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Background. The majority of lung cancers are adenocarcinomas, with the proportion being 40%. The patients are mostly diagnosed
in the middle and late stages with metastasis and easy recurrence, which poses great challenge to the treatment and prognosis.
Platinum-based chemotherapy is a primary treatment for adenocarcinoma, which frequently causes drug resistance. As a result,
it is important to uncover the mechanisms of the chemoresponse of adenocarcinoma to platinum-based chemotherapy.
Methods. The genes from the dataset GSE7880 were gathered into gene modules with the assistance of weighted gene
coexpression network analysis (WGCNA), the gene trait significance absolute value (|GS|), and gene module memberships
(MM). The genes from hub gene modules were calculated with a protein-protein interaction (PPI) network analysis in order to
obtain a screening map of hub genes. The hub genes with both a high |GS| and MM and a high degree were selected.
Furthermore, genes in the hub gene modules also went through a Gene Ontology (GO) functional enrichment analysis. Results.
11 hub genes in four hub gene modules (LY86, ACTR2, CDK2, CKAP4, KPNB1, RBBP4, SMAD4, MYL6, RPS27, TSPAN2, and
VAMP2) were chosen as the significant hub genes. Through the GO function enrichment analysis, it was indicated that four
modules were abundant in immune system functions (floralwhite), amino acid biosynthetic process (lightpink4), cell chemotaxis
(navajowhite2), and targeting protein (paleturquoise). Four hub genes with the highest |GS| were verified by prognostic analysis.

1. Introduction

Lung cancer has become the malignant tumor with the high-
est morbidity and mortality in the world. It is estimated that
1.8 million people are diagnosed with this disease and 1.6
million die each year, which has shown a sharp increase
[1]. Due to the heterogeneity of lung cancer tissues, the com-
plexity of cellular, molecular, and genetic characteristics and
immune status, the treatment effect is not ideal with a 5-year
survival rate of less than 20% [1]. Lung cancer can be divided
into small-cell lung carcinoma and non-small-cell lung carci-
noma (NSCLC) according to the clinical treatment combined
with biological characteristics. The NSCLC is one of the most

noticeable types of lung cancer, which contributes to almost
85% of them [2]. The most common types of NSCLC are lung
squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD), of which adenocarcinoma is considered the most
common type of lung cancer with the proportion in all lung
cancer cases being 40% [3]. Most patients with LUAD are
diagnosed in the advanced stage, often accompanied with
metastasis, resulting in increased treatment difficulty and a
poor prognosis. Currently, the main clinical treatment
methods for lung cancer involve surgery, chemotherapy,
radiotherapy, antiangiogenesis inhibitors, and targeted
drugs. Chemotherapy is a common treatment for NSCLC,
given that chemotherapeutic drugs gemcitabine, pemetrexed,
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and paclitaxel can be used along with platinum-based drugs
such as cisplatin, carboplatin, and nedaplatin [4]. However,
it could result in drug resistance and the recurrence of
tumors [5]. In order to better understand and solve the
side-effects, the mechanism of gene regulation related to the
chemoresponse of adenocarcinoma to platinum-based che-
motherapy still needs to be explored.

Based on bioinformatics to study the gene expression
microarray, this study is aimed at exploring hub genes asso-
ciated with recurrent LUAD despite platinum-based therapy.
A matrix of gene expression dataset (GSE7880) with recur-
rent adenocarcinoma samples was utilized for the hub genes.
After analyzing the correlative level of each gene expression,
the genes with a high level of coexpression were analyzed and
gene coexpression modules were established by weighted
gene coexpression network analysis (WGCNA) [6]. With
the help of a protein-protein interaction network (PPI net-
work) [7] analysis, the hub genes could be screened. Further-
more, Gene Ontology (GO) functional enrichment analysis
[8] was performed on genes in the gene modules to deter-
mine which module was directly associated with LUAD
recurrence. Consecutively, the gene with the highest gene
trait significance in the selected module was regarded as the
final hub gene and verified by prognostic analysis.

