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Colorectal cancer (CRC) is one of the most common malignancies of the digestive system. Recent studies have revealed the
importance of RNA-binding proteins (RBPs) in tumorigenesis, but their role in CRC remains unclear. The present study
systematically analyzed the relationships between RBPs and CRC using data from The Cancer Genome Atlas. We detected 483
differentially expressed RBPs and identified a series of pathways and processes using GO (Gene Ontology) analysis and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Analyzing protein–protein interactions and modules identified
the edges and modules of RBPs. Univariate and multivariate Cox regression analyses were then used to construct a prognostic
model that included 13 RBPs. Survival analyses indicated that the overall survival (OS) was significantly lower for CRC
patients in the high-risk group than for those in the low-risk group, and that high risk scores were associated with poor OS.
Finally, we constructed a nomogram that included 13 RBPs for calculating the estimated survival probabilities of CRC patients
at 1, 2, and 3 years. Calibration plots indicated good conformity between the predicted and observed outcomes. This study has
revealed that the expression of RBPs differs between CRC and normal tissues. A prognostic model based on 13 RBP coding
genes has been developed that can provide independent prognoses of CRC.

1. Introduction

Colorectal cancer (CRC) is one of the most common malig-
nancies of the digestive system [1]. Recent changes in diet
characteristics, population aging, and living standards have
resulted in gradual increases in the incidence and mortality
of CRC in China [2]. There were 388,000 new CRC cases
and 187,000 deaths from CRC in China in 2015, and the
main treatments for CRC are currently surgery, radiother-
apy, chemotherapy, and other therapies [2]. The molecular
mechanisms underlying CRC are still not fully understood,
indicating the need for further searches of novel gene targets.

RNA-binding proteins (RBPs) perform various functions
to maintain cellular homeostasis. These proteins play vital
roles in regulating numerous essential cellular processes,
including RNA splicing, modification, transport, localiza-
tion, stability, degradation, and translation [3, 4]. RBPs can

interact with various classes of RNAs, including mRNAs,
tRNAs, snRNAs, snoRNAs, and ncRNAs [5]. It has been
estimated that more than 1,500 proteins can bind RNA in
the human genome [5]. Any significant change or distur-
bance in the RBPs regulating these essential functions can
lead to diseases, including cancer [4, 6].

Recent studies have revealed the importance of RBPs in
tumorigenesis, with altered expression, localization, or post-
translational modification of RBPs contributing to tumori-
genesis by increasing the expression of oncogenes and
decreasing the expression of tumor suppressor genes [7].
These observations suggest that regulating the expression
levels of RBPs could represent a novel approach to treating
tumors. RBPs have already been shown to play an essential
role in gastrointestinal tumors such as esophageal cancer
and gastric cancer [3], but their role in CRC has remained
unclear.
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2. Materials and Methods

2.1. Differentially Expressed RBPs. We downloaded CRC
data from The Cancer Genome Atlas (TCGA), including

RNA-seq data of CRC tissues and normal colorectal tis-
sues, the clinicopathological parameters, and prognostic
information. Differentially expressed RBPs were identified
using the limma package in R (version4.0.0) based on a
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Figure 1: The expression of differentially expressed RBPs. (a) The heat map of differentially expressed RBPs in colorectal cancer and normal
colorectal samples. (b) The volcano plot of differentially expressed RBPs.
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Figure 2: Continued.
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Figure 2: Continued.
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false-discovery rate (FDR) of <0.05 and a log2fold change
(logFC) of ≥0.5.

2.2. GO Analysis and KEGG Pathway Analysis. We per-
formed GO (Gene Ontology) analysis and KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway analysis with
differentially expressed RBPs to identify related processes
and pathways using R (version4.0.0). Probability values of
P < 0:05 were considered statistically significant.

2.3. Protein–Protein Interactions and Module Screening.
STRING (version10) and Cytoscape (version3.6.1) software
was used to construct a protein–protein interaction (PPI)
network among all differentially expressed RBPs. The key
modules were screened from the PPI network with scores
of >7 and more than five nodes using the MCODE (Molec-
ular Complex Detection) plug-in in Cytoscape.

2.4. Prognostic Model Construction and Evaluation. The sur-
vival package in R (version4.0.0) was used to perform uni-
variate and multivariate Cox regression analyses with the
differentially expressed RBPs to identify the genes related
to prognosis. We then randomly divided the CRC patients
into training and testing cohorts. The risk score for each
CRC patient was calculated to evaluate the performance of
the prognostic model, and these scores were then used to
divide the patients into low-risk and high-risk subgroups
based on the median risk score. Kaplan-Meier survival
curves were constructed, and the log-rank test was used to
determine how the overall survival (OS) differed between
the two risk subgroups in the training and testing cohorts.
The survivalROC package was used to construct receiver
operating characteristics (ROC) curves for predicting the

performance of the model, and finally, a nomogram was
produced.

