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Screening and preliminary identification of high DNMT1 expression-related lncRNA, which is involved in various interrelated
signaling pathways, has led to the development of a theoretical basis for various types of disease mechanisms. Differential
expression profiles of lncRNA and mRNA were identified in a microarray. Ten lncRNAs with high levels of variation were
identified by qRT-PCR. KEGG and GO analyses were used to identify differentially expressed mRNAs. Six signaling pathways
were selected based on the KEGG results of the lncRNA-mRNA expression network analysis. From the microarrays in the
experimental and control groups, we found a total of 6987 differentially expressed lncRNAs, and 7421 differentially expressed
mRNAs were obtained (P < 0:05; fold change > 2:0x). GO analysis and KEGG pathway analysis showed high expression of
DNMT1 in esophageal epithelial cells. Nine pathways were involved in mRNA upregulation, including natural killer cell-
mediated cytotoxicity and many other prominent biochemical pathways. Forty-six pathways were associated with
downregulated mRNAs and ribosomes involving multiple biological pathways. Coexpression network analysis showed that 8
mRNAs and 16 lncRNAs were linked to the p53 signaling pathway. In Helicobacter pylori infections, interactions occurred
between 22 lncRNAs and 11 mRNAs in the ErbB signaling pathway and between 19 lncRNAs and 8 mRNAs in epithelial cell
signal transduction. Interactions were present between 19 lncRNAs and 5 mRNAs in the sphingolipid signaling pathway, along
with interactions between 21 lncRNAs and 12 mRNAs in the PI3K-Akt signaling pathway. Cytotoxicity interactions occurred
between 22 lncRNAs and 9 mRNAs in natural killer cells.

1. Introduction

Epigenetics is the study of genetic changes in gene activity or
function and does not involve changes in the DNA sequence
itself. Its molecular mechanisms include DNA methylation,
chromosome modification, histone modification, and RNA
interference. Historically, DNA methylation was discovered
in mammals long before the DNA was identified as genetic
material [1, 2]. DNA methylation is accomplished by trans-
ference of methyl groups from S-adenosylmethionine to the
5′ position of cytosine via DNA methyltransferase activity
(DNMTs). Three catalytically active DNMTs have been iden-
tified in mammals: DNMT1, DNMT3a, and DNMT3b [3].
DNMT1 is the most important enzyme for maintaining
DNA methylation status in vertebrates and is also one of

the most well-known enzymes. It can play a role in gene
silencing as well as DNA methylation repair [4]. High
DNMT1 expression levels can cause methylation pattern var-
iations that result in silencing of tumor suppressor genes and
oncogene activation. Abnormal DNMT1 activity can lead to
prostate [5–7], lung [8, 9], kidney [10–12], and bladder can-
cer [13–16]. Obviously, the integrity of the DNAmethylation
system is critical to the health of mammals.

Long noncoding RNA (lncRNA) is a form of RNA lack-
ing open reading frames and does not encode proteins. The
transcripts are more than 200 bp in length and are found in
the nucleus or cytoplasm. A large number of studies have
reported that lncRNA plays an important role in the devel-
opment of many diseases. It has tissue, cell, developmental,
spatiotemporal, and disease-related specificity and is widely
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Table 1: Primer sequences.