2. Materials and Methods

2.1. Preparation of Dataset. A microarray dataset (GSE7880)
retrieved from the GEO database was adopted in this study.
The dataset GSE7880 was uploaded by Rohrbeck et.al,
including mRNA expression profiles of 43 patients with
NSCLC, among which 25 were diagnosed with adenocarci-
noma and 18 with squamous cell carcinoma. The 25 adeno-
carcinoma patients were selected as the research objects,
including 10 primary untreated adenocarcinoma and 15
recurrent adenocarcinomas in stage IIIB or stage IV. In addi-
tion, all the patients were treated with platinum-based ther-
apy, while the recurrent patients were regarded as “non-
response” with progression under platinum-based therapy.
Tumor samples were isolated by laser capture microdissec-
tion, and Human HG Focus Array and Affymetrix were uti-
lized for analysis expression data with 8793 defined genes
in matrix. However, in the original matrix, there was no exact
number for GSM190993, but other sample data was reserved
with two decimal places. As a result, two decimal places for
the data were adopted in GSM190993.

2.2. Construction of Weighted Gene Coexpression Network.
WGCNA R package was utilized for the construction of a
gene expression network which can find the gene modules
where genes are synergistically expressed and explore the
association between the network and the related phenotype
[9]. This algorithm is based on the assumption that the gene
network obeys scale-free distribution. Afterwards, gene
expression matrix and trait matrix are inputted before the
definition of the adjacency function in gene network form.
Following that, the scale independence and mean connectiv-
ity are calculated and the power value is selected. Finally, the
hierarchical clustering tree can be constructed. The data of

adenocarcinoma patients in dataset GSE7880 were used as
the gene expression matrix. In the trait matrix, the patients
responded to the therapy were defined as “1” and the patients
with “non-response” under platinum-based therapy was “0,”
which could be used to construct the coexpression network
to screen out the platinum chemoresistance-related hub
genes. In regard to checking for any missing value, we started
the filtration of the expression values using the mean, where
“meanFPKM = 0:5” was set, and then two matrixes were
inputted to do the sample clustering. To determine the soft
threshold, a scatter plot of exponential and power value was
made and the powers were set as 1 to 20 and the ab line of
R2 was chosen as 0.8. For the gene clustering, the minimal
number of the gene modules was set as 30. Then, the modules
would be merged with the cut height equal to 0.25. Subse-
quently, a figure of merged clustering gene modules with
dynamic tree could be gained, which contained 22 modules.
In accordance with the match between the modules and che-
moresponse, a module trait relationship diagram was
obtained, which was used in the identification of hub gene
modules. Finally, data which fulfilled Cytoscape were derived
to make preparations for the PPI network analysis.

2.3. Identification of Platinum Based Therapy Response
Related Module. The module eigengenes (MEs) were shown
in the module trait relationship diagram which was consid-
ered the foundation for screening hub gene modules. With
the assistance of Pearson’s correlation test, the relative levels
between MEs and platinum-based resistance were calculated.
The MEs whose relative levels were higher than 0.4, and p
values less than 0.05 were selected as the hub gene modules
for further study.

2.4. Hub Gene Identification. During the gene coexpression
network analysis, the gene trait significance absolute value
(|GS|), which represented the relative level between genes
and trait, and gene module membership (MM), which repre-
sented the contribution of the gene to this module, were cal-
culated by the absolute value of Pearson’s correlation in order
to evaluate hub genes [10]. In the platinum-based therapy
resistant modules, the genes with ∣GS ∣ >0:6 and MM> 0:7
were defined as the hub genes. The genes’ relationships of
edges and nodes between each other in the hub gene module
were exported in a form that could be utilized for Cytoscape
visualization. The relationships with weight larger than 0.05
were input into Cytoscape for a PPI network analysis [11].
With the aid of the network analysis function of Cytoscape,
the data of degrees of each gene could be gained. Genes with
degree larger or equal to 5 were defined as the hub genes in
the PPI network. The hub genes which met the screening
conditions in both the WGCNA and PPI network analysis
would be the final hub genes.

