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Background. Cellular miRNAs are expressed in tissue fluids with sufficient amounts and were identified as potential molecular targets
for studying the physiological mechanisms and correlations with many human diseases particularly diabetes. However, molecular-
based changes among older adults with diabetes mellitus (DM) are rarely fully elucidated. Aim. This study is aimed at identifying
circulating miRNAs, which hold the potential to serve as biomarkers for the immune-inflammatory changes in older T2D patients
with moderate and poor glycemic control status. In addition, the association of both myokines and osteopontin (OPN) levels with
circulating miRNAs was identified. Methods. A total of 80 subjects aged 20–80 years were invited during the period of October
2017–May 2018 to participate in this descriptive cross-sectional study. All subjects were diagnosed with T2D for more than 5
years. Subjects were grouped based on glycemic control (HbA1c values) into two groups: moderate glycemic control (>7-8%
HbA1c, no = 30) and poor glycemic control (>8% HbA1c, no = 50), respectively. Diabetic control parameters, fasting blood sugar
(FS), HbA1c, fasting insulin (IF), insulin resistance (IR), HOMA-IR, inflammatory cytokines (IL-6, IL-8, IL-18, IL-23, TNF-α, and
CRP), osteopontin, and myokines (adropin and irisin) were estimated by colorimetric and immune ELISA assays, respectively. In
addition, real-time RT-PCR analysis was performed to evaluate the expression of circulating miRNAs, miR-146a and miR-144, in
the serum of all diabetic subjects. Results. In this study, T2D patients with poor glycemic control showed a significant increase in
the serum levels of IL-6, IL-8, IL-18, IL-23, TNF-α, CRP, and OPN and a reduction in the levels of myokines, adropin and irisin,
compared to patients with moderate glycemic control. The results obtained are significantly correlated with the severity of diabetes
measured by HbA1c, FS, IF, and HOMA-IR. In addition, baseline expression of miR-146a is significantly reduced and miR-144 is
significantly increased in T2D patients with poor glycemic control compared to those with moderate glycemic control. In all
diabetic groups, the expression of miR-146a and miR-144 is significantly correlated with diabetic controls, inflammatory cytokines,
myokines, and serum levels of OPN. Respective of gender, women with T2D showed more significant change in the expressed
miRNAs, inflammatory cytokines, OPN, and serum myokine markers compared to men. ROC analysis identified AUC cutoff
values of miR-146a, miR-144, adropin, irisin, and OPN expression levels with considerable specificity and sensitivity which
recommends the potential use of adropin, irisin, and OPN as diagnostic biomarkers for diabetes with varying glycemic control
status. Conclusion. In this study, molecular expression of certain microRNA species, such as miR-146a and miR-144, was identified
and significantly associated with parameters of disease severity, HbA1c, inflammatory cytokines, myokines, and serum osteopontin
in T2D patients with moderate and poor glycemic control. The AUC cutoff values of circulating miRNAs, miR-146a and miR-144;
myokines, adropin and irisin; and serum OPN were significantly identified by ROC analysis which additionally recommends the
potential use of these biomarkers, miR-146a, miR-144, adropin, irisin, and OPN, as diagnostic biomarkers with considerable
specificity and sensitivity for diabetes in patients with varying glycemic control status.
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1. Introduction

Diabetes mellitus is the most drastic disease that prevailed
among older adults [1]. More than 151 million people
worldwide are suffering from diabetes and its complications.
The incidence rates of diabetes are expected to rise to 366
million by 2030 [1, 2]. Worldwide statistical analysis showed
that diabetes significantly increased among adults by 6.4% to
7.7% [3, 4], whereas poor long-term glycemic control in
patients with DM can lead to a wide range of microvascular
and macrovascular complications such as renal, retinal, and
primarily cardiovascular complications [4].

Type 2 diabetes mellitus (T2DM) is a progressive disease
significantly associated with clinically impaired glucose reg-
ulation [5]. The progression and the development of hyper-
glycemia are associated with many physiological as well as
cellular alterations in insulin, glucagon, and somatostatin
production. In addition, the endocrine pancreas secretions
and insulin action in skeletal muscle, adipose tissues, and
other organs are the known hallmarks of T2DM [6–10].

Physiological changes in the cellular proinflammatory
cytokines were reported in patients with diabetes which sig-
nificantly play a critical role in the pathogenesis of diabetic
complications via multiple biochemical and cellular path-
ways [11–13].

The development of diabetes and glucose disorders has
epidemiologically predicted the change in inflammatory
markers [14, 15], whereas a significant increase in the
humoral inflammatory markers was reported in patients
with type 2 diabetes [14–17]. Moreover, elevated levels of
C-reactive protein (CRP), tumor necrosis factor-α (TNF-
α), IL-6, IL-18, and IL-1β were reported among patients
with type 2 diabetes mellitus displaying features of the insu-
lin resistance syndrome [18–23].

Also, other cytokines such as osteopontin (OPN), a mul-
tifunctional protein secreted from several different cell types
including bone cells and adipocytes, showed to be involved
in the regulation of human glucose metabolism. Any alter-
ations of these cytokines might be convoluted in the patho-
genesis of T2DM. In patients with T2DM, OPN has been
shown to be increased probably involved in subclinical
inflammation [9] and insulin resistance [24].

Higher serum levels of OPN are significantly correlated
with diabetic complications such as severe diabetic albumin-
uria and glomerulosclerosis various models of diabetic
nephropathy [13, 25–27], whereas OPN was identified as a
mediator involved in most chronic inflammatory and auto-
immune diseases [25, 28] and subsequently demonstrated
to play an important role in the diabetic-related conse-
quences such as cardiovascular diseases [25, 29].

The correlation of cellular myokine secretion and the
severity of diabetes were identified in subjects with DM type
2 [30, 31]. Previously, it was reported that both irisin and
adropin expression is significantly reduced in patients with
DM type 2. Moreover, a positive correlation between gly-
cated hemoglobin (HbA1c) and both irisin and adropin
was observed [30, 31]. In addition, the serum levels of irisin
and adropin in patients with DM type 2 were identified to be
connected to the change in metabolic factors [32, 33], such

as insulin resistance index [34] and endothelium dysfunc-
tion [35–37].

