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Pyroptosis, the prototype of programmed cell death, is crucial to the development of multicellular organisms. Lung cancer is one
of the most lethal cancers in the world. Because lung cancer progresses quickly, it is mostly found at an advanced stage, resulting
in a very poor prognosis of lung cancer. At present, there is no treatment with good prognosis, but pyroptosis-based tumor
therapy may be able to solve this problem. In the past few decades, it has been found that pyroptosis can affect the invasion,
proliferation, and metastasis of tumor and apoptosis is an important system to resist cancer. Our study is aimed at
constructing a prognostic model within pyroptosis-related genes. We developed a prognostic model by using TCGA and GEO
database, and differentially expressed genes (DEGs) were identified. Five genes (NLRP1, NOD1, NLRC4, CASP9, and PLCG1)
were identified to construct a prognostic model. According to the median risk score calculated by our formula, we divided
patients into the high- and low-risk groups. Pyroptosis-related genes play important roles in tumor immunity and can be used
to predict the prognosis of lung adenocarcinoma (LUAD).

1. Introduction

Lung cancer refers to the primary factor leading to deaths of
cancers globally. In 2012, about 1.8 million new cases were
diagnosed, of which 1.6 million died [1]. The epidemiology
and prevention of lung cancer have changed dramatically
in the past because the patterns of smoking are different.
There has been an advance in perceiving the genetics of
the cancer of the lung. Also, the role that the immune system
plays in retaining the cancer of the lung. Besides, regimens of
treating the cancer of lung are different. Despite perceiving
the illness, treatment regimens and outcomes of cancer of
the lung are improving, and survival rates remain low [2].
Lung cancer is highly heterogeneous and can occur in many
various places in the bronchial system. As a result, it indi-
cates various symptoms and patterns according to anatomi-
cal positions. Seventy percent of patients who had the cancer
lung showed advanced illness [3]. The ideal intervention was

surgeries for the patients who are at I-II stages of the non-
small-cell lung cancer (NSCLC). The rates of survival of five
years in clinics range from 77% to 92% in terms of the IA
phase, 68% for the IB phase, 60% for the IIA phase, and
53% for the IIB phase. Randomized controlled trials have
investigated the function of perioperative chemotherapy.
Regarding the patients who are at the I phase in clinics, they
undertook resection of surgeries. Or the ones that do not
receive surgeries and have radiotherapy with the stereotactic
body with high dose can realize controlling local tumors at a
high level and toxicity at a low level [4]. Immunotherapy did
not treat the cancer of the lung. However, a new intervention
with great effects has come into being. Increasing interest in
the immunotherapy of cancer can be seen globally [5].

The pyroptosis comes from the Greek word “ptosis” and
“pyro.” The root refers to falling and fever. They are used to
name a novel programmed cell death (PCD) with inflamma-
tion [6]. Pyroptosis denotes the death of cells with a pattern
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of inflammation, which resulted from some inflammatory
bodies. It also results in the gasdermin D (GSDMD) cleavage
and brings about cytokines with inactivity, including IL-1β
and IL-18. Pyroptosis has close relationships with diabetic
nephropathy and atherosclerosis. In the past few decades,
cell pyroptosis has been found to have impacts on invasion,
proliferation, and metastasis of the tumors. Also, it is con-
trolled via different molecules and RNAs with noncoding
[7]. In some cases, cell death is definitely good for our health,
such as cancer treatment. Some existing categories of deaths of
cells have been discovered, such as necrosis, apoptosis, anoikis,
necrosis, pyroptosis, and autophagy. Apoptosis is a critical sys-
tem to defend against cancers. It has been well researched. 2-
(α-Naphthoyl)ethyl-trimethylammonium iodide (α-NETA)
is a choline acetyltransferase inhibitor, inhibiting the prolifer-
ation of ovarian cancer cell lines by caspase-4-related pyropto-
sis [8]. In breast cancer, caspase-8-mediated pyroptosis was
caused by upregulation of the expression of gasdermin C
(GSDMC) [9]. However, the relationship between LUAD
and pyroptosis still remains unknown. In recent years, more
and more researches have been made regarding the system
of molecules regarding pyroptosis of cells of tumor and mech-
anism of inducing tumor cell pyroptosis [10, 11]. The great
effects of proinflammation of pyroptosis of cells have correla-
tions with the control of the microenvironment of tumor with
immunity [12]. It was found that pyroptosis has important
functions in the defending tumor of the NK cells [13].

Based on previous studies, pyroptosis is critical for the
development of tumors and the process of defending
tumors. However, few studies investigate its specific func-
tions in LUAD. TCGA database was used to establish a risk
prognosis model through bioinformatics analysis, and then,
the risk prognosis model was validated by the GEO database.