3. Results

3.1. Identification of Differentially Expressed RBPs. We
downloaded RNA sequencing data and clinicopathological
parameters of CRC from the TCGA, which comprised 568
CRC samples and 44 normal colorectal samples. Our analy-
sis of 1542 RBPs [8] revealed that 483 met our inclusion cri-
teria of FDR < 0:05 and logFC ≥ 0:5: 161 were
downregulated RBPs, and 322 were upregulated RBPs. The
expression of these genes is shown in Figure 1.

3.2. Results of GO Analysis and KEGG Pathway Analysis.We
divided the differentially expressed RBPs into upregulated
and downregulated groups based on their expression levels,
and then GO analysis was used to identify meaningful pro-
cesses. As for biological processes, upregulated genes were
significantly associated with ncRNA processing, ribosome
biogenesis, rRNA metabolic process, rRNA processing, and
RNA phosphodiester bond hydrolysis. Downregulated genes
were significantly associated with cellular amide metabolic
process, regulation of translation, regulation of mRNA met-
abolic process, RNA splicing, and negative regulation of
translation. Cellular components showed that upregulated
genes were significantly associated with per ribosome, small
subunit processome, cytoplasmic ribonucleoprotein granule,
nucleolar part, and ribonucleoprotein granule, while down-
regulated genes were associated with cytoplasmic ribonu-
cleoprotein granule, ribonucleoprotein granule, P-body,
cytoplasmic stress granule, and spliceosomal complex.
Regarding molecular functions, upregulated genes were

(d)

Figure 2: Functional annotations of the differentially expressed RBPs in CRC. (a, b) GO analysis. (c, d) KEGG pathway analysis.
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Figure 3: PPI network and module analysis. (a) PPI network of 3 critical modules. (b) Critical module 1 in PPI network. (c) Critical module
2 in the PPI network.
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significantly associated with catalytic activity, acting on
RNA, ribonuclease activity, nuclease activity, catalytic activ-
ity, acting on a tRNA, and ribonucleoprotein complex bind-
ing, whereas downregulated genes were involved in mRNA
3′-UTR binding, translation regulator activity, translation
repressor activity, translation factor activity, RNA binding,
catalytic activity, and acting on RNA (Figures 2(a) and 2(b)).

KEGG pathway analysis suggested that the upregulated
genes were mainly involved in the following eight pathways
(P < 0:05): ribosome biogenesis in eukaryotes, RNA trans-
port, mRNA surveillance pathway, RNA degradation, spli-
ceosome, ribosome, RNA polymerase, and influenza A.
Meanwhile, downregulated genes were associated with
RNA transport, spliceosome, TGF-beta signaling pathway,
hepatitis C, ribosome, influenza A, and RNA degradation.
These results are shown in Figures 2(c) and 2(d).

3.3. PPI and Module Analysis. STRING software was used to
construct the PPI network, which comprised 456 nodes and
6831 edges (combined score > 0:4). We further analyzed the
coexpression network to identify the following top 3 signifi-
cant modules using the MCODE plug-in in Cytoscape: mod-
ule 1 consisted of 65 nodes and 1995 edges, module2
consisted of 28 nodes and 209 edges, and module 3 consisted

of 16 nodes and 60 edges. These three modules are shown in
Figure 3.

The GO analysis showed that the RBPs in module 1 were
significantly associated with ribosome biogenesis, rRNA
metabolic process, rRNA processing, ncRNA processing,
and per ribosome. The RBPs in module 2 were associated
with RNA splicing, via transesterification reactions with
bulged adenosine as nucleophile, mRNA splicing, via spli-
ceosome, RNA splicing, via transesterification reactions,
RNA splicing, and catalytic step 2 spliceosome. The RBPs
in module 3 were involved in translation factor activity,
RNA binding, cytoplasmic translational initiation, transla-
tional initiation, cytoplasmic translation, and translation ini-
tiation factor activity.

The KEGG pathway analysis showed that the RBPs in
module 1 were significantly associated with ribosome bio-
genesis in eukaryotes. The RBPs in module 2 were signifi-
cantly associated with spliceosome, mRNA surveillance
pathway, and RNA transport, while those in module 3 were
significantly associated with RNA transport, legionellosis,
leishmaniasis, spliceosome, and ribosome. These results are
presented in Table 1.

3.4. Construction and Verification of the Prognostic Model.
Univariate Cox regression confirmed that 31 of the 483

Table 1: GO and KEGG pathway analysis results for differentially expressed RBPs in 3 critical modules.