Recent molecular-based studies recommended cellular
miRNAs as potential targets for studying the physiological
mechanisms and correlations with many human diseases
[38–42]. Circulating miRNAs are short noncoded RNAs
with effective posttranscriptional regulatory properties
which are expressed and easily present in all biological fluids
particularly, urine, saliva, serum, and plasma [38–42]. Thus,
it could be used as prognostic markers for many human dis-
eases with different pathophysiologies [43]. Recently, miR-
NAs were featured efficiently in association with insulin
production, residual β-cell function, and disease complica-
tions of diabetes [44–46]. The data previously reported the
potential epigenetic control of miRNAs along with other
molecular targets, DNA methylation patterns, and histone
modifications in the regulation of diabetes [47–49].

Although circulating miRNA levels were assessed
recently in younger patients with T1D and correlated posi-
tively with the variations in cytokine levels as measures of
immune-mediated signaling pathways proceed in the patho-
genesis of diabetes [50–52], little is known about the poten-
tial role of miRNAs and its association with myokines and
osteopontin (OPN) levels in older patients with type 2 diabe-
tes. We postulated in this study that the expression of circu-
lating miRNAs could reflect the immune-inflammatory
effect in older patients with DM type 2. Thus, the aim of this
study was to identify circulating miRNAs, which hold the
potential to serve as biomarkers for the immune-
inflammatory changes in older T2D diabetic patients with
moderate and poor glycemic control status. In addition,
the association of both myokines and osteopontin (OPN)
levels with circulating miRNAs was identified.

2. Materials and Methods

2.1. Subjects. A total of 80 subjects aged 20–80 years were
invited during the period of October 2017–May 2018 to par-
ticipate in this descriptive cross-sectional study. Based on
the American Diabetes Association criteria [53], the subjects
were diagnosed with T2D for more than 5 years. Subjects
with HbA1c values more than 6.5% represented noncon-
trolled diabetes (type 2 diabetic patients). Thus, subjects
were grouped based on glycemic control (HbA1c values)
into two groups: moderate glycemic control (>7-8% HbA1c,
no = 30) and poor glycemic control (>8% HbA1c, no = 50),
respectively. Subjects with obesity (BMI ≥ 25), type 1 diabe-
tes, and anemia; smokers; and subjects with heart diseases
and chronic diabetic complications such as nephropathy,
neuropathy, retinopathy, chronic liver disease, and hypothy-
roidism and who use drugs (diuretics, oral contraceptives)
were excluded from this study. All participants were sub-
jected to standard anthropometric measurements to esti-
mate BMI, WHR, and WC according to the World Health
Organization [54]. The study protocol was reviewed accord-
ing to the ethical guidelines of the 1975 Declaration of Hel-
sinki and approved by the ethical committee of RRC, King
Saud University, Kingdom of Saudi Arabia, under file num-
ber ID: RRC-2017-086, and signed informed consent forms
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were received from all subjects prior to data collection. Blood
was collected from all subjects, and serum samples were
obtained following centrifugation for 1min. at 1400 rpm, were
given a coded study identification number, and were shipped
frozen at 20°C until reused for analysis. Demographic and
clinical data of the participants are in Table 1.

2.2. Assessment of Glucose Control. A colorimetric assay was
performed to estimate blood glucose for each participant
using the QuantiChrom Glucose bioassay kit (DIGL-100,
BioAssay Systems, Hayward, CA, USA). In addition, HbA1c
and insulin serum levels were estimated using a commercial
kit (Bio-Rad, Richmond, CA, USA) for HbA1c and immune
assay ELISA kit (human insulin ELISA kit, KAQ1251, Invi-
trogen Corporation, Camarillo, CA, USA) for insulin,
respectively. Insulin resistance in the fasting state was deter-
mined from the data of fasting insulin (IF) and fasting glu-
cose (GF) using a validated homeostasis model assessment
(HOMA-IR) as previously reported [55–57].

2.3. Assessment of Serum Osteopontin (OPN). A quantitative
immunosorbent assay (ELISA) technique was performed to
estimate the concentrations of OPN in the serum of each sub-
ject by using a human osteoprotegerin (OPG) ELISA kit (Ray-
Bio® (OPG) ELISA Kit, catalogue #: ELH-OPG, Norcross,
Georgia 30092). The procedures proceed according to the pre-
scribed manufacturer’s instructions, and the concentration of
OPN was measured at 450nm immediately by a complete
set of ELISA reader model SLT Spectra 216687.

2.4. Assessment of Serum Cytokines. An enzyme-linked
immunosorbent assay was performed to estimate the levels
of IL-6, IL-8, IL-18, IL-23, TNF-α, and CRP by using a
Quantikine Human Immunoassay ELISA kit (R&D System,
Minneapolis, USA). The procedures were run according to
an accurate ELISA manufacturer’s protocol. A standard
curve was used to determine cytokine levels, and the concen-
tration of each cytokine was expressed as pg/mL.

2.5. Assessment of Serum Myokines. Serum adropin and iri-
sin levels were estimated by immune assay technique as pre-

viously reported [58] by using commercially available kits
(human adropin ELISA kit, catalogue no. CK-e90267, Hang-
zhou Eastbiopharm Co., Blue Ocean International Times
Mansion, China, for adropin and human irisin ELISA kit,
catalogue no. CK-E90905, Hangzhou Eastbiopharm Co.,
Blue Ocean International Times Mansion, China, for irisin),
respectively [58]. The sensitivity limits of the assays are
2.49 ng/L for adropin and 0.023μg/mL for irisin with inter-
assay coefficients of variance < 10% and <12%, respectively.
In addition, the detection range of adropin was 5-1000 ng/
L and for irisin was 0.05-15μg/mL [58].

