
Research Article
Hub Gene and Its Key Effects on Diffuse Large B-Cell
Lymphoma by Weighted Gene Coexpression Network Analysis

Chao Ma 1 and Haoyu Li 2,3,4

1Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, China
2The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, China
3Glaucoma Research Institute, Wenzhou Medical University, China
4National Clinical Research Center for Ocular Diseases, China

Correspondence should be addressed to Chao Ma; gmchao219@163.com

Received 30 May 2020; Revised 11 October 2021; Accepted 28 October 2021; Published 27 November 2021

Academic Editor: Fan Yang

Copyright © 2021 Chao Ma and Haoyu Li. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Diffuse large B-cell lymphoma (DLBC) is a kind of tumor with rapid progress and poor prognosis. Therefore, it is necessary to
explore new biomarkers or therapeutic targets to assist in diagnosis or treatment. This study is aimed at screening hub genes
by weighted gene coexpression network analysis (WGCNA) and exploring the significance of overall survival (OS) in DLBC
patients. Statistical data using WGCNA to analyze mRNA expression in DLBC patients came from The Cancer Genome Atlas
(TCGA) dataset. After analyzing with clinical information, the biological functions of hub genes were detected. Survival
analysis, Cox regression detection, and correlation analysis of the hub genes were carried out. The potential function of the
hub gene related to prognosis was predicted by gene set enrichment analysis (GSEA). The results showed that APOE, CTSD,
LGALS2, and TMEM176B expression in normal tissues was significantly higher than that in cancer tissues (P < 0:01). Survival
analysis showed that patients with high APOE and CTSD were associated with better OS (P < 0:01). APOE and CTSD genes
were mainly enriched in the regulation of ROS and oxidative stress. The two hub genes related to the prognosis of DLBC were
identified and verified based on WGCNA. Survival analysis showed that the overexpression of APOE and CTSD in DLBC
might be beneficial to the prognosis. These findings identified vital pathways and genes that may become new therapeutic
targets and contribute to prognostic indicators.

1. Introduction

Diffuse large B-cell lymphoma (DLBC) is one of the most
common types of invasive non-Hodgkin’s lymphoma
(NHL), accounting for about 25% of NHL cases [1]. DLBC
is also a heterogeneous malignant tumor in biology and
clinic; the pathology and mechanism of DLBC remain
unclear, with about 40 percent of patients dying from the
lymphoma. Therefore, the study of genes and signal path-
ways regulated during tumorigenesis will contribute to the
study of the pathological mechanism of DLBC and guide
the therapeutic effect [2, 3]. It usually occurs only outside
the central nervous system or is less isolated from the central
nervous system [4]. It is very aggressive and progresses rap-
idly, so early treatment is the critical way to save the lives of

DLBC patients. Recently, studies have shown that the
shorter the interval between diagnosis and treatment, the
more helpful it is to improve the survival rate of DLBC
patients [5, 6]. In addition, some crucial genes and pathways
have been identified; these genes and pathways have made
significant progress in the diagnosis and treatment of DLBC
[7, 8]. At present, there are no specific biomarkers widely
used in the clinic for DLBC, which limits the understanding
of the pathogenesis of the disease and the predictive risk fac-
tors of disease prognosis.

Rich chips and sequencing information from genome
technology, such as The Cancer Genome Atlas (TCGA),
provide meaningful opportunities to discover new diagnostic
or therapeutic targets [9]. TCGA database was established in
2006. The purpose of the database is to collect and analyze
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clinical and laboratory molecular data of different tumor
types by sampling cases of different tumor types. At present,
the atlas is the most comprehensive storage database of
human cancer molecular and clinical data [9]. Mining, inte-
grating, and reanalyzing the data stored in public databases
can provide a theoretical basis and valuable clues for new
research. Moreover, we can identify tissue-specific biomark-
ers and their key-related pathways based on bioinformatics
methods and expression profiles.

Weighted gene coexpression network analysis
(WGCNA) is often used to explore the complex relation-
ship between genes and phenotypes. The significant advan-
tage is that WGCNA converts gene expression data into a
coexpression module, which provides a basis for in-depth
mining of phenotypic features of interest [10, 11]. WGCNA
focuses on gene modules rather than single genes [12]. It
simplifies the interpretation of thousands of gene responses
that synthesize genomes or modules. Network analysis
establishes the relationship between genes. If the expression
of genes is related, it proves that they are interrelated.