2.5. Functional Enrichment Analysis. The genes of the hub
gene modules were inputted to the R software for GO enrich-
ment analysis with “enrichGO” function and “http://org.hs
.eg.db” database [12]. The genes’ IDs for GO analysis were
obtained from the “org.Hs.egSYMBOL2EG” database, and
the gene without id was cut off. The enrichment pathways
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were cut off if their p value or adjusted p value was larger than
0.05 under the condition of “pvalueCutoff = 0:05 and
qvalueCutoff = 0:05.” Then, the bar plot of enriched path-
ways which was set to show the top ten pathways could be
obtained. After a gene pathway relative circle diagram to
show the genes in top pathways was made, the gene was
ordered and colored by |GS|, and the terms would be set to
5 to show the top 5 pathways.

On the other side, in order to determine the functions or
effects form the hub gene, the expression level of the hub gene
with the highest |GS| would be the standard to make a Gene
Set Enrichment Analysis (GSEA) [13] with GSE7880. The
median expression level of this gene was calculated; then,
the samples with larger expression would be defined as the
high-expression group and the others as the low-expression
group. Using the GO biological process (BP) database in
GSEA software, we would obtain the first 150 pathways and
then screen the cancer relative functions.

2.6. Verification by Prognosis Analysis. The top four hub
genes with a high |GS| were verified by prognostic analysis
of hub genes in LUAD on the Kaplan-Meier (KM) website
(http://kmplot.com/analysis/). After starting the KM plot
for lung cancer and querying the affy id for the hub gene,
we chose to illustrate the survival analysis through overall
survival (OS). Patient split was set to “auto select best cutoff”.
The probe was set to “the user selected probe set.” In addi-
tion, the cox regression was set to “univariate” and the array
quality control was set to “exclude biased array.” With the
other parameters set to “all,” the Kaplan plot was presented.

3. Results

3.1. Construction of Coexpression Network and Identification
of Hub Gene Modules. To obtain the gene trait relationship
and gene coexpression level, the weighted gene coexpression
network was constructed. 25 samples from dataset GSE7880
with LUAD were included in the coexpression network anal-
ysis, 15 of which had progressive disease with platinum-
based therapy and 10 did not. Meanwhile, the samples with
progressive disease were defined as “No responder” and the
other samples were defined as “Responder”. Figure 1(a)
shows the WCGNA R package, where the scale free fit index
is horizontal and the larger mean connectivity is the optimal
power. Following that, the ab-line was set as R2 = 0:8, and the
first power to touch the ab-line was chosen as the soft thresh-
old. The optimal power value was chosen as 11 according to
Figure 1(a). The results of the WGCNA are shown in
Figure 1(b) with a clustering tree including 22 identified
merged modules. Figure 1(c) represents correlative level
between modules and chemoresponse. Among those mod-
ules, the lightpink4 shows the highest positive correlation of
-0.6 (p = 0:001). Modules of floralwhite, navajowhite2, and
paleturquoise also had a correlation larger than 0.4 and a p
value of less than 0.05. The correlation level and p value of
the floralwhite module were 0.43 and 0.03, those of the nava-
jowhite2 module were 0.53 and 0.006, and those of the pale-
turquoise module were 0.42 and 0.04, respectively. Therefore,
these three modules were chosen as the hub gene modules for

a further study. There were 231 genes in the floralwhite mod-
ule, 156 genes in the lightpink4 module, 62 genes in the nava-
jowhite2 module, and 597 genes in the paleturquoise module,
which were used in the PPI network analysis and GO func-
tion enrichment analysis.

3.2. Hub Gene Identification. In order to screening significant
hub genes, the PPI network was constructed to calculate
interaction degrees. In the coexpression network analysis,
41 genes with ∣GS ∣ >0:6 and 588 genes with MM> 0:7 were
chosen to participate in the screening, and 23 of these genes
met both conditions. With the aid of the network analysis
function of Cytoscape, the degrees of genes were obtained.
417 hub genes were selected through the PPI network analy-
sis with a degree of 5 or more. Figure 2 shows the PPI net-
work of these four modules. Finally, 11 hub genes in four
hub gene modules (LY86, ACTR2, CDK2, CKAP4, KPNB1,
RBBP4, SMAD4, MYL6, RPS27, TSPAN2, and VAMP2)
were chosen as the significant hub genes. The hub genes
and their |GS|, MM, and degrees are shown in Table 1.