Prime name Forward Reverse

lnc-OR1M1-1 : 1 CTGACATTTCAAGAGGTTGTGG TGACTGATTCACTATTTGGTGC

lnc-IGFBP3-1 : 1 CTTCCTGGAGAGTCACTTCCTA AGCCTTTCAAAGAGATACTCG

NR_003367(PVT1) TTTCAGCACTCTGGACGG AACACAGAGCACCAAGAC

ENST00000505089 CATCCTGATACCAAAGCCT TTGATGTGTTGCTGGATTCG

ENST00000568998 CAAGGCTCCTCATAAGCA GCACTTTGGGAGGTCAAT

lnc-ST8SIA4-8 : 1 ATGGTGACGTGATGTAATGC TCTGAGGCGATAAATTGGACT

lnc-ZNF530-1 : 1 CGACCCAGGTATTATTGAGTG TCAAACTCTTGGGCTCAAGG

NR_110492(TUG1) TGGCTATTGGTATGGCTGG TGACTGTAGTCCTCACGG

NR_002819(MALAT1) CCTAAGGTCAAGAGAAGTGTC GGTACTTCAAGCATTCCTTCG

ENST00000436710 CTTTGTCTTGGTGTCACCC AGAACTTTCTCCACACGG

GAPDH TGTTGCCATCAATGACCCCTT CTCCACGACGTACTCAGCG

Table 2: Expression of lncRNAs in esophageal DNMT1 overexpressing cells and normal esophageal epithelial cells.

lncRNA Experimental group Control group T P

ENST00000436710 0:19 ± 0:18 1:48 ± 0:74 2.93 0.043

PVT1 1:73 ± 0:25 1:01 ± 0:21 3.80 0.019

TUG1 0:12 ± 0:12 1:05 ± 0:38 4.07 0.015

MALAT1 0:09 ± 0:003 1:01 ± 0:20 8.20 0.015

ENST00000505089 0:04 ± 0:04 1:08 ± 0:50 3.61 0.023

lnc-OR1M1-1 : 1 19:21 ± 8:97 1:02 ± 0:27 3.51 0.072

lnc-ST8SIA4-8 : 1 0:12 ± 0:04 1:02 ± 0:28 5.53 0.005

lnc-ZNF530-1 : 1 3:37 ± 0:43 1:05 ± 0:43 6.60 0.003

lnc-IGFBP3-1 : 1 3:47 ± 0:35 1:00 ± 0:09 11.90 0.000

ENST00000568998 0:19 ± 0:05 1:00 ± 0:09 13.47 0.000
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Figure 1: Volcano plot of differentially expressed lncRNA and mRNA in high-expression DNMT1 cell lines and normal esophageal
epithelial cell lines. (a) Volcano plot-lncRNA; (b) volcano plot-mRNA. Red dots represent upregulated lncRNAs; blue dots represent
downregulated lncRNAs (P < 0:05; fold change > 2:0).
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Figure 2: Continued.
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involved in cell differentiation and metabolism. Cell prolifer-
ation occurs in the course of various diseases where normal
lncRNA function is altered [17–24]. Differential expression
of lncRNA exhibits tumor specificity, is not affected by other
factors, and can be used as an independent tumor-specific
predictor [25]. Studies have shown that lncRNA is an impor-
tant regulatory factor in the human genome that can control
DNA methylation and histones as an epigenetic modulator
and transcriptional and posttranscriptional regulator in a cis
or trans manner. These activities include modification and
chromatin remodeling to silence or activate genes [26–28].

Since lncRNA does not encode proteins, it appears to act
indirectly as compared to the direct action of mRNA. There-
fore, coexpression analysis is widely used to elucidate the rela-
tionship between lncRNAs and messenger RNA (mRNAs)
actions [29, 30]. It can reveal key lncRNAs and help to eluci-
date new regulatory mechanisms.

In the present study, using a previously developed high-
expression DNMT1 cell line and a normal esophageal epi-
thelial cell line, we used the Agilent Human lncRNA V5 chip
technology to screen differentially expressed lncRNA and
coexpressing them. The analysis included an in-depth evalu-
ation of specific lncRNA functions that can form a founda-
tion for an in-depth examination of disease mechanisms.

2. Methods

2.1. Samples. The experimental groups chosen for this study
included a high expression DNMT1 cell line [31], which was
developed following transfection of a WV0132 plasmid
using TALE technology. The control group was a normal
esophageal epithelial cell line HEEC.