Through different weights, genes can be more or less closely
linked. The connections between genes are then interpreted
as different distances, which are used to group genes into
modules. In conclusion, it depends on the assumption that
all highly related genes in a module participate in a com-
mon biological process. It is widely used in various biolog-
ical processes, such as cancer, genetics, and brain imaging
data analysis, and is very helpful in identifying candidate
biomarkers or therapeutic targets [13, 14]. Joint follow-up
bioinformatics analysis methods can help compare the pro-
cess of differentially expressed genes and help to understand
the interaction between genes in different coexpression
modules.

Gene enrichment analysis and predictive analysis are
helpful to find targets for disease intervention and under-
stand the mechanism of disease development. This present
study is aimed at identifying the potential treatment target
and prognostic markers for DLBC via constructing a coex-
pression module using DLBC expression data in TCGA.
The hub genes in each module were identified, and the
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Figure 1: Clustering tree in WGCNA, clustering tree of 48 samples of DLBC extracted from TCGA database.
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function and pathway correlation analysis was carried out to
help determine the function of these significant module
genes.

2. Materials and Methods

2.1. Expression Analysis of Microarray Data of DLBC
Samples. The mRNA sequencing data and clinical character-
istics of 48 patients with DLBC were downloaded from
TCGA database (https://cancergenome.nih.gov/, accessed
by August 2, 2019). Fragments Per Kilobase of transcript
per Million fragments mapped (FPKM) method was used
to encapsulate the data, and then, the mRNA sequencing
data annotation information was used to match the probe
with the corresponding gene to transform the gene name
into gene symbol. The threshold was determined by the
number of genes with different expression thresholds. The
first 25 percent of the most mutated genes (3,218 genes)

were included for further analyses. WGCNA algorithms
were used to evaluate gene expression values [15].

2.2. Analysis of the Construction of DLBC Coexpression
Module. The power value was screened out in the process
of module construction by using the WGCNA algorithm.
The gradient method was used to test different modules’
independence and average connectivity with different power
values (ranging from 1 to 30). When the degree of indepen-
dence was 0.8, the appropriate power value was determined.
Then, the soft threshold test was performed. Once the power
value was determined, the module construction clustering
was carried out according to the WGCNA algorithm, and
then, the corresponding gene information was taken out.

2.3. Construction of Coexpression Module of DLBC and
Clinical Data. A thermal mapping kit was constructed by R
v3.6 to analyze the intensity of the interaction. Then, the
correlation between the characteristics of the module-trait
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Figure 2: Network topology analysis with different soft threshold power. (a) The scale-free fitting index as a function of the soft threshold
power. (b) The average connectivity as a function of the soft threshold power.
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association module and clinical traits was visually expressed.
The upper value in each color module indicates the correla-
tion, and the value in the parentheses below indicates the P
value. For each expression profile, the gene significance
(GS) was calculated as the absolute value of the correlation

between the expression profile and traits, and the module
membership (MM) was defined as the correlation between
the expression profile and each module Eigengene. The rela-
tionship between expression profile and traits was analyzed
to make a scatter plot between GS and MM [14].

2.4. Hub Genes Identification and Functional Analysis. The
module data in WGCNA was imported into Cytoscape soft-
ware, and the “cytoHub” plug-in was used to screen the hub
genes. Boxplots of mRNA expressions were generated
depending on the Gene Expression Profiling Interactive
Analysis (GEPIA: http://gepia.cancer-pku.cn/, accessed by
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Figure 4: Module-trait association. Correlation thermography between modular feature genes and clinical features of DLBC. Each row
corresponds to a module feature, and the column corresponds to a feature. Each cell contains the correlation and the corresponding P value.

1.0

0.8

0.6

0.4

0.2

M
Em

ag
en

ta

M
El

ig
ht

ye
llo

w
M

Eg
re

y6
0

M
Er

ed
M

Ey
el

lo
w

M
Et

an
M

Eb
lu

e
M

Er
oy

al
bl

ue
M

El
ig

ht
gr

ee
n

M
Eg

re
en

ye
llo

w

M
Es

al
m

on

M
Eb

la
ck

M
Ec

ya
n

M
El

ig
ht

cy
an

1

0.8

0.6

0.4

0.2

0

Figure 5: Eigengene tree view and Eigengene adjacent heat map. At
the top are the color names of the 14 gene modules, and at the
bottom, the correlation varies depending on the color.