2.6. Real-Time RT-PCR Analysis of Circulating miRNAs and
Apoptotic Genes

2.6.1. Extraction of RNA and Synthesis of cDNA. For each
participant, the miRNeasy isolation kit (Qiagen, Hilden,
Germany) was used to extract total RNA from serum sam-
ples. A reverse transcription polymerase chain reaction
(RT-PCR) was applied to analyze total RNA in all serum
samples. Then, a complementary DNA (cDNA) was gen-
erated using reverse transcription miScriptII RT kits (Qia-
gen), and the levels of miRNAs were evaluated by optical
density [4, 5].

2.6.2. Real-Time RT-PCR Analysis. The primers of circulat-
ing miRNAs, miR-146a and miR-144 (Applied Biosystems,
Foster City, CA, U.S.A.), were used to screen the expression
of miRNAs in the plasma of all participants by using quan-
titative real-time RT-PCR [38]. The average copy number
of the resultant PCR components was normalized according
to the GAPDH gene which was used as an internal house-
keeping gene [59]. In the PCR process, templates of
respective cDNA were subjected to four thermal phases:
primary denaturation phase (I) (at 94°C for 2 minutes),
denaturation phase (II) (at 94°C for 30 seconds), annealing
phase (III) (at 59°C for 30 seconds), and amplification
phase (IV) (at 72°C for 30 seconds). The PCR phases (II
to IV) proceed for 45 cycles, and all reactions were mea-
sured in a triplicated manner [59].

Table 1: The demographics, clinical, and metabolic characteristics of the participants.

Variables
Type 2 diabetes (no = 80)

Moderate glycemic control (>7-8% HbA1c, no = 30) Poor glycemic control (>8% HbA1c, no = 50)
Genders (male/female) 18/12 29/21

Age (years) 54:6 ± 2:9 53:9 ± 2:6
BMI (kg/m2) 22:8 ± 2:3 22:6 ± 2:8
Fat-free mass (kg) 64:4 ± 2:4 72:4 ± 2:9
Fat mass (kg) 29:3 ± 2:3 35:1 ± 2:6
Fasting plasma glucose (mmol L-1) 10:8 ± 0:86 16:7 ± 0:98b

HbA1c (%) 7:82 ± 0:5 9:65 ± 0:9c

FINS (mUI/mL) 9:8 ± 2:5 14:3 ± 3:7c

HOMA-IR 3:1 ± 2:7 7:4 ± 3:5b

Diabetes duration (years) 6:5 ± 1:6 6:4 ± 1:7
Values are expressed as mean ± SD; significance at ap < 0:05, bp < 0:01, and cp < 0:001. Abbreviations: BMI: body mass index; HOMA: homeostatic model
assessment; IR: insulin resistance; FINS: fasting serum insulin; HbA1c: glycated hemoglobin A1c.
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2.6.3. Statistical Analysis. Power calculations of the selected
sample size of 80 subjects showed to give an estimated power
of 95% and a significance level of 0.05 with an expected fre-
quency of 11.6%.

An SPSS statistical program (SPSS, IBM Statistics V.17)
was used to analyze all data produced in this study. The data
of continuous variables are expressed as the mean ± SD. A
nonparametric test (Mann-Whitney-Wilcoxon test) and
the χ2 test were used to analyze the frequency of the differ-
ences between the studied groups, respectively.

Two independent sample t-tests were used for compari-
son between the studied variables such as diabetes (depen-
dent variable) and expression levels of miRNAs, cytokines,
myokines, and serum osteopontin (independent variables).
In addition, multiple stepwise regressions and Pearson’s cor-
relation analysis were used to estimate the associations
between diabetes and the studied independent variables in
patients with type 2 diabetes. The correlation coefficient
was translated into descriptors like “weak,” “moderate,” or
“strong” relationship. It is mostly agreed that a coefficient
of <0.1 indicates a negligible and >0.9 a very strong relation-
ship, whereas values inbetween are differential [60, 61]. The
strength of correlation in our study ranged as moderate cor-
relation (0.40–0.69) and strong correlation (0.70–0.89). The
susceptibility and sensitivity of myokines, osteopontin, and
expressed miRNAs for diagnosis of diabetes at baseline
expression were determined using the area under the
receiver operating characteristic (ROC) curve as previously
reported [39]. All tests were two-tailed; because of multiple
assessments, results were only considered statistically signif-
icant at a value of p < 0:05.

3. Results

In this study, the analysis was performed on a total of 80
serum specimens (58.75% male vs. 41.25 female). Based on
HbA1c controls, the subjects were grouped into two groups:
moderate glycemic controlled (>7-8% HbA1c, no = 30) and
poor glycemic controlled (>8% HbA1c, no = 50) type 2 dia-
betes (T2D) subjects, respectively (Table 1). The results
showed no significant difference in the adiposity measures:
fat-free mass, fat mass, and BMI in diabetic patients com-
pared with healthy controls. In addition, it was found that
the mean levels of diabetic parameters, FBG, HbA1c, FINS,
and HOMA-IR, are significantly elevated in poor glycemic
controlled T2D patients compared to moderate glycemic
controlled T2D patients (Table 1).

In this study, in order to explore the potential role of the
parameters of glucose control in cellular inflammation, the
levels of proinflammatory cytokines and myokines were esti-
mated and compared based on diabetes status (Table 2). In
individuals with poor glycemic controlled T2D, significantly
high levels of IL-6, IL-8, IL-18, IL-1β, and TNF-α were eval-
uated compared to moderate glycemic controlled T2D
patients (p = <0:01). In addition, serum CRP levels signifi-
cantly increased (p = <0:001) in poorly controlled T2D com-
pared to moderately controlled T2D patients (HbA1c > 7
-8%) (Table 2). Additionally, when proinflammatory cyto-
kines were compared by levels of HbA1c, we observed that

IL-6, IL-8, IL-18, IL-1β, TNF-α, and serum CRP levels were
significantly elevated in poorly controlled T2D with higher
HbA1c values compared to moderately controlled T2D
patients (Table 2). According to gender difference, a change
in cytokines was reported also as shown in Figure 1. Females
of the moderately controlled T2D patient (Figure 1(a)) and
poorly controlled T2D (Figure 1(b)) groups showed a signif-
icant increase (p = 0:001) in all studied cytokines compared
to males of the same group.