2.2. lncRNA Microarrays. The Agilent Human V5 Microar-
ray analysis (Agilent, USA) was performed using a Gene
Expression Hybridization Kit (Agilent USA) according to the
manufacturer’s instructions. Slides were washed in staining
dishes with a Gene Expression Wash Pack (Agilent, USA)
and scanned by an Agilent Scanner G2505C (Agilent, USA)
with default settings according to the manufacturer’s instruc-
tions. Raw data were normalized by the quantile algorithm
using Gene Spring Software 13.1 (Agilent Technologies).

2.3. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). We selected 10 differentially expressed genes
to evaluate their activity in overexpressing DNMT1 and
esophageal epithelial cells. Total RNA was isolated from all
samples using a mirVanaTMRNA Kit (Ambion, USA) then
reverse transcribed using a Quick Amp Labeling Kit, One-
Color (Agilent, USA) according to the manufacturer’s
instructions. qRT-PCR was performed using a QuantiFast®
SYBR® Green PCR Kit (Qiagen, Germany). Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as an inter-
nal control. Primer sequences are shown (Table 1).

2.4. Statistical Analysis. Data were analyzed using SPSS (ver-
sion 17.0; SPSS Inc., Chicago, IL, USA). Differentially
expressed genes or lncRNAs were then identified by fold
change as well as P value levels calculated by t-test. The
threshold set for up- or downregulated genes was ≥2.0 times
the median value and a P value of ≤0.05. lncRNA-mRNA
coexpression networks were constructed using Cytoscape
software 54 (version 3.4.0; The Cytoscape Consortium, San
Diego, CA, USA).
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Figure 2: (a) Amplification curves and melting peaks of GAPDH. (b) Amplification curves and melting peaks of ENST00000436710. (c)
Amplification curves and melting peaks of PVT1. (d) Amplification curves and melting peaks of TUG1. (e) Amplification curves and melting
peaks of MALAT1. (f) Amplification curves and melting peaks of ENST00000505089. (g) Amplification curves and melting peaks of lnc-
OR1M1-1 : 1. (h) Amplification curves and melting peaks of lnc-ST8SIA4-8 : 1. (i) Amplification curves and melting peaks of lnc-ZNF530-
1 : 1. (j) Amplification curves and melting peaks of lnc-IGFBP3-1 : 1. (k) Amplification curves and melting peaks of ENST00000568998.
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Figure 3: Gene Ontology (GO) enrichment analysis (top 20) in high-expression DNMT1 cell lines and normal esophageal epithelial cell
lines: (a, b) biological process; (c, d) cellular component; (e, f) molecular function.
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3. Results

3.1. Identification of Differentially Expressed lncRNAs and
mRNAs. There were 6987 lncRNAs that were differentially
expressed from the microarrays of experimental and control
groups. Of those, 3654 were upregulated and 3333 were down-
regulated. In addition, 7421 differentially expressed mRNAs

were identified that included 2254 that were upregulated and
5167 that were downregulated. A volcano plot was created to
identify differences among the various lncRNAs and mRNAs
(Figure 1).

We also randomly selected 10 differentially expressed
genes and further performed quantitative real-time polymer-
ase chain reaction (qRT-PCR) to examine their expression

0.0 0.5 1.0 1.5 2.0

Natural killer cell mediated cytotoxicity
KEGG
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Figure 4: KEGG pathway analysis in high-expression DNMT1 cell lines and normal esophageal epithelial cell lines. (a) Nine pathways of
upregulated mRNA enrichment; (b) the top 20 pathways enriched by downregulated mRNAs.
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(a) (b)

(c) (d)

Figure 5: Continued.
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levels (Table 2). The resulting melting curves all showed sin-
gle peaks, with PCR amplification to show greater specificity
(Figures 2(a)–2(k)).