Module membership vs. gene significance
cor = 0.56, p = 7.7e–10

0.5

0.4

0.3

0.2

0.1

0.5 0.6 0.7 0.8 0.9

Module membership in black module

G
en

e s
ig

ni
fic

an
ce

 fo
r B

M
I

Figure 6: The scatter plot of the correlation for BMI-related gene
between module membership and gene significance in the black
module.

4 BioMed Research International

http://gepia.cancer-pku.cn/


August 1, 2019) dataset [16]. The selected hub genes were
analyzed by Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis using Database
for Annotation, Visualization, and Integrated Discovery
(DAVID v.6.8: https://david.ncifcrf.gov/, accessed by August
2, 2019) [17, 18]. The possible functions of the hub gene
were analyzed by biological process (BP), cellular compo-
nent (CC), and molecular functional (MF), and the possible
signal pathways were analyzed by KEGG. Then, the Biolog-
ical Networks Gene Ontology (BiNGO) plug-in of Cytos-
cape was used to predict the function of the genes.

2.5. Construction of Hub Genes Protein-Protein Interaction
(PPI) and Genetic Interaction (GI) Network. The PPI net-
work was used to analyze the hub genes at the protein level,
and the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING v11.0: https://string-db.org/, accessed by
August 1, 2019) was used to check and predict the interac-
tion between proteins [19]. The GI network using gene func-
tion prediction was constructed to understand the complex
interactions between genes. We used Gene Multiple Associ-
ation Network Integration Algorithm (GeneMANIA https://
genemania.org/, accessed Aug. 1, 2019) to analyze the hub
genes. The statistical significance was expressed as a collec-
tive score of >0.15.

2.6. Survival Analysis and Cox Regression. According to the
50th percentile cut-off value of each hub gene mRNA, the
patients were divided into the high-expression and low-
expression groups. Log-rank test and Kaplan-Meier estima-

tion were performed to obtain log-rank P value and evaluate
hub genes in OS. Cox regression analysis was performed to
determine the relationship between risk score and clinical
information and generate a nomogram. The survival curve
and nomogram were carried out by R v3.6.

2.7. mRNA Correlation Analysis. The Pearson correlation
coefficient was generated by R v3.6 to evaluate the coexpres-
sion relationship between hub genes.

2.8. Gene Set Enrichment Analysis (GSEA). GSEA (http://
software.broadinstitute.org/gsea/index.jsp; accessed by
August 1, 2019) [20] is a computational method used to
assess whether a priori defined group of genes shows statis-
tical significance or a consistent difference between the two
biological states. We used two hub genes (APOE and CTSD),
which impacted prognosis, to divide DLBC patients’ data
into the high-risk and low-risk groups. GSEA was used to
quantify the genes’ up- and downregulation according to
folding changes. If most of the gene sets showed high-
expression and high-risk scores, the gene sets would show
a positive enrichment score called enrichment. The gene sets
used in this study (c2.cp.kegg.v5.2.symbols.gmt) could be
downloaded from the Molecular Signature Database
(MSigDB; http:/software.wide http://stitute.org/gsea/msigdb/
index.jsp), and FDR < 25%, NES > 1, and nominal P < 0:05
were regarded as statistically significant.

2.9. Statistical Analyses. R v3.6 was used to generate the
correlation graph, survival curve, nomogram, and data

Figure 7: The cytoHub software package shows the top 10 hub genes in the black module.
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visualization. Additionally, P < 0:05 was statistically signifi-
cant unless otherwise indicated.

3. Results

3.1. Construction and Screening of DLBC Coexpression
Module. In this study, we obtained the DLBC dataset in
TCGA, 48 sample expression matrices. Then, we selected
the first 25% of the genes (3,218 genes) for WGCNA to iden-
tify modules highly related to clinical information. First, we
observed and clustered the samples to detect the number of
gene expressions in different traits. Red indicated more gene
expression, less white, and gray indicated deletion. No dele-
tions were found in this study (Figure 1). Then, the soft
threshold (power value) was calculated, and when the weight
was equaled to 10, the independence exceeded 0.8 and had
higher average connectivity (Figure 2). Using this power
value for hierarchical clustering analysis and combining sim-

ilar analysis results, 14 different gene coexpression modules
were identified in DLBC (Figure 3). After docking with clin-
ical character data, it was found that there was a significant
correlation between the black module and body mass index
(Figure 4). The Eigengene tree was used to show the correla-
tion between the gene and the module between the phase
Eigengene groups (Figure 5). Finally, we conducted a scatter
diagram of the correlation between the black module and
genetic characteristics (Figure 6).