3.3. Functional Enrichment Analysis. To analysis the function
of hub gene modules, the genes in each module were proc-
essed by functional enrichment analysis. The GO functional
enrichment analysis of the genes in four modules was made
with the assistance of R software, including a bar plot
(Figure 3) and circle distribution plot (Figure 4). The GO
functional analysis was divided into three parts: BP, cell com-
ponent (CC), and molecular function (MF) [14]. Among
these, we focused mainly on the BP part. Figures 3(a) and
4(a) show the results of the GO analysis for floralwhite mod-
ule genes. It illustrates that the top pathways involved activi-
ties of neutrophil functions and the immune system.
Neutrophils are the human’s first defense against infection,
which can cause responses and fight against cancer. Further-
more, the cancer could be detected because of abnormal pro-
liferation, which meant the gene in this module had great
influence on the tumors’ occurrence [15]. In the lightpink4
module, the top pathways in the BP mostly involved amino
acid biosynthesis. Cell proliferation is inseparable from pro-
tein synthesis, and the synthesis of alpha amino acids, as
the main components of protein, will affect the proliferation
and recurrence of tumor cells. In the navajowhite2 module,
the top pathways are about chemotaxis and chemokine,
which could influence tumor metastasis. In the paleturquoise
module, the top pathways are about protein targeting the
membrane, which could be a target in drug therapy. In
sum, these four modules all have some relationship with can-
cer recurrence.

Because the gene Retinoblastoma-Binding Protein 4
(RBBP4) had the highest |GS|, we used it as the standard
for a gene set enrichment analysis. Two representative dia-
grams of the enrichment plot are shown in Figure 5. Accord-
ing to Figures 5(a) and 5(b), the genes expressed in the high
RBBP4 expression group were enriched in the pathway of
positive regulation of DNA replication and cell cycle. That
means RBBP4 might have influence on the increase of the
DNA replication ability and enhance the cell cycle to act as
a factor of tumor recurrence. In Figures 5(c) and 5(d), the

3BioMed Research International

http://kmplot.com/analysis/


5 10 15 20

0.2

0.4

0.6

0.8

Scale independence

Soft threshold (power)

Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 fi
t, 

sig
ne

d 
R2

1

2

3

4

5
6

7 8
9 10 11 12 13 14 15 16 17 18 19 20

5 10 15 20

0

500

1000

1500

2000

Mean connectivity

Soft threshold (power)

M
ea

n 
co

nn
ec

tiv
ity

1

2

3

4
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Cluster dendrogram

hclust (*, "average")
as.dist(dissTOM)

H
ei

gh
t

Dynamic tree cut

Merged dynamic

(b)

Figure 1: Continued.

4 BioMed Research International



Module-trait relationships

−1

−0.5

0

0.5

1

Chemoresponse

MEcyan

MEhoneydew1

MEfloralwhite

MEskyblue1

MEskyblue2

MEplum2

MEbrown

MEbrown4

MEdarkorange

MElightpink4

MEdarkorange2

MEsaddlebrown

MEbisque4

MEskyblue3

MEnavajowhite2

MEthistle1

MEsalmon4

MElightsteelblue1

MEantiquewhite4

MEgreenyellow

MEpaleturquoise

MEgrey

0.34
(0.09)

0.15
(0.5)

0.43
(0.03)

0.33
(0.1)

0.25
(0.2)

0.16
(0.5)

0.0068
(1)

0.39
(0.05)

0.093
(0.7)

−0.6
(0.001)

−0.028
(0.9)

−0.095
(0.7)

−0.31
(0.1)

−0.27
(0.2)

0.53
(0.006)

0.22
(0.3)

−0.028
(0.9)

0.017
(0.9)

0.028
(0.9)

0.2
(0.3)

0.42
(0.04)

0.34
(0.09)

(c)

Figure 1: Weighted gene coexpression network (WGCNA): (a) scale free fit index and mean connectivity for different soft threshold power
values (these figures are used to identify the optimal power value); (b) the dynamic tree and merged cluster dendrogram; (c) heat map of the
correlation level between modules and platinum-based therapy chemoresponse level.
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high expression group was more sensitive to DNA damage
and had a high expression level for the DNA repairing path-
way. The mechanism of action of platinum chemotherapy is
inducing DNA damage to the cancer cell. Therefore, a high
DNA repair ability could cause efficacy lose. Thus, RBBP4
could possess the ability to enhance DNA repairing ability
resulting in chemoresistance.