Interestingly, participants with poorly controlled T2D
tended to have lower levels of irisin and adropin compared
to moderately controlled T2D patients. Both serum levels
of adropin and irisin were significantly (p = 0:001) reduced
in patients with poorly controlled T2D compared with mod-
erately controlled T2D patients (Table 2 and Figures 2(a)
and 2(b)). These differences remained significant when com-
pared on the basis of HbA1c levels, suggesting an important
role of these myokines in both moderately and poorly con-
trolled diabetes. The results also showed that female patients
have recorded a higher significant change (p = 0:001) in the
studied myokines, irisin and adropin, respectively, compared
to male subjects of the same group as shown in Figures 2(a)
and 2(b).

In this study, serum OPN was measured in the serum of
both controlled nondiabetic subjects and type 2 diabetic
patients (Figure 2(a)). The serum levels of OPN significantly
increased in poorly controlled T2D compared to moderately
controlled T2D patients (Figure 2(c)). Based on gender dif-
ference, serum OPN was significantly elevated in females
with poorly controlled T2D compared to males of the same
group. In moderately controlled T2D patients, although
females showed higher serum OPN levels than males, the
results are statistically nonsignificant (Figure 2(c)). In addi-
tion, the expressed OPN significantly moderately to strongly
correlated with HbA1c, FINS (mUI/mL), and HOMA-IR
and cytokines IL-6, IL-8, IL-18, IL-1β, TNF-α, and serum
CRP levels, respectively, in patients with poorly controlled
T2D compared to moderately controlled T2D patients
(Table 3).

Serum myokines showed to be associated with BMI,
HbA1c levels, increased levels of cytokines, and serum
OPN levels in patients with moderate and poorly controlled
T2D. The expression of both adropin and irisin is signifi-
cantly correlated positively with HbA1c levels and negatively
with BMI, serum OPN, and cytokines IL-6, IL-8, IL-18, IL-
1β, TNF-α, and serum CRP levels, respectively, as shown
in Table 4. In patients with poorly controlled T2D, the
strength of the correlation of both adropin and irisin ranged
between moderate to strong compared to that moderate cor-
relation present in patients with moderately controlled T2D,
respectively (Table 4).

The potential role of cellular miRNAs in the pathogene-
sis of diabetes and its correlation with cytokines and myo-
kines were evaluated in this study by real-time PCR
analysis. The expression of miR-146a and miR-144 was esti-
mated in the serum of both moderate and poor glycemic
controlled patients as shown in Figure 3. Interestingly, the
level of miR-146a and miR-144 was markedly changed
(p = 0:001) in the serum of poor glycemic controlled patients
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compared to moderate glycemic controlled patients. The
levels of miR-146a significantly decreased, and the levels of
miR-144 significantly increased in poor glycemic controlled
patients compared to moderate glycemic controlled patients
(Figure 3(a)). In addition, a more significant change in the
expression levels of miR-146a (Figure 3(b)) and miR-144
(Figure 3(c)) was reported in women compared to men sub-
jects of the same group.

The expression of miR-146a and miR-144 in the serum
of T2D patients with moderate and poor glycemic control
status significantly was correlated with serum levels of
OPN, cytokines, and myokines as well as HbA1c, FINS
(mUI/mL), and HOMA-IR levels, respectively (Table 5).
Both miR-146a and miR-144 correlated positively with myo-
kines, adropin and irisin, and negatively with HbA1c levels,
OPN, and cytokines IL-6, IL-8, IL-18, IL-1β, TNF-α, and
serum CRP levels, respectively, as shown in Table 5. The
strength of the correlation significantly ranged from moder-
ate to strong (R) in patients with poor glycemic control com-
pared to that present in patients of moderately controlled
HbA1c levels which showed moderate rates of correlation
strengths (Table 5).

In addition, ROC analysis was performed to explore the
potential use of miR-146a, miR-144, OPN, adropin, and iri-
sin expression levels as diagnostic biomarkers for both mod-
erate and poor glycemic controlled patients as shown in
Tables 6 and 7. In T2D patients with moderate glycemic
control, the data showed that the AUC was 0.81 (0.72-
0.98) for miRNA-146a, with a sensitivity of 91.5% and spec-
ificity of 89.4%, and for miRNA-144, AUC was 0.78 (0.69-
086), with a sensitivity of 84.7% and specificity of 86.8% at
best cutoff values as shown in Table 6, which indicates that
the miR-146a and miR-144 levels were strong diagnosis bio-
markers of diabetes with different glycemic controlled status.
Also, the results showed that the AUC cutoff value of adro-
pin was 0.82 (0.73-0.93) with a sensitivity of 79.1% and spec-
ificity of 71.6%; for irisin, AUC was 0.78 (0.65-0.89), with a
sensitivity of 76.2% and specificity of 72.3%; and for OPN,
AUC was 0.91 (0.75-0.95), with a sensitivity of 88.6% and
specificity of 75.1% (Table 6).

Similarly, in T2D patients with poor glycemic control,
ROC analysis showed variable values of the studied bio-
markers and their correlation with the severity of the T2D.

The AUC analysis was 0.91 (0.72-0.98) for miRNA-146a,
with a sensitivity of 94.5% and specificity of 91.4%, and for
miRNA-144, AUC was 0.86 (0.69-0.93), with a sensitivity
of 88.7% and specificity of 87.8% at best cutoff values as
shown in Table 7; these cutoff values significantly indicate
that the miR-146a and miR-144 levels will be a strong diag-
nosis biomarker of diabetes with poor glycemic controlled
status. Also, the results showed that the AUC cutoff value
was 0.87 (0.73-0.93) for adropin with a sensitivity of 82.1%
and specificity of 79.6%; for irisin, AUC was 0.82 (0.65-
0.91), with a sensitivity of 79.4% and specificity of 76.5%;
and for OPN, AUC was 0.96 (0.75-0.98), with a sensitivity
of 89.7% and specificity of 79.3% (Table 7).