2. Materials and Methods

2.1. Datasets. The 594 data of RNA-seq (RNA sequencing)
regarding the lung adenocarcinoma (LUAD) patients was
obtained; meanwhile, the related characteristics from the
database of TCGA on June 1st 2021 were also obtained
(http://portal.gdc.cancer.gov/repository). Data of informa-
tion and RNA-seq in clinics as the cohort of the exterior val-
idation were retrieved by the database of GEO (https://www
.ncbi.nlm.nih.gov/geo/, ID: GSE72094).

2.2. Identification of Differentially Expressed Pyroptosis-
Related Genes. 33 pyroptosis-related genes were extracted by
us from prior reviews [6, 14–16], and they are shown in Sup-
plement table 1. Differentially expressed genes (DEGs) were
identified between the normal tissue and the tumor. The
package of “limma” was applied to divide DEGs. We use∗ifP
values less than 0.05,∗∗ifPless than 0.01, and∗∗∗ifPless than
0.001. The PPI system was established regarding DEGs using
Search Tool for the Retrieval of Interacting Genes (STRING)
version 11.0 (http://string-db.org/).

2.3. The Validation and Enhancement of the Prognostic Gene
Paradigm concerning Pyroptosis. Cox regression analysis was
used to assess the relationships between the genes and the

status of survival in the cohort of TCGA. It was used to eval-
uate the genes concerning pyroptosis regarding the prognos-
tic value. The cut-off P value was set for 0.2, and we
identified 11 survival-related genes for analysis to prevent
omissions. Then, the paradigm of regression of the least
absolute shrinkage and selection operator (LASSO) Cox (R
package “glmnet”) was used to filter the relevant genes. It
was also applied to establish the prognostic paradigm. The
last step was the retention of the five genes and the coeffi-
cients. The penalty parameter (λ) got clarified using the low-
est criteria. The score of risks was analyzed when the data of
expression of TCGA was standardized and centralized
(using the “scale” function in R). The formula of the score
of risks was risk score =∑5

i Xi ∗ Yi (X stands for coefficients
and Y stands for the level of expression of the genes). Fol-
lowing the median scores of risk, the patients with the cancer
of the lung were grouped into the high-risk and low-risk
groups. Next, the OS duration was the comparison of the
two subcategories using the analysis of Kaplan–Meier.
PCA, according to five signatures of gene, was conducted
using the function of “prcomp” in the R package using the
function of “stats.” Also, the “survival,” “timeROC,” and
“survminer” R packages analyzed the curve of ROC. A
cohort of LUAD was retrieved from the database of GEO
(GSE72094) for validating the studies. The function of
“scale” was applied to normalize the level of expression of
genes concerning pyroptosis. The score of risks was exam-
ined using the same formula in the cohort of TCGA. The
patients who had GSE72094 were grouped into the group
with high risks and the group with low risks following the
risk medians. The group with high risks and the group with
low risks were compared for the validation of the prognostic
paradigm.

2.4. Analyzing the Independent Prognostic of the Score of the
Risk. We extracted the clinical information of patients in the
TCGA cohort and GEO cohort and we employed models of
univariable and multivariable Cox regression to analyze the
independent prognostic of the score of the risk.

2.5. Functional Enrichment Analysis of the DEGs between the
Low-Risk Groups and High-Risk Groups. According to the
median score, we stratified analyzing and enriching the func-
tions of the DEGs between the group with high risks and the
group with low risks of the patients who had LUAD in the
cohort of TCGA further into two groups. Next, based on spe-
cific criteria (FDR less than 0.05 and |log2FC| greater than or
equal to one), the DEGs between the two groups with greater
risks and the group with weaker risks were screened. We per-
formed Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analy-
ses based on the DEGs by applying the “clusterProfile” pack-
age. The package of “gsva” was used to perform the single-
sample gene set enrichment analysis (ssGSEA) for examining
the scores to infiltrate immunity cells and assessing the pat-
terns of the pathways regarding immunity.

2.6. Statistical Analysis. We applied single-factor analysis of
variance for the comparison of levels of expression of genes
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between tissues of LUAD and normal lung tissues, with the
Pearson chi-square test being used for the comparison of
categorical variables. The Kaplan–Meier method was used
combining a log-rank test with two sides for comparisons
regarding OS of the patients among the groups. Multivariate
and univariate Cox regression models evaluated the risk
model’s independent prognostic value. We employed the
Mann-Whitney test while we compared the immune path-
way activation and immune cell infiltration in the 2 groups.
We accomplished all statistical analyses by using R software
version (4.0.2). Figure 1 indicates the flow diagram.