MCODE Processes or pathways P value

GO

Module 1

Ribosome biogenesis 3.60E-79

rRNA metabolic process 7.92E-78

rRNA processing 1.56E-76

ncRNA processing 2.71E-73

Preribosome 1.39E-57

Module 2

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 2.30E-28

mRNA splicing, via spliceosome 2.30E-28

RNA splicing, via transesterification reactions 2.70E-28

RNA splicing 1.73E-26

Catalytic step 2 spliceosome 3.34E-24

Module 3

Translation factor activity, RNA binding 5.06E-13

Cytoplasmic translational initiation 6.34E-11

Translational initiation 1.20E-10

Cytoplasmic translation 1.56E-10

Translation initiation factor activity 6.93E-10

KEGG

Module 1 Ribosome biogenesis in eukaryotes 2.89E-36

Module 2

Spliceosome 1.19E-15

mRNA surveillance pathway 3.99E-09

RNA transport 8.53E-06

Module 3

RNA transport 2.41E-13

Legionellosis 0.003

Leishmaniasis 0.005

Spliceosome 0.02

Ribosome 0.02

8 BioMed Research International



NOP14
pvalue Hazard ratio

0.391(0.228–0.669)
1.953(1.142–3.341)
0.556(0.344–0.898)
1.815(1.054–3.127)
0.588(0.377–0.916)
0.603(0.396–0.917)

1.537(1.0.35–2.282)
0.486(0.262–0.900)
0.434(0.220–0.855)
0.599(0.365–0.983)
1.500(1.023–2.200)
0.550(0.329–0.918)
1.496(1.008–2.221)

16.077(4.024–64.225)
0.447(0.244–0.819)
0.573(0.391–0.839)
1.361(1.086–1.705)
1.681(1.054–2.681)
1.250(1.020–1.532)
1.920(1.159–3.181)
0.734(0.542–0.993)
0.649(0.435–0.968)
1.663(1.126–2.455)

11.961(3.423–41.803)
0.409(0.205–0.815)
0.625(0.418–0.934)
0.576(0.371–0.895)

3.423(1.009–11.612)
0.534(0.314–0.910)
0.690(0.494–0.965)
1.663(1.127–2.454)

0 10 20 30 40
Hazard ratio

50 60

<0.001
0.015
0.016
0.032
0.019
0.018
0.033
0.022
0.016
0.042
0.038
0.022
0.046

<0.001
0.009
0.004
0.007
0.029
0.031
0.011
0.045
0.034
0.011

<0.001
0.011
0.022
0.014
0.048
0.021
0.030
0.010

MRPL17
BRCA1
SRP14
TRIM25
MAK16
UPF3B
SMAD1
GEMIN5
POP1
TDRD5
TDRD7
TRMT1
LUZP4
PPARGC1B
PPARGC1A
ZNF385A
TUT1
PABPC1L
RP9
CELF2
G3BP2
PNLDC1
CELF4
LRRFIP2
ZC3H12C
RBM47
AFF3
MSI2
SIDT1
CAPRIN2

(a)

Figure 4: Continued.

9BioMed Research International



differentially expressed RBPs were related to the prognosis of
CRC (Figure 4(a)). After randomly dividing the CRC
patients into the training and testing cohorts, multivariate

Cox regression identified the following 13 RBPs in the train-
ing cohort for constructing a prognostic model: MRPL17,
BRCA1, MAK16, TDRD7, TRMT1, LUZP4, PPARGC1B,
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Figure 4: The Cox regression and protein expression of hub genes.(a) Univariate Cox regression of differentially expressed RBPs related to
prognosis. (b) Multivariate Cox regression of differentially expressed RBPs to build a prognostic model. (c) Validation of protein expression
of hub genes in normal colorectal tissue and CRC using the HPA database.
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PPARGC1A, G3BP2, PNLDC1, LRRFIP2, RBM47, and
CAPRIN2 (Figure 4(b)). We used data from the Human
Protein Atlas database to analyze immunohistochemistry
results. Figure 4(c) shows that the protein expression of
CAPRIN2 was higher in CRC tissue than in normal colorec-
tal tissue, where those of BRCA1, G3BP2, LRRFIP2, and
RBM47 were lower in CRC tissue.

We calculated the risk score for each patient and divided
the patients into high-risk and low-risk groups. The training
and testing cohorts indicated that the OS was significantly
lower among patients in the high-risk group (Figure 5(a)).
ROC curves were used to further evaluate the predictive per-
formance of the 13 genes. The areas under the ROC curves
(AUCs) for 1-, 2-, and 3-year OS in the training cohort were
0.802, 0.771, and 0.775, respectively (Figure 5(b)). The sur-

vival status and an expression heat map of patients with
the 13 RBPs in the subgroups were shown in Figure 5(c).
This figure shows that a higher risk score did not signifi-
cantly decrease the survival time but it did significantly
increase the mortality rate.