The strategy of ROC analysis was used to diagnose dia-
betes in adult patients with moderate and poor glycemic
control status. In T2D patients with moderate glycemic con-
trol status, the current circulating miRNAs, miR-146a and
miR-144; myokines, adropin and irisin; and serum OPN
yielded a range of 76.2-91.5% specificity and 71.6–89.4%
sensitivity. In T2D patients with poor glycemic control, the
studied biomarkers provide a good range of 79.4-94.5%
specificity and 76.5–91.4% sensitivity. These best cutoff
values additionally recommend the potential use of adropin,
irisin, and OPN as diagnostic biomarkers for diabetes with
varying glycemic control status.

4. Discussion

In this study, circulating miRNA levels in serum samples
from adult patients with T2D with moderate and poor glyce-
mic control status are significantly associated with the
parameters of diabetic controls, HbA1c, FINS, and
HOMA-IR, respectively. In the present study, two miRNAs,
miR-146a and miR-144, were identified with expression
levels that were influenced by disease progression and
increased serum levels of inflammatory cytokines, myokines,
and osteopontin (OPN). In recent studies, the role of miR-
NAs was explored and showed to be associated with the
pathogenesis of diabetes mellitus in all ages [45, 51, 62,
63], whereas a profound impairment of glucose metabolism
[64] was reported in association with a dysregulation in the
expression of miRNAs.

Table 2: Comparison of cytokine/myokine profiles in the serum of all subjects based on diabetes status.

Variables
Type 2 diabetes (n = 80)

Moderate glycemic controlled (>7-8% HbA1c, no = 30) Poor glycemic controlled (>8% HbA1c, no = 50)
CRP (mg/L) 8:1 ± 2:3 11:6 ± 1:9c

TNF-α (pg/mL) 4:7 ± 1:8 8:6 ± 2:6b

IL-6 (pg/mL) 5:8 ± 4:1 8:2 ± 3:8b

IL-8 (pg/mL) 19:7 ± 5:2 27:1 ± 6:1b

IL-18 (pg/mL) 16:9 ± 3:6 20:5 ± 4:1b

IL-1β (pg/mL) 18:2 ± 4:5 26:1 ± 6:1b

Adropin (ng/mL) 141:7 ± 6:5 128:4 ± 7:2c

Irisin (ng/mL) 261:7 ± 3:7 196:4 ± 5:8c

Values are expressed as mean ± SD; significance at ap < 0:05,.bp < 0:01, and cp < 0:001. HbA1c: glycated hemoglobin A1c.
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In the same study population, serum levels of inflamma-
tory cytokines, IL-6, IL-8, IL-18, IL-1β, and TNF-α and
serum CRP levels were associated with the progression of
the T2D disease. IL-6, IL-8, IL-18, IL-1β, TNF-α, and CRP

levels were significantly increased in T2D patients with poor
glycemic control (>8% HbA1c) compared to patients with
moderate glycemic control (>7-8% HbA1c). Respective of
gender, the levels of inflammatory cytokines significantly
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Figure 1: Gender differences in fold changes of proinflammatory cytokines (CRP, TNF-α, IL-6, IL-8, IL-18, and IL-1β) in moderate
glycemic controlled T2D (MCT2D; >7-8% HbA1c, no = 30) (a) and poor glycemic controlled T2D (PCT2D; >8% HbA1c, no = 50) (b).
Females of controlled and poor type 2 diabetic groups showed significant increase in all studied cytokines compared to males of the
same group. Significance based on gender difference (male vs. female) at ap < 0:01 and bp < 0:001.
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Figure 2: Changes in osteopontin (OPN) (a) and myokines, irisin (b) and adropin (c), in moderate glycemic controlled T2D (MCT2D; >7-
8% HbA1c, no = 30) and poor glycemic controlled T2D (PCT2D; >8% HbA1c, no = 50). The results showed significant increase (p = 0:001)
in the levels of OPN (a) and decrease (p = 0:001) in the levels of irisin (b) and adropin (c) in poor glycemic controlled T2D patients
compared to moderate glycemic controlled T2D. In addition, female patients showed higher significant change (p = 0:001) in the studied
parameters (OPN, irisin, and adropin), respectively, compared to male subjects of the same group. Significance at ap < 0:01 (male vs.
female); bp < 0:001 (moderately controlled vs. poorly controlled type 2 diabetes).
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increased in females with type 2 diabetes compared to males
of the same group.

Previously, a state of the innate immune system was
represented in type 2 diabetes mellitus which significantly
leads to an increase in the response of cytokine-mediated
acute phase [65]. Thus, more systemic inflammatory circu-
lating markers such as IL-6, TNF-α, and CRP levels signif-
icantly increased and were detrimentally respective to the
risk and the development of type 2 diabetes mellitus. In
addition, these inflammatory circulating markers signifi-
cantly increased in patients with featured insulin resistance
and those who were clinically with overt type 2 diabetes
mellitus [18–22]. Also, inflammatory such as IL-6 and
TNF-α are significantly correlated with HbA1c and dia-
betic nephropathy [20–22].

In patients with hyperglycemic spikes, increased secre-
tion levels of cytokines such as IL-6 and TNF-α might be
associated with increased vascular risk in patients with
T2D [65–68]. In a previous study of meta-analysis, T2DM
risk showed to be strongly linked with elevated serum levels
of inflammatory cytokines such as IL-1b, IL-6, IL-18, CRP,
and TNF-α. Also, chronically elevated levels of inflamma-
tory cytokines such as CRP, TNF-a, IL-6, and IL-1b could
enhance insulin resistance (IR), disrupt insulin sensitivity,
and consequently impair glucose homeostasis resulting in
an increase in the risk of T2DM [69–75].

In our study, compared to control nondiabetic subjects,
increased inflammatory cytokines were predictors of the
onset of T2DM in both men and women, whereas differ-
ences in the diabetes risk between sexes depend mainly on

Table 3: Correlations of osteopontin (OPN) with inflammatory cytokines and clinical parameters of diabetes with different controls.