3.2. GO Analysis and KEGG Analysis. Gene Ontology (GO)
analyses were conducted to explore the function of the
7421 differentially expressed mRNAs. The results showed
that there are 1825 upregulated mRNAs expressed during
various biological processes including those involved in
blood coagulation, type I interferon signaling pathways,
and response to viruses (Figure 3(a)). There were 3483
downregulated mRNAs in biological processes such as those
involving viruses, SRP-dependent cotranslational proteins
targeting membrane, and gene expression (Figure 3(b)). In
terms of cellular components, there were 1937 upregulated
mRNAs expressed including those associated with the
extracellular space, the cell surface, and the extracellular
membrane (Figure 3(c)). There were 3655 downregulated
mRNAs expressed including those involved with cellular
components such as the cytoplasm, nucleoplasm, and cyto-
sol (Figure 3(d)). Evaluating molecular function, there were
1817 upregulated mRNAs detected that included those
involved in protein homodimerization activity, heparin
binding, and SH3 domain binding (Figure 3(e)). There were
3517 downregulated mRNAs expressed involving cellular
components that included protein binding, poly (A) RNA
binding, and ligase activity (Figure 3(f)).

KEGG pathway analysis was conducted to examine the
function of the 7421 differentially expressed mRNAs. The
results showed that upregulated mRNAs were highly enriched
in 9 gene pathways, including natural killer cell-mediated cyto-
toxicity, and glycosaminoglycan biosynthesis-chondroitin sul-
fate/dermatan sulfate and steroid biosynthesis (Figure 4(a)).
Downregulated mRNAs were expressed in the 46 gene path-

ways including those involving ribosomes, pancreatic cancer,
and the ErbB signaling pathway (Figure 4(b)).

3.3. lncRNA-mRNA Coexpression Networks. Based on the
KEGG pathway results, we selected 6 pathways from the
downregulated mRNA signaling and the upregulated mRNA
signaling pathways to perform coexpression network analy-
sis. In particular, we examined the p53 signaling and ErbB
signaling pathways, respectively, as well as epithelial cell sig-
naling in Helicobacter pylori infection, sphingolipid signal-
ing pathway, PI3K-Akt signaling pathway, and natural
killer cell-mediated cytotoxicity. Our results showed that
16 lncRNAs interacted with 8 mRNAs in the p53 signaling
pathway (Figure 5(a)), 22 lncRNAs interacted with 11
mRNAs in the ErbB signaling pathway (Figure 5(b)), 19
lncRNAs interacted with 6 mRNAs in epithelial cell signal-
ing in Helicobacter pylori infection (Figure 5(c)), 19
lncRNAs interacted with 5 mRNAs in the sphingolipid signal-
ing pathway (Figure 5(d)), 21 lncRNAs interacted with 12
mRNAs in the PI3K-Akt signaling pathway (Figure 5(e)),
and 22 lncRNAs interacted with 9 mRNAs in natural killer
cell-mediated cytotoxicity (Figure 5(f)).

4. Discussion

DNMT1 can regulate the expression of genes in many differ-
ent, complex ways. It mediates DNA methylation, modifica-
tion of histones, and chromosome remodeling. As a result, a
very complex epigenetic regulatory network is formed and
regulates gene coexpression. In normal tissues, CpG islands
in the gene promoter region are generally unmethylated. In
tumor cells, the opposite is often true where CpG islands
are hypermethylated which leads to silencing of their related
genes [32, 33]. During replication, DNMT1 is localized in

(e) (f)

Figure 5: lncRNA-mRNA coexpression network in high-expression DNMT1 cell lines and normal esophageal epithelial cell lines. Round
labels represent mRNA, square labels represent lncRNA, red indicates upregulation, and green indicates downregulation.
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the replication complex and is associated with a methylated
CpG island site in the parental chain which catalyzes the
methylation gene then adds it to the corresponding CpG
island site on the daughter strand. Validating DNMT1 loca-
tion in differentiated cells allows comparison with the
original methylation profile [34]. Studies have shown that
hypermethylated genes are found in breast, colon, and
stomach cancers [35–37]. Generally, DNMT1 expression
increases before DNA methylation, which may cause abnor-
mal DNA methylation.