We also assessed the prognostic value of different clini-
copathological parameters in the training and testing
cohorts through univariate and multivariate Cox regression
analyses. The results showed that age, pathological stage,
and high-risk scores were associated with poor OS
(P < 0:01) (Figures 6(a) and 6(b)). A quantitative model for
the prognosis of CRC was produced by constructing a
nomogram for the 13 RBPs (Figure 6(c)). This nomogram
can be used to calculate the estimated survival probabilities
of CRC patients at 1, 2, and 3 years by drawing a vertical line
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Figure 5: Risk score analysis of 13-RBP prognostic model in CRC. (a) Survival analysis according to risk score. (b) ROC curves. (c) Survival
status and expression heat map of patients.
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from the axis showing the total score to each prognosis axis.
We also constructed calibration plots, which indicated that
there was good conformity between the predicted and
observed outcomes (Figure 6(d)).

4. Discussion

RBP malfunction resulting in altered RNA metabolism can
lead to genome-wide changes in the transcriptome and pro-
teome of cells so as to affect their growth, proliferation, inva-
sion, and death. It is therefore not surprising that altered
expression of RBPs is a common phenomenon during the
development and progression of cancers [7].

The present GO analysis shows that the differentially
expressed RBPs were associated with various mechanisms
including ribosome biogenesis, rRNA metabolic process,
rRNA processing, ncRNA processing, and preribosome.
In contrast, the KEGG pathway analysis revealed the
involvement of mechanisms such as ribosome biogenesis

in eukaryotes, spliceosome, mRNA surveillance pathway,
RNA transport, RNA transport, legionellosis, leishmania-
sis, spliceosome, and ribosome. Previous studies have
revealed the RBPs related to pathways such as RNA splic-
ing, modification, transport, localization, stability, degrada-
tion, and translation [3, 4]. The results of the present
study are similar to those of previous studies, by showing
that RBPs are involved in pathways related to RNA
metabolism.

The 13-RBP prognostic model comprised MRPL17,
BRCA1, MAK16, TDRD7, TRMT1, LUZP4, PPARGC1B,
PPARGC1A, G3BP2, PNLDC1, LRRFIP2, RBM47, and
CAPRIN2. Oh et al. [9] found an increased risk of CRC
for BRCA1. A stratified analysis revealed that the PPARG
rs3856806 C>T polymorphism also increased the risk of
CRC [10]. LRRFIP2 is associated with an MLH1 mutation
that affects the occurrence of Lynch syndrome [11]. A pan-
cancer analysis of the EMT signatures identified that
RBM47 was downregulated in CRC progression [12].
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Figure 6: Nomogram of 13 RBPS. (a) Univariate analysis of clinicopathological parameters. (b) Multivariate analysis of clinicopathological
parameters. (c) Nomogram to predict one, two, and three-year OS. (d) Calibration plots of the nomogram to predict OS at one, two, and
three years.
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It have not been reported that MRPL17, MAK16,
TDRD7, TRMT1, LUZP4, G3BP2, PNLDC1, and CAPRIN2
were related to CRC, and so further research is necessary. In
the present study, the 1-, 2-, and 3-year AUCs of the prog-
nostic model were 0.802, 0.771, and 0.775, respectively, indi-
cating that this model exhibited moderate predictive
performance. A nomogram was constructed to predict the
probability of CRC patients surviving for 1, 2, and 3 years,
and the underlying predictive models suggested that patients
with high-risk scores have a poor prognosis. Risk models can
be used to divide patients into high-risk and low-risk groups,
allowing targeted further treatment interventions.

Li et al. [13] established a prognostic model of RBP-
related genes in lung squamous cell carcinoma, which sug-
gested that risk scores have good predictive performance.
Clinical prognostic models have been widely used in medical
research and practice [14]. Such prognostic model and their
associated nomograms can be used by doctors and patients
to make better joint decisions and by clinical researchers
for more accurately screening suitable research subjects.
Clinical prognostic models related to gene targets have also
been studied extensively, such as m6A-related gene models
[15] and an autophagy-related gene signature [16].

In summary, this study explored new prognostic indica-
tors by screening differentially expressed RBPs, performing
function predictions, and constructing prognostic models.
The new prognostic indicators that have been identified pro-
vide a biological background for the clinical predictions.
However, this study was subject to some limitations. The
model constructed in this study involved only gene expres-
sion and did not include clinicopathological parameters. In
addition, the study findings were not validated in a clinical
patient cohort.

5. Conclusion

This study found that the expression of RBPs differed
between CRC and normal tissues. A prognostic model based
on 13 RBP coding genes has been developed that could act as
an independent prognostic signature for CRC.
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