Studied parameters
OPN (R)

Moderate glycemic controlled (>7-8% HbA1c,
no = 30)

Poor glycemic controlled (>8% HbA1c, no
= 50)

HbA1c (%) 0.58a 0.68b

FINS (mUI/mL) 0.46a 0.72b

HOMA-IR 0.41a 0.46b

CRP (mg/L) 0.62a 0.78b

TNF-α (pg/mL) 0.43a 0.74b

IL-6 (pg/mL) 0.48a 0.59b

IL-8 (pg/mL) 0.68a 0.74b

IL-18 (pg/mL) 0.56a 0.58b

IL-1β (pg/mL) 0.46a 0.49b

Interpretation of the correlation
coefficient (R)

Moderate R Moderate-strong R

Data are presented as Pearson’s (R) coefficients adjusting for variables identified as cofounders in univariate analyses. Moderate correlation coefficient (0.40-
0.69); strong correlation coefficient (0.70-0.89). Significance at p < 0:05. ap < 0:01; bp < 0:001. HbA1c: glycated hemoglobin A1c.

Table 4: Correlations of adropin and irisin with clinical and laboratory parameters of diabetic patients with different controls.

Studied parameters

Myokines (R)
Moderate glycemic controlled
T2D (MCT2D; >7-8% HbA1c,

no = 30)
Poor glycemic controlled T2D (PCT2D; >8%

HbA1c, no = 50)
Adropin Irisin Adropin Irisin

BMI -0.46b -0.54b -0.48b -0.54b

HbA1c (%) 0.41b 0.43b 0.45b 0.43b

FINS (mUI/mL) 0.56b 0.48b 0.66b 0.48b

HOMA-IR 0.48b 0.53b 0.51b 0.53b

OPN -0.45b -0.65b -0.55b -0.65b

CRP (mg/L) -0.44b -0.41b -0.46b -0.41b

TNF-α (pg/mL) -0.67a -0.65b -0.83a -0.85b

IL-6 (pg/mL) -0.46a -0.63b -0.63a -0.63b

IL-8 (pg/mL) -0.63b -0.68b -0.68b -0.78b

IL-18 (pg/mL) -0.42a -0.45b -0.52a -0.45b

IL-1β (pg/mL) -0.61a -0.64a -0.81a -0.64a

Interpretation of the correlation coefficient (R) Moderate R Moderate R Moderate-strong R Moderate-strong R

Data are presented as Pearson’s (R) coefficients adjusting for variables identified as cofounders in univariate analyses. Moderate correlation coefficient (0.40-
0.69); strong correlation coefficient (0.70-0.89). Significance at p < 0:05. ap < 0:01; bp < 0:001. HbA1c: glycated hemoglobin A1c.
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Figure 3: MicroRNAs’ differential expression profile in moderate glycemic controlled T2D (MCT2D; >7-8% HbA1c, no = 30) and poor
glycemic controlled T2D (PCT2D; >8% HbA1c, no = 50) (a). The results showed that the relative expression of miR-146a significantly
decreased (p = 0:001) and miR-144 significantly increased (p = 0:001) in poor glycemic controlled T2D patients compared to moderate
glycemic controlled T2D. In addition, female patients showed more significant change in the expression levels of miR-146a (b) and miR-
144 (c) compared to that of male subjects of the same group. Significance at ap < 0:01 (male vs. female); bp < 0:001 (moderately
controlled vs. poorly controlled type 2 diabetes).
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the change in the expression levels of cytokines [76, 77]. Like
our results, a significant increase in inflammatory cytokines
was also reported in women with T2DM compared to men
of the same disease category [78, 79]. Previous studies based
upon cultured cells and animal models suggested that
expressed inflammatory cytokines like IL-6, TNF-α, IL-1b,
IL-18, and CRP significantly contributed to the pathogenesis
of T2DM through interfering with the insulin signal and

impairing β-cell function [80] and action on peripheral
insulin resistance [81] as well as insulin secretion [82].

Osteopontin (OPN) is a multifunctional protein signifi-
cantly expressed in different biological cell types including
bone cells [83]. It was shown to be associated with several
physiological and pathological conditions such as cancer,
chronic inflammatory disorders, autoimmune diseases [84],
and insulin resistance [85]. Moreover, OPN also had a

Table 5: Correlations of miRNAs, miR-146a and miR-144, with clinical and laboratory parameters of diabetic patients with different
controls.

Studied parameters

miRNA expression
Moderate glycemic controlled
T2D (MCT2D; >7-8% HbA1c,

no = 30)
Poor glycemic controlled T2D (PCT2D; >8%

HbA1c, no = 50)
miR-146a miR-144 miR-146a miR-144

HbA1c (%) -0.41b 0.46b -0.46b 0.52b

FINS (mUI/mL) -0.46b 0.53b -0.42b 0.58b

HOMA-IR -0.58b 0.48b -0.53b 0.51b

OPN -0.57b 0.49b -0.55b 0.79b

CRP (mg/L) -0.46b -0.52b -0.47b -0.54b

TNF-α (pg/mL) -0.54a -0.85b -0.59a -0.87b

IL-6 (pg/mL) -0.58a -0.42b -0.61a -0.48b

IL-8 (pg/mL) -0.42b -0.54b -0.46b -0.56b

IL-18 (pg/mL) -0.68a -0.53b -0.71a -0.58b

IL-1β (pg/mL) -0.50a -0.56a -0.58a -0.61a

Adropin (ng/mL) 0.65a 0.51a 0.78a 0.75a

Irisin (ng/mL) 0.61a 0.52a 0.71a 0.82a

Interpretation of the correlation coefficient (R) Moderate R Moderate R Moderate-strong R Moderate-strong R

Data are presented as Pearson’s (R) coefficients adjusting for variables identified as cofounders in univariate analyses. Moderate correlation coefficient (0.40-
0.69); strong correlation coefficient (0.70-0.89). Significance at p < 0:05. ap < 0:01; bp < 0:001. HbA1c: glycated hemoglobin A1c; OPN: osteopontin; CRP: C-
reactive protein; TNF-α: tumor necrosis factor-α. Interleukins (IL-6, IL-8, IL-18, and IL-1β).

