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Isentropic compressibility is one of the significant properties of biofuel. On the other hand, the complexity related to the
experimental procedure makes the detection process of this parameter time-consuming and hard. Thus, we propose a new
Machine Learning (ML) method based on Extreme Learning Machine (ELM) to model this important value. A real database
containing 483 actual datasets is compared with the outputs predicted by the ELM model. The results of this comparison show
that this ML method, with a mean relative error of 0.19 and R2 values of 1, has a great performance in calculations related to the
biodiesel field. In addition, sensitivity analysis exhibits that the most efficient parameter of input variables is the normal melting
point to determine isentropic compressibility.

1. Introduction

The suitability of oils and fats is often determined by their
physicochemical properties. The fact that the terms “oil”
and “fat” are used interchangeably in many languages
indicates that the liquid or solid state of products at room
temperature is considered crucial in distinguishing these
two classes of goods [1]. From a technical point of view, to
design rational lipidic materials, a thorough understanding
of the rheological behavior, molecular structure, crystalliza-
tion, and melting characteristics of oils and fats is needed

[2]. It is well understood that the properties of oils and fats
are principally determined by their triacylglycerol (TAG)
structure, which includes the degree of unsaturation and
the carbon chain length of the fatty acid molecules in the
TAG component [3–5].

Besides their importance in food processing, animal fats
and vegetable oils have been viewed as important sustainable
resources for biodiesel production due to the impending
depletion of fossil fuels [6–8]. The wide range of source oil
FA profile is linked to many important biodiesel parameters
including density, pour point, cloud point, cold filter plug-
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ging point, and viscosity. As a result, animal or plant/seed
sources utilized in biofuel production play an important role
in biodiesel quality [9–11].

The laboratory assessment of physicochemical character-
istics of oils and fats, like viscosity, density, composition,
crystallization, and melting, necessitates the use of a variety
of analytical tools, including differential scanning calorime-
ter, nuclear magnetic resonance, high-performance gas or
liquid chromatography, and spectrometer analyzers [12–
14]. Nevertheless, given the variety of feedstock, FA profiles,
and lipids, this huge need for analytical instruments can
make the physical characterization of these items an expen-
sive and delaying process [15–17]. Since it is not possible
to collect data on properties under all possible conditions,
accurate methods for predicting them can be very useful
for the design of products and processes [18]. In predictive
modeling, the physicochemical phenomena-based models
can be more complete and less constrained compared to
simple polynomial or linear-fitted equations [19–22].

In general, the construction of models with a physics base
begins with an understanding of the mathematics of the phe-
nomena under investigation and then continues with doing
simplifications to obtain a realistic model that presents a rea-
sonable explanation for the phenomenon [23]. This analyti-
cal technique of modeling has commonly been applied in
many fields, as shown by many literature references [24–
26]. Although modeling approaches have primarily been
utilized to explain thermodynamic features of fat and oil
melting and crystallization, they have also been used in the
production processes of biodiesel, process optimizations,
and quantitative determination of biodiesel properties and
compare them with thermodynamic characteristics [27, 28].

Given the above, a piece of detailed knowledge about the
constraints and potentials of estimating modeling used in the
measurement of physicochemical properties of biodiesel
fuels is needed to fully exploit the opportunities presented
by this method for the production of novel fat-based
products and the processes of biodiesel production. In this
paper, for the first time, the ELM algorithm is used to model
and predict isentropic compressibility, one of the important
properties of biodiesel. In this research work, after stating
how to collect and use experimental data, the modeling
method of this theorem is stated and in Results and
Discussion, various analyses are used to evaluate the accuracy
of this method.

2. Actual Data Collection

The database, including 483 data, related to this study was
gathered from the literature [29]. In the following, we
develop thorough the precise methods to estimate the
isentropic compressibility. Also, variables were selected on
the basis of existing data (including pressure, temperature,
molecular weight, and melting point) due to having a
predictive tool to estimate output values. It is noted that this
database is divided into 120 testing data and 363 training
data by chance. Then, after implementation of data, they
are normalized as follows:

