the real data set, the elastic net
regularized OLR model with w equal to or greater than
0.03 was more sensitive in detecting uniform DIF across
children with ADHD and their parents than the elastic net
regularized OLR model with 0 ≤w ≤ 0:02.

One of the interesting findings of the current study was
that when N ≥ 200 and DIF = 0:8 (severe DIF), the regular-
ized and nonregularized OLR models had an adequate
power for detecting DIF. These findings were similar to
those of Magis et al. who reported that when the sample size
was large, the regularized LASSO logistic regression and the
nonregularized logistic regression models yielded similar
results for identifying DIF in binary response data [24].
However, the current simulation study revealed that when
the magnitude of DIF was severe (DIF = 0:8), N ≥ 200, and
the number of items was five (I = 5), the elastic net regular-
ized OLR model with w ≥ 0:03 and the nonregularized OLR
model inflated type I error rate up to the unacceptable level
of 26.6%.

In the present study, we simulated data based on moder-
ate (DIF = 0:4) and severe (DIF = 0:8) DIF conditions. Sim-
ilar to our study, Hidalgo et al. manipulated two levels of
differences in threshold parameters (0.4 and 0.8) to simulate
moderate and large magnitudes of DIF [27]. Moreover,
according to Li and Zumbo, the magnitude of DIF equal to
0.4, 0.6, and 0.8 can be considered small, moderate, and large
DIF, respectively [28]. However, Scott et al. considered three
levels of DIF magnitude including 0.2, 0.5, and 1 to generate
items with small, moderate, and large DIF, respectively [8].
Although there is no consensus on the definition of DIF
magnitude, it seems that the magnitude of DIF from 0.4 to
1 is a feasible option to simulate items with moderate and
severe DIF.

Although various criteria including the Bayesian infor-
mation criterion (BIC) and cross-validation method can be
used to obtain the optimal tuning parameter λ [14, 16, 18],
in the present research, the BIC was only used to assess
DIF. In DIF analysis, the cross-validation and BIC have
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technical and theoretical differences. The BIC has been
designed for variable selection, whereas cross-validation is
generally used to select the optimal model for prediction
[26]. Moreover, previous studies have demonstrated that
the cross-validation method tends to have higher false-
positive rates in detecting DIF than the BIC [18, 25]. Because
variable selection is much more important in DIF assess-
ment than prediction, the findings of the present study were
interpreted based on the BIC [26].

This research had some limitations which are as follows.
Although our simulation study was restricted to identifying
only the uniform DIF, the elastic net regularized OLR model
could also be extended to cover both uniform and nonuni-
form DIF. In addition, the regularized model used in the
present research contains a maximum of two predictors
which do not appear to be collinear either. Hence, in the
future study, the performance of the elastic net regularized
OLR model for DIF analysis should be assessed when several
highly correlated continuous and categorical covariates are
included in the model [14]. Finally, it should be noted that
traditional DIF detection approaches are very sensitive to
missing item responses and the questionnaires with missing
data are usually excluded from the DIF analysis [29]. Hence,
in the present study, we did not simulate items with missing
data. Accordingly, as a special type of machine learning
method, the elastic net regularized OLR model could be a
viable choice for identifying DIF with missing data and with-
out needing imputation [24].

5. Conclusion

Technically, the findings of the present study confirmed the
idea proposed by Belzak and Bauer where regularization
methods, as a special type of machine learning technique,
could compensate for the limitation of the conventional
DIF detection methods when the sample size is relatively
small [18]. This study provided a guideline for researchers
who conduct DIF studies with extremely small sample sizes.
In general, for extremely small sample sizes (N ≤ 150), the
elastic net regularized OLR model with 0:03 ≤w ≤ 0:1 out-
performed the nonregularized OLR model in terms of power
and type I error rate. Moreover, in future studies, the advan-
tages of the elastic net regularized OLR model in dealing
with missing data and collinearity problem in the context
of DIF analysis should be assessed.
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