Table 6: Receiver operating characteristic curve analysis of adropin, irisin, osteopontin, miR-146a, and miR-144 for predicting diabetes
complications in moderate glycemic controlled type 2 diabetes (>7-8% HbA1c, no = 30).

Variable AUC SE CI (95%) p value Sensitivity Specificity

miR-146a 0.81 0.47 0.72-0.98 0.001 91.5% 89.4%

miR-144 0.78 0.51 0.69-0.86 0.01 84.7% 86.8%

Adropin 0.82 0.46 0.73-0.93 0.001 79.1% 71.6%

Irisin 0.78 0.43 0.65-0.89 0.01 76.2% 72.3%

Osteopontin 0.91 0.42 0.75-0.95 0.001 88.6% 75.1%

AUC: area under the curve; SE: standard error; CI: confidence interval.

Table 7: Receiver operating characteristic curve analysis of adropin, irisin, osteopontin, miR-146a, and miR-144 for predicting diabetes
complications in poor glycemic controlled type 2 diabetes (>8% HbA1c, no = 50).

Variable AUC SE CI 95%ð Þ p value Sensitivity Specificity

miR-146a 0.91 0.51 0.72-0.98 0.001 94.5% 91.4%

miR-144 0.86 0.53 0.69-0.93 0.001 88.7% 87.8%

Adropin 0.87 0.48 0.73-0.93 0.001 82.1% 79.6%

Irisin 0.82 0.45 0.65-0.91 0.001 79.4% 76.5%

Osteopontin 0.96 0.55 0.75-0.98 0.001 89.7% 79.3%

AUC: area under the curve; SE: standard error; CI: confidence interval.
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biological role in vascular remodeling and calcification pro-
cesses, particularly in diabetic arteries [86, 87], and has
shown to be linked with complications of type 2 diabetes
(T2D) such as retinopathy [88] and nephropathy [89].

Thus, in this study, serumOPN levels weremeasured in the
serum of T2D patients with both moderate and poor glycemic
control status. The results showed that serum levels of OPN
significantly increased in patients with poor glycemic control
compared to that of moderate glycemic control, respectively.
However, serum OPN is highly expressed in the serum of
women with T2D compared to men of the same group. In poor
glycemic control patients, although females showed higher
serum OPN levels than males, the results are statistically non-
significant. In addition, increased OPN serum levels are signif-
icantly correlated with HbA1c, FINS (mUI/mL), and HOMA-
IR and cytokines IL-6, IL-8, IL-18, IL-1β, TNF-α, and serum
CRP levels, respectively, in T2D patients with poor compared
to that of moderate glycemic control status. Previous studies
reported an increase in the serum levels of OPN in diabetic
patients compared to controls, which significantly contributed
and was highly induced by elevated glucose and HbA1c levels
[90]. The increased levels of OPN showed to be associated with
severe diabetic complications such as accelerated atherosclero-
sis among diabetes subjects [87].

Additionally, OPN with other reported inflammatory
cytokines particularly IL-6, IL-8, IL-18, IL-1β, TNF-α, and
serum CRP have been implicated in hypertension associated
with diabetes via mediating the vascular effects of both
angiotensin II (Ang II) and aldosterone, respectively [91].
In many acute and chronic vascular or endothelial
responses, OPN is a pleiotropic cytokine commonly associ-
ated with vascular damage, inflammation, and/or fibrosis
induced in diabetic patients [91–93].

New muscle-secreted cytokines particularly irisin and
adropin referred to as myokines are able to regulate glucose,
lipid levels, insulin sensitivity, and low-grade inflammation
[94–96]. The expressed myokines play a significant role in
regulating metabolism and chronic inflammation via inter-
action with human organs such as muscle, liver, adipose tis-
sue, and brain with various effects [97].

In our diabetic patients, the levels of both adropin and iri-
sin are significantly (p = 0:001) reduced in T2D patients with
poor compared to that of moderate glycemic control status.
Also, a higher significant change (p = 0:001) in irisin and adro-
pin was reported in women compared to men with diabetes.

Irisin and adropin are highly expressed in adipose tissue,
cardiac muscle, and the heart. It showed to improve glucose
homeostasis, insulin sensitivity, and weight loss via thermo-
genic action. It was reported to increase energy expenditure
rates by transforming white adipose tissue to brown adipose
tissue and regulate carbohydrate metabolism [37, 97–100].
In both T2D patients with poor and moderate glycemic con-
trol status, the results also showed that both adropin and iri-
sin are closely correlated with HbA1c, FINS (mUI/mL), and
HOMA-IR and serum cytokines. The expression of both
adropin and irisin is correlated positively with HbA1c levels
and negatively with BMI, serum OPN, and cytokines IL-6,
IL-8, IL-18, IL-1β, TNF-α, and serum CRP levels,
respectively.

In patients with D2M diabetes, irisin showed to play a
significant role in insulin sensitivity and metabolic disorders
[101, 102]. Significantly lower levels of irisin were reported
in association with BMI, HOMA-IR, and fasting insulin
[103, 104]. Moreover, a lower level of adropin is positively
correlated with glycated hemoglobin (HbA1c) in patients
with diabetes [30–32, 105, 106]. In elderly patients, increased
levels of irisin showed to be associated with a reduced risk of
diabetes mellitus type 2 and its subsequent complications
such as hypertension and obesity [107].

An inverse correlation between irisin, adropin, and other
related inflammatory cytokines was reported in our patients
which significantly increased the pathogenicity of type 2 dia-
betes. Several studies reported that improving irisin and
adropin levels significantly enhances glucose homeostasis
and insulin resistance and reduced both inflammatory cyto-
kine production and weight loss [97, 108–110]. The increase
in the levels of irisin and adropin increases energy expendi-
ture rates which reduces aggravated fat accumulation and
obesity and enhances insulin resistance and inflammation
in diabetic patients [108].