XN = 2
x − xmin

xmax − xmin
− 1: ð1Þ

3. Extreme Learning Machine (ELM)

ELM is invented by Huang et al. that has a structure like a
single-layer feed-forward Neural Network (NN). But they
differ from each other because of lacking bias of the output
neuron (ON) [30, 31]. In an ELM algorithm, every input
layer neuron is linked to all of the neurons in the hidden layer
(HL). So, all of the neurons in the HL can have values related
to their own bias, and the activation function of the output
layer has a linear form, while the activation function of the
HL is in the form of a piecewise continuous function [32].
Unlike other algorithms such as the back-propagation algo-
rithm or conjugate gradient descent, ELM uses another way
to find bias and weight [33]. In this way, ELM uses an algo-
rithm to determine weights and biases of input layer neurons
and those of HL neurons, randomly. So, it is assumed that an
ELM algorithm has “i” input neurons and “k” training cases
with “j” HL neurons where the HL activation can be defined
as follows:

Hjk = g 〠 wjixik
� �

+ Bj

� �
, ð2Þ

in which Hjk is the activation matrix of jth HL neuron for the
kth training case, g is the nonlinear activation function, Bj is
the bias of jth HL neuron, xik is the ith input neuron for kth
training neuron, and wji is the weight between ith input
neuron and jth HL neuron.

The i × j-dimension H matrix shows all HL neurons
activated for all training cases [34].

By fitting least-squares on targets in training, we can
compute the weight values between the HL neurons and
ON. This implementation is linear and performed by
Eqs. (3)–(5) as follows [35, 36]:

Hk×jβj×1 = Tk×1, ð3Þ

β = β1 ⋯ βj

� �
j×1
, ð4Þ

T = T1 ⋯ Tkð Þk×1, ð5Þ
where T and β are the target vector of training cases and
the weight vector of hidden neurons and ON. Rather than
these equations, we can multiply the Moore-Penrose
pseudoinverse matrix, H ′, by T . This computation seems
like the least-squares multilinear regression is implement-
ing [37].

β =H ′T , ð6Þ

in which, H ′ is the inverse matrix, known as Moore-
Penrose pseudoinverse of H. So, after doing these calcula-
tions, the network training is completed [38, 39].

In total, this training process has only two essential steps:
(1) determination of random biases and weights for hidden
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neurons to find the HL output and (2) estimation of output
weights using Moore-Penrose pseudoinverse of H. As men-
tioned before, the training process of the ELM algorithm is
implemented by the determination of H ′ for the HL. This
process is much faster than other training methods such as
Levenberg-Marquardt. This method does not utilize the
approach of nonlinear optimization, and it is only dependent
on a closed-form solution [40, 41].

4. Results and Discussion

In the following, some formulations are used to estimate var-
ious types of statistical indices for the ELM algorithm.

Mean squared error MSEð Þ = 1
N
〠
N

i=1
xactualI − xpredictedI

� �2
, ð7Þ

Mean relative error MREð Þ = 100
N

〠
N

i=1

Xactual
I − Xpredicted

I

Xactual
I

 !
,

ð8Þ

R − squared R2� �
= 1 −

∑N
i=1 xactualI − xpredictedI

� �2
∑N

i=1 xactualI − xactualI

� �2 ,

ð9Þ

Standard deviations STDð Þ = 1
N − 1

〠
N

i=1
error − errorð Þ

 !0:5

,

ð10Þ

Rootmean square error RMSEð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
xactualI − xpredictedI

� �2� �vuut :

ð11Þ
Table 1 shows the various statistical analyses for the eval-

uation of the ELM model in predicting actual output values.
As can be seen from this table, this model shows a high ability
to predict output values. By comparing the coefficient of
determination values obtained from this model with similar
work done by Abooali et al. [29], the better performance of
the proposed model can be concluded. They used SGB and
GP models to predict isentropic compressibility values, and
their models were able to estimate this parameter with coef-
ficients of determinations 0.99993 and 0.99608, respectively.

Table 1: Various statistical analyses according to ELM algorithm.

Model Dataset R2 MRE (%) MSE RMSE STD

Isentropic compressibility (1/Gpa)

Train 1.000 0.18 0.0000020 0.0014306 0.0010710

Test 1.000 0.21 0.0000032 0.0017773 0.0013781

Total 1.000 0.19 0.0000023 0.0015249 0.0011567
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Figure 1: Simultaneous and visual comparison of real and corresponding modeled data in test and training phases.
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The comparison between modeled outputs and actual
data is performed visually in Figure 1 that creates a helpful
viewpoint about the precision of the ELM algorithm to make
a prediction from the isentropic compressibility. Also,
Figure 2 shows the cross plot of the regression of actual and
modeled values of target data using the ELM algorithm. This
prediction has an excellent agreement with real data for the
model. As can be seen in this figure, the coefficients of deter-
mination related to the training and testing phases are 0.9999
and 0.9998, respectively.