3.2. Hub Genes Identification and Functional Analysis. The
genes of the black module were introduced into Cytoscape
software, and the top 10 hub genes (GPX1, CTSD,
TMEM176B, APOE, FTH1P20, AGTRAP, CCL5, BRI3,
LGALS2, and FTH1) were screened out by cytoHub tool
(Figure 7). However, the FTH1P20 is a pseudogene. It is a
nonfunctional residue formed by the gene family in the pro-
cess of evolution. It is similar to normal genes, but the loss of
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Figure 11: Prognostic significance of common index of overall survival in patients with diffuse large B-cell lymphoma. Kaplan-Meier
survival curve showed that (a) APOE and (b) CTSD were significantly correlated with prognosis. A nomogram of the relationship
between medical data and risk scores (c).
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normal function of DNA sequences often exists in eukary-
otes’ polygene family [21]. Thus, FTH1P20 was excluded
from subsequent analysis. Then, we used GEPIA to express
these nine hub genes in tumor tissues and nontumor tissues
and found that the CTSD, TMEM176B, APOE, AGTRAP,
and LGALS2 expressions in tumor tissues and nontumor tis-
sues were different (Figure 8). In addition, GO and KEGG
analyses of these hub genes were mainly enriched at vasodi-
lation (GO: 0042311), regulation of neuron death (GO:
1901214), triglyceride metabolic process (GO: 0006641),
response to reactive oxygen species (GO: 0000302), cellular
oxidant detoxification (GO: 0098869), cellular calcium ion
homeostasis (GO: 0006874), response to oxidative stress
(GO: 0006979), cell (GO: 0005623), and R-HSA-3000480
(Figure 9). GeneMANIA showed the GI network of hub
genes interaction at the mRNA expression level. The
STRING database generated the PPI coexpression network
by analyzing the hub genes at the protein level (Figure 10).

3.3. Survival Analysis and Diagnostic Analysis. According to
the log-rank test and Kaplan-Meier estimation, 2 of the 10 hub
genes were significantly associated with OS: APOE (P = 0:008,
Figure 11(a)) and CTSD (P = 0:0024, Figure 11(b)) in DLBC
patients. According to the clinical data of the patients, a nomo-
gram was generated (Figure 11(c)). The c-index of the model
was 0.7.

3.4. mRNA Correlation Analyses. The correlation of mRNA
expression level of hub genes was determined by the Pearson
correlation coefficient analysis. The results showed that all
the 10 hub genes were significantly correlated (P < 0:01)

with each other, and the correlation coefficients were all
greater than 0.5 (Figure 12).

3.5. GSEA Results. GSEA calculates the enrichment score
(ES) by searching the gene list. When the gene is at the gene
concentration, the score is increased, and when the gene is
not at the gene concentration, the score is reduced. Positive
and negative ES indicate that the gene set is enriched at the
top or bottom of the ranking list, respectively. The gene
before the peak is the core gene under the gene set. GSEA
results showed that APOE was mainly enriched in fatty acid
metabolism, and the regulation of ROS signaling pathways
can regulate the body’s metabolism and the microenviron-
ment of tumor cells. In addition, CTSD could regulate tumor
tissue, cytochrome metabolic pathway, and oxidative stress
(Figure 13). In conclusion, the two prognosis-related genes
APOE and CTSD were mainly related to regulating tumor
and metabolism-related functions.

4. Discussion

DLBC is a heterogeneous malignant tumor in biology and
clinic. Some biomarkers have been found in previous studies
but have not been used in clinics [22]. In this study, 10 hub
genes and several pathways were identified by WGCNA. GO
and KEGG functional analyses of hub genes were carried
out, and then, PPI and GI were used to verify the interaction
at the protein and gene level. Among the hub genes, APOE
and CTSD were proved as survival-affected genes. As a bio-
informatics algorithm, WGCNA uses a coexpression net-
work to establish genetic modules and screen possible
pathogenesis or potential therapeutic targets [23]. So far,
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Figure 13: Continued.
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gene modules related to several cancers have been analyzed
and verified by WGCNA [24, 25].