lncRNAs have been the focus of a number of studies in
recent years and have been found to be associated with the
development of many types of tumors involving epigenetic,
transcriptional, and posttranscriptional regulation during
gene expression. While regulating DNA methylation,
lncRNA mainly affects the expression of related genes by
altering the methylation levels of CpG islands in the gene
promoter region. Therefore, understanding lncRNA differ-
ential expression in the DNMT1 high-expression cell line
and in normal esophageal epithelial cell line may be useful
for understanding its function.

During coexpression analysis of the p53 signaling path-
way, we found that lncRNA TUG1 is associated with the
mRNA CDKN2A. TUG1 is widely expressed in various
tumors and exhibits high expression levels in nervous system
tumors, colorectal cancer, hematological system tumors, and
bladder cancer. However, the expression level of TUG1 var-
ies with different tissue types. It was found that compared
with normal lung tissues/cells and paracancerous tissues,
the expression of TUG1 in non-small-cell lung cancer tissues
or cells was significantly reduced. This suggests that, on the
one hand, 22 TUG1 may play a cancer-promoting role but
and it can also play a role in inhibiting cancer [38]. In the
present study, we found that TUG1 showed low expression
levels in DNMT1 high-expression cells suggesting that
TUG1 may be a tumor suppressor in this system. Khalil
et al. [39] have demonstrated, using coimmunoprecipitation,
that TUG1 recruits and binds to polycomb repressive com-
plex 2 (PRC2) and PRC2 catalyzing the dimethylation of his-
tone H3 at position 27. Trimethylation of lysine occurs at
residue 27 of histone 3, H3 K27 me3 which, in turn, affects
miRNAs, cyclin-dependent kinase inhibitors (e.g., p15, p16,
p21, p27, and p57), and blood vessels which activate expres-
sion of related genes that participate in tumor development.
CDKN2A is a cyclin-dependent kinase inhibitor that is
located on human chromosome 9p21 and encodes two dif-
ferent proteins. One is a cell cycle-dependent kinase inhibi-
tor p16INK4α which is encoded by exons 1α, 2, and 3. The
other is an alternate reading frame (ARF), encoded by exons
1β, 2, and 3 (in mice, called p19ARF), both of which are cellular
regulators through cyclinD-CDK4-pRb-E2F and MDM2,
respectively.

The p53 pathway is involved in cell cycle regulation [40].
Therefore, it may be inferred that TUG1 inhibits CKIs by
recruiting PRC2 leading to excessive cyclinD-CDK4/6
kinase activation which may disrupt the cell cycle and pro-
mote cell proliferation. The loss of p16INK4α leads to exces-
sive activation of CDK4/6 kinase; however, modulation of
the p16INK4α/pRB pathway will not inhibit the cancer. Much

of this discussion, however, is speculative at this point and
will require further verification both in vivo and in vitro.

lncRNA PVT1 was found to be related to CDKN2A
mRNA in the ErbB signaling pathway. Further analysis of
the function of lncRNA was provided by GO analysis. In
addition, 19 lncRNAs interacted with 6 mRNAs in epithelial
cell Helicobacter pylori infection signaling, 19 lncRNAs
interacted with 5 mRNAs in the sphingolipid signaling path-
way, 21 lncRNAs interacted with 12 mRNAs in the PI3K-
Akt signaling pathway, and 22 lncRNAs interacted with 9
mRNAs in natural killer cell-mediated cytotoxicity. There-
fore, our results suggest a key pathogenic role for lncRNAs.

Though this study had some limitations, valuable results
were obtained from the bioinformatic and microarray anal-
yses. However, further mechanistic studies will be needed
to confirm the role of these differentially expressed genes
and pathways. Nevertheless, this database serves as a valu-
able catalyst for further study.
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