3.4. Verification by Prognosis Analysis. To demonstrate the
significance relationship between hub gene expression and

survival, prognosis analysis was processed. The top four
genes with the highest |GS| were uploaded to the KM website
(http://kmplot.com/analysis/) to retrieve survival informa-
tion. We started a KM plot for lung cancer and queried the
affy id for the four genes. With the settings prepared as
described in Materials and Methods, the Kaplan plot was
obtained and the results are shown in Figure 6. The number
of risks of each group is shown under the plot. The red group
is the high-expression group, and the black group is the low-
expression group. According to the Kaplan plot the higher

(d)

Figure 2: PPI Network for hub gene modules: (a) floralwhite module; (b) lightpink4 module; (c) navajowhite2 module; (d) paleturquoise
module. The nodes with large degrees are shown in the center, larger in size and redder in color.
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expression of RBBP4, KBNP1 and CDK2 could cause a lower
survival rate. The correlative value of |GS| for these genes was
also negative to the chemoresponse. Therefore, RBBP4,
KBNP1 and CDK2 could be a function enhancer or bio-
marker for recurrence of LUAD with platinum-based ther-
apy. While the higher expression of LY86 caused a higher
survival rate, the |GS| for LY86 was positive. Thus, LY86
could have a positive effect on chemoresponse.

4. Discussion

LUAD accounts for a large proportion of lung cancers [3].
Early diagnosis of LUAD is difficult, and most patients are
already in the local advanced stage or have distant metastasis
at diagnosis, which is prone to recurrence and poses a great
challenge to treatment and prognosis. Platinum-based che-
motherapy has been a great contribution to treatment [16]
and plays a very important role [17]. Even after early diagno-
sis, in addition to stage I patients, patients usually receive
adjuvant chemotherapy in order to prevent postoperative
recurrence. However, due to metastasis of tumor cells and
the resistance to chemotherapy drugs, the recurrence rate of
tumor remains high. Therefore, it is necessary to identify
possible biomarkers in order to find effective targets to
inhibit tumor recurrence and reduce the recurrence rate. In
this study, we used the GEO dataset GSE7880. This dataset
was uploaded by Rohrbeck et al. in 2007 and contains gene
expression data from patients with NSCLC. We went back
to this data set and used a new analysis to make it more valu-
able. 25 gene expression samples of patients with LUADwere
screened, and they were divided into two groups according to
the chemotherapy response for a WGCNA. Through the fit-
ting of traits, we obtained four gene modules that were highly
correlated with the chemotherapy response. In combination
with a PPI network analysis, we screened 11 key genes that
were highly correlated with the response to platinum-based
chemotherapy in LUAD. The functional directions of four
gene modules were determined by a GO functional enrich-
ment analysis, namely, “immune system,” “cell amino acid
and chromatin activity,” “cell chemotaxis,” and “targeted

membrane protein.” They were associated with “cancer cell
clearance,” “cell proliferation,” “cell metastasis,” and “drug
targets,” respectively, which made these genes valuable for
future research regarding the treatment of LUAD. As the
gene RBBP4 most related to chemical reaction traits in the
fitting, we used it for GSEA enrichment analysis and found
that DNA replication and cell division were hyperactive in
its high expression group. Therefore, we speculated that
RBBP4 could be used as a biomarker or target of platinum
resistance or tumor recurrence for subsequent studies. In
addition, in the analysis of prognosis, the high expression
of RBBP4 resulted in a reduced survival rate, which also dem-
onstrated its negative effect in cancer recovery.

Cisplatin is a kind of metal platinum complex commonly
used at present. The platinum atom in the molecule is of
great significance for its antitumor effect. It can cross-link
with DNA strands, showing cytotoxic effects. The solution
passes through the charged cell membrane in the body with-
out a carrier transport. Due to the low concentration of chlo-
ride ions in the cell, the chloride ions are replaced by water
and have a positive charge, which acts like an alkylating agent
double functional group, and can combine with the DNA
bases in the nucleus to form three forms of cross-linking,
causing DNA damage, destroying DNA replication and tran-
scription, and inhibiting the synthesis of RNA and protein at
high concentration [18].