According to actual data, the assessment is done by the
relative deviations of generated outcomes of the ELM
algorithm that is shown in Figure 3. So, it is concluded that
relative errors of this algorithm, resulted in the prediction
of target values, are close to zero. Also, all of the relative error
values of the ELM algorithm are less than 1.5%, which
verifies its power.

It is noted that the database utilized for the preparation of
the proposed model can affect the accuracy and reliability of
this model [42]. One of the important steps to propose

Train: y = 1x – 3E-07, R² = 0.9999
Test: y = 1.0057x – 0.0028, R² = 0.9998
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Figure 2: Cross plot analysis on the model to determine its accuracy in predicting actual values.
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Figure 3: Relative deviation analysis on the model to determine its accuracy.
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models with great accuracy is finding and removing sus-
pected data. These data are the points that behave differently
from others. So, to detect these kinds of data, Leverage anal-
ysis is employed. Also, to define the standardized residuals
versus hat values, William’s plot is used to recognize the out-
lying points. To determine the hat value on the basis of diag-
onal elements, the hat matrix is given as follows [43]:

H = A ATA
� �−1

AT , ð12Þ

where A is a a × b-dimension matrix which a and b are the
number of the model parameter as well as training points,
respectively. The squared limited area, known as reliable
area, is enclosed by cut-off and warning leverage values of
vertical and horizontal axes, respectively. The warning lever-
age values are calculated as follows:

H∗ =
3 b + 1ð Þ

a
: ð13Þ
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Figure 4: Leverage analysis to identify suspicious data.
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Also, the cut-off value can be +3 and -3. The outlier
detection of the ELM has been shown in Figure 4. As you
see, the main number of the target data is placed within the
nonsuspected/reliable area.

Then, sensitivity analysis is used to evaluate the
dependence of the output values upon input parameters by
a relevancy factor (r) in the range of +1 to -1 [44, 45]:

r =
∑n

i=1 xK ,i − �xkð Þ Yi − �Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 xK ,i − �xkð Þ2∑n
i=1 Yi − �Y
� �2q , ð14Þ

where Xk:i and Yi are the input and output, as well as Xk and
�Y are mean values of input and outputs. Here, the higher
absolute value of r shows the higher impact of arguing vari-
able on the isentropic compressibility. Furthermore, negative
and positive r values are related to this variable. The effects of
the temperature, pressure, molecular weight, and melting
point on the isentropic compressibility have been shown in
Figure 5. It is notably shown that the temperature and
melting point, with r values of 32.84% and 37.04%, are the
most efficient parameters for the isentropic compressibility
determination. Also, the pressure and molecular weight, with
r values of -81.13% and -24%, are the least efficient variables
for the isentropic compressibility, and these variables have a
reverse relationship with the output value due to having
negative r values.

5. Conclusion

In this study, we attempted at closing our aim by predicting
the isentropic compressibility with the help of various affect-
ing parameters based on a precise and new technique of the
ELM. Thus, a comprehensive database is used for training
and testing this algorithm. Afterward, the mathematical and
graphical modeling was done, and it is shown that this
algorithm can predict the isentropic compressibility with
high accuracy of R2 = 1:000, RMSE = 0:0015249, STD =
0:0011567, MRE = 0:19, and MSE = 0:0000023. It is shown
that this model has a great ability to learn the behavior of
the isentropic compressibility. In addition, it shows a great
performance of the testing phase for unknown data points.
Also, graphical comparisons demonstrated that the predicted
data cover the real data with high accuracy for this algorithm.
Last but not least, a comprehensive sensitivity analysis can be
used to identify the effects of input variables on the determi-
nation of the isentropic compressibility. Temperature and
melting point are considered as the most efficient parameters
for finding the output values. These findings show that this
study can help engineers to simulate and track this parameter
in biodiesel. Previous implemented studies need too many
parameters which may not be accessible, but our model
requires the least number of parameters and predicts the
output more precisely.

Data Availability

The data used to support the findings of this study are pro-
vided within the paper.
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