Molecular-based studies reported the significant role of
circulating miRNAs as short, noncoding RNA molecular
candidates which are associated with many physiological,
biochemical, and pathological processes in human bodies
[111–113]. Dysregulation of circulating miRNAs showed to
be linked with the pathogenesis of diabetes mellitus [114],
which can lead to profound impairment of glucose metabo-
lism [62, 114]. Recently, miRNA expression profiles in
serum, plasma, and urine as well as various tissues particu-
larly the pancreas, adipose tissue, and liver from patients
with T2DM have been established which gives the accessibil-
ity to discover novel miRNA regulators in diabetes [62, 64,
115, 116]. In addition, in most studies, microRNA showed
to play a potential role in the severity and most diabetic
complications associated with diabetes such as the inflam-
matory processes of atherosclerosis [117–120]. miR-342-
5p, for example, has been reported to be linked with macro-
phage activation during atherosclerosis and cytokine secre-
tion in CAD patients. The levels of miR-342-5p were
estimated to be highly expressed and positively correlated
with inflammatory cytokines [117].

The data previously reported the potential epigenetic
control of miRNAs along with other molecular targets,
DNA methylation patterns, and histone modifications in
the regulation of diabetes [47–49]. Little is known about
the potential role of miRNAs and their association with
myokines and osteopontin (OPN) levels in older patients
with type 2 diabetes.

In this current study, the potential role of circulating
miRNAs, miR-146a and miR-144, was evaluated by using
real-time PCR analysis. Significant changes were reported
in the levels of miR-146a and miR-144 in diabetic patients
with varying glycemic control status. The levels of miR-
146a significantly decreased and the levels of miR-144 signif-
icantly increased in T2D patients with poor glycemic control
status compared to those with moderate glycemic control
status. Respective of gender specificity, women patients
showed a more significant change in the expression levels
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of miR-146a and miR-144 compared to the men subjects of
the same group. In addition, our results for both T2D dia-
betic groups showed that expressed levels of miR-146a and
miR-144 correlated positively with myokines, adropin and
irisin, and negatively with HbA1c levels, OPN, and cytokines
IL-6, IL-8, IL-18, IL-1β, TNF-α, and serum CRP levels,
respectively. Alternation of the expression levels of many
miRNAs was reported in diabetic patients which signifi-
cantly involved in angiogenesis, vascular repair, and endo-
thelial homeostasis [121–123].

The expression of the miRNA-146 family showed in pre-
vious studies [138, 139] to participate with the regulation of
oxidative stress and the production of proinflammatory
cytokines. In addition to that, circulating levels of miR-
146a are reduced in diabetic patients which significantly
downregulates the expression of NADPH oxidase
[124–126] and reduces nuclear factor- (NF-) κB signaling
in endothelial cells exposed to glucose oscillations [127,
128]. Thus, overexpression of one of the miRNA-146 fami-
lies (miRNA-146a or miRNA-146b) significantly prevents
increased oxidative stress and reduces the production of
inflammatory factors in diabetic rodents [124, 125].

Similarly, expression of miR-144 significantly increased
in patients with higher glucose levels which was associated
with apoptosis in human endothelial cells whereas diabetes
induced endothelial dysfunction via the apoptotic cell mech-
anism [129, 130].

Like other miRNAs, our identified miR-146a and miR-
144 are significantly associated with inflammatory cytokines,
OPN, and severity of diabetes through the apoptotic mecha-
nism [125–128]. It was reported previously that the inflam-
matory process by cytokines such as TNF-α and IL-1β is
responsible for recruiting T lymphocytes in response to an
inflammatory process which mediates the apoptotic death
of pancreatic β cells through the activation of T lymphocytes
[131, 132]. The proposed link between expressed miR-146a
and miR-144 and the inflammatory cytokines could suggest
that the possible link between these miRNAs and the patho-
genesis of diabetes proceed via apoptosis [133, 134].

Previous studies confirm the association of miR-146a
and miR-144 in the pathogenesis of many diseases via
inflammatory pathways. It showed to play a negative role
in the regulation of NF-κB activity via targeting the
expression of many cytokines such as TNF receptor-
associated factor IL-6 and IL-1 receptor-associated kinase
and regulating many genes such as FAF1, IRAK2, FADD,
IRF-5, Stat1, and PTC-1 that are key components of cyto-
kine signaling pathways and inflammation in many dis-
eases [51, 135, 136].

In previous studies, baseline levels of several miRNAs
which are significantly correlated with HOMA-IR, β-cell
function (HOMA-B) values, adiposity, inflammation, cyto-
kines, and insulin resistance could be used as parameters
to classify normoglycemic individuals who developed T2D
over 10 years [123, 137–142]. Thus, the assessment of
miRNA signatures along with other parameters such as
myokines and serum osteopontin can help in not only accu-
rately classifying DM but also distinguishing DM from other
diseases.

In this study, ROC analysis additionally was performed
to explore the potential use of miR-146a, miR-144, adropin,
irisin, and OPN expression levels as diagnostic biomarkers
for both moderate and poor glycemic controlled patients.
The AUC values, 0.81, 0.78, 0.82, 0.78, and 0.91, respectively,
with a range of specificity (76.2-91.5%) and sensitivity (71.6–
89.4%) were identified. In addition, AUC values of the same
biomarkers, 0.91, 0.86, 0.87, 0.82, and 0.96, respectively, with
a range of specificity (79.4-94.5%) and sensitivity (76.5–
91.4%) were identified in T2D patients with poor glycemic
control. These best cutoff values additionally recommend
the potential use of adropin, irisin, and OPN as diagnostic
biomarkers for diabetes with varying glycemic control status.

5. Conclusion

In this study, molecular expression of certain microRNA
species, such as miR-146a and miR-144, was identified and
significantly associated with the parameters of disease sever-
ity, HbA1c, inflammatory cytokines, myokines, and serum
osteopontin in T2D patients with moderate and poor glyce-
mic control. The AUC cutoff values of circulating miRNAs,
miR-146a and miR-144; myokines, adropin and irisin; and
serum OPN were significantly identified by ROC analysis
which additionally recommends the potential use of these
biomarkers: miR-146a, miR-144, adropin, irisin, and OPN
as diagnostic biomarkers with considerable specificity and
sensitivity for diabetes in patients with varying glycemic
control status.
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