One significant mechanism for cisplatin chemoresistance
is the on-target resistance. The cisplatin resistant cells acquire
the ability to repair adducts or become able to tolerate unre-
paired DNA [19]. The data of lightpink4 which contains the
hub gene RBBP4 with the GO function of DNA repair also
shows an opposite of chemoresponse. According to GSEA
analysis, RBBP4 can increase the DNA damage detecting
and repairing ability, which can contribute to on-target resis-
tance of the cancer cells. Meanwhile, currently, RBBP4 which
is also abbreviated as RbAp48 was regarded as a regulative
factor for DNA repair. RbAp48 was firstly reported as a neg-
ative regulator for Ras in yeast [20]. Then, in 1996, RbAp48
was discovered to be one of the three subunits of the chro-
matin assembly factor 1 [21, 22]. It is a component of the
histone deacetylase complexes and is involved in chroma-
tin remodeling [23, 24] which could contribute to DNA
repairing and cell division. It was also reported that it
could decrease temozolomide, an anticancer drug with
the action of inducing DNA methylation damage, and sen-
sitivity in regulating DNA repairing proteins [25]. In addi-
tion, RBBP4 was also reported as a significant differently
expressed gene between oropharyngeal squamous cell car-
cinoma patients and patients without cancer [26] in
2009. Combined with the DNA damage repair function
of RBBP4 and its high expression in cancer, we can infer
that it must also play an important role in the resistance
of platinum chemotherapy. However, there have been
insufficient reports on the link between this gene and
platinum-based chemotherapy resistance in LUAD. Start-
ing from a real clinical sample data set, this research
found abnormal expression of this gene in the LUAD
resistance group by comparing the drug resistance group
and the response group, which provided statistical

Table 1: Hub genes in modules.

Gene
name

Module color
Gene trait
significance
(GS > 0:6)

Gene module
membership
(MM> 0:7)

Degree
(degree > 5

)

LY86 floralwhite 0.6679241 0.8069434 17

ACTR2 lightpink4 -0.6020996 0.9098197 6

SMAD4 lightpink4 -0.6104894 0.7267321 6

CKAP4 lightpink4 -0.6220552 0.7872074 5

CDK2 lightpink4 -0.6548132 0.8920717 8

KPNB1 lightpink4 -0.7198137 0.8535104 6

RBBP4 lightpink4 -0.7327022 0.8804876 8

RPS27 paleturquoise 0.6380246 0.7398567 32

TSPAN2 paleturquoise 0.6255706 0.7910007 25

MYL6 paleturquoise 0.6124084 0.7494138 37

VAMP2 paleturquoise 0.6065676 0.778348 27
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Figure 3: Gene Ontology (GO) Function Enrichment Analysis: (a), (b), (c), and (d) are the enriched biological process (BP) of GO analysis for
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Figure 5: GSEA of RBBP4: (a) positive regulation of DNA replication with p = 0:008 and a normalized enrichment score ðNESÞ = 1:57; (b)
cell division with p = 0:014 andNES = 1:57; (c) response to DNA damage with p = 0:027 andNES = 1:161; (d) DNA repair with p = 0:024 and
NES = 1:57.
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Figure 6: Prognostic analysis of the top four hub genes with the highest GS absolute value: (a) Kaplan plot of RBBP4 (217015_at;GS = −0:73);
(b) Kaplan plot of KPNB1 (208974_x_at; GS = −0:72); (c) Kaplan plot of LY86 (205859_at; GS = 0:67); (d) Kaplan plot of CDK2 (204252_at;
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evidence for its important role in the resistance of plati-
num chemotherapy in LUAD.

In this study, a variety of bioinformatics analysis methods
were used, and the gene and protein levels were rigorously
analyzed and screened. However, it is still lacking in cell biol-
ogy experiments, molecular biology experiments and other
physical experiments. There are some limitations in evidence
based entirely on data. Therefore, in future research, we will
further demonstrate the drug resistance effect of RBBP4 by
combining it with solid experiments, explore its drug resis-
tance mechanism, and explore the possibility of it becoming
a biomarker and target.

Data Availability

The underlying data supporting this research was the micro
array matrix downloaded from GSE7880, which was
uploaded by Rohrbeck et.al in 2007 and can be obtained from
GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE7880).
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