Fourteen modules were obtained in the training set in
this study, one of which showed high stability. GO and
KEGG analysis showed that mRNA in these four highly sta-
ble modules was mainly involved in regulating oxidative
stress, ROS, and neuronal death, suggesting that they may
be related to the pathogenesis of DLBC. Affecting prognosis
has the potential to be used as a biomarker of cancer. It can
assist in diagnosis, may become a therapeutic target in the
future, and can also predict the survival probability of
patients. It can even provide a theoretical basis for under-
standing the occurrence and development of a tumor and
its molecular mechanism [26–28]. This study obtained the
top 10 hub genes (GPX1, CTSD, TMEM176B, APOE,
FTH1P20, AGTRAP, CCL5, BRI3, LGALS2, and FTH1) from
the black module of WGCNA. PPI and GI analysis of these
hub genes showed that they had related biological functions.
Based on these hub genes, we analyzed their survival and
Cox regression to analyze the effects of these genes on DLBC
patients. It was found that APOE and CTSD affected the
prognosis of patients. At the same time, it was found that
age and race could affect the score of patients. Therefore, a
new risk assessment system for DLBC patients can be estab-
lished based on the above genes to help detect the high-risk
groups of the disease.

Previous studies have found that both prognostic genes
are associated with human cancer. Apolipoproteins E
(APOE) gene has three main subtypes (E2, E3, and E4) poly-
morphism. These three subtypes can form six genetic com-
binations, and the structure and function of proteins
formed by different combinations are different [29]. Because
APOE regulates cholesterol levels, variation in lipoprotein E
may explain its association with the risk of prostate cancer
[30, 31]. In addition, the change ofAPOE level was earlier than
that of the lymphedema index. Therefore, elevated blood
APOE levels may be used to monitor the risk of lymphedema

in breast cancer survivors [32]. Some studies have shown that
Cathepsin D (CTSD) is a lysosomal aspartic protease, which
can be used as a tumor marker. Because of its increased con-
centration in the cytoplasm of breast cancer cells, it is the most
studied lysosomal aspartate protease [33, 34].

Furthermore, many immunohistochemical results
showed that the enhanced expression of CTSD encoded pro-
tein was an indicator of the malignant degree of serous ovar-
ian cancer [35]. Over the past two decades, research has
shown that overexpression and hypersecretion of CTSD
have increased in many types of cancer, including ovarian
cancer and breast cancer, endometrial cancer, lung cancer,
and cancer glioma, melanoma, and prostate cancer
[36–41]. Hence, CTSD may be a promising biomarker for
these tumors. Thus, the above two hub genes play a role in
many tumors; they may also play a role in DLBC.

We further analyzed the genes in the hub genes that had
an impact on survival analysis. It is found that APOE and
CTSD play an essential role in many aspects of the tumor,
such as cell adhesion, the effect of ROS, the regulation of oxi-
dative stress, fat metabolism, and the regulation of tumor tis-
sue. Studies have shown that increasing the expression of
ROS can inhibit the growth of nasopharyngeal carcinoma
cells [42, 43]. Moreover, the influence of cell energy and
metabolism may affect the regulation of the tumor tissue
microenvironment. Additionally, the latest studies showed
that the change of oxygen concentration affects the cellular
function of DLBC and overexpression of DNA damage
markers caused by oxidative stress in cell subsets with a poor
prognosis of DLBC [44, 45]. Therefore, these two hub genes
may regulate the occurrence and development of tumors and
affect patients’ prognosis.

5. Conclusion

In summary, our study used TCGA database and identified
and verified nine hub genes associated with the DLBC based
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Figure 13: Gene set enrichment analysis enrichment plots for (a–d) APOE and (e–h) CTSD.
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on WGCNA. Survival analysis showed that the overexpres-
sion of APOE and CTSD in DLBC may be a poor prog-
nostic indicator. At the same time, further studies in vivo
and in vitro are needed to clarify its potential molecular
mechanism. These findings provide a framework for iden-
tifying DLBC coexpression gene modules, identifying the
key pathways and driving genes that may be new thera-
peutic targets, and contributing to the development of
prognostic indicators.
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