3. Results

3.1. Determining the DEGs between the Tissues of Tumors
and the Common Tissues. A total of 33 genes were found
as pyroptosis-related genes. The information was regarding
59 common tissues and 535 tumor tissues. We used the
package of “limma” to find DEGs, and the threshold value
was 0.05. Twenty-eight genes were found to be differentially
expressed genes (DEGs). According to the heatmap, we
found that 12 genes (PRKACA, PYCARD, IL6, IL18, CASP1,
TNF, CASP5, NLRC4, IL1B, NLRP3, NLRP1, and NOD1)

decreased. Also, other 16 genes (ELANE, GPX4, GSDMD,
GSDMA, GSDME, AIM2, CASP8, CASP4, GSDMC,
CASP3, CASP6, PLCG1, GSDMB, PJVK, TIRAP, and
NLRP7) got improved in the group of the tumor. The levels
of RNA regarding the genes are indicated to be heatmaps, as
shown in Figure 2(a) (red: level of expression at a high level;
green: level of expression a low level). An analysis of protein-
protein interaction (PPI) was adopted to further explore the
communications and interactions of these pyroptosis-related
genes, as shown in Figure 2(b). We set 0.4 (the interaction
score) as the lowest score of interaction needed by the anal-
ysis of PPI. Next, PYCARD, CASP1, IL1B, IL18, TNF,
NLRC4, AIM2, and CASP8 were hub genes by Cytoscape
software (Supplement table 2). All of them were DEGs of
tissues between tumor and common tissues. According to
Figure 2(c), there is a network of relationships of the entire
genes concerning pyroptosis (blue: negative relationships;
red: positive relationships).

3.2. The Classification of the Tumors following the DEGs. An
analysis of clustering of consensus was adopted with the
entire 535 patients in the cohort of TCGA for the investiga-
tion of the relations between the expression of the 28 DEGs

RNA expression data from TCGA LUAD cohort
(tumor samples = 535, normal samples = 59)

Consensus analysis

PPI analysis

Cluster survival analysis

Validation in a GEO cohort
(GSE72094, N = 442)

Survival analysis

Compare the expression of 33 pyroptosis-
related genes (28DEGs)

Screen OS-related genes in TCGA cohort

LASSO regression model to identify a 5-
gene signature

Survival analysis

GO and KEGG pathway analysis

Analysis of immune cell infiltration

Figure 1: Study workflow diagram.
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concerning pyroptosis and the subtypes of LUAD. The var-
iable of clustering (k) was raised from two to nine. The
results show that while k = 2, the intergroup relationships
were at the lowest level and the intragroup relationships
had the highest level. It showed the 535 patients would be
well grouped into two categories according to these 28 DEGs
(as shown in Figure 3(a)). There were 500 patients with
complete survival data. Also, the overall survival (OS) time
was compared between them without a significance (with P
being 0.2, as shown in Figure 3(b)). According to the heat-
map, the characteristics in clinics and the profile of the
expression of genes consisted of the ageing degrees (greater
than 65 years or less than, equal to 65 years or unknown),
gender (male or female), stage (i, ii, iii, iv, or unknown),
and TNM classification survival status (dead or alive). How-
ever, almost no difference was found in the characteristics in
clinics between the two groups (as shown in Figure 3(c)).

3.3. Enhancing a Paradigm of the Prognostic Gene in the
Cohort of TCGA. The patients who had complete survival
information were matched with a total of 500 LUAD sam-
ples. We used univariate Cox regression to screen the genes.
Eleven genes (NLRC4, NLRP1, NOD1, NOD2, NLRP3,
PRKACA, PLCG1, TNF, CASP1, CASP9, and CASP6) were
found to fulfil the requirements with P value less than 0.2.
They were kept for follow-up investigations. Two genes of
them (CASP6 and CASP9) had relationships with the
improved risk with HRs larger than 1. However, the other
nine genes (NLRC4, NLRP1, NOD1, NOD2, NLRP3,

PRKACA, PLCG1, TNF, and CASP1) belonged to protective
genes with HRs less than 1 (Figure 4(a)). An analysis of the
least absolute shrinkage and selection operator (LASSO)
revealed Cox regression was adopted. A pattern of five genes
was established following the ideal λ score (as shown in
Figures 4(b) and 4(c)). The value regarding the risk was as fol-
lows: ð−0:057 ∗NLRP1 exp:Þ plus ð−0:139 ∗NLRC4 exp:Þ
plus ð−0:054 ∗NOD1 exp:Þ plus ð0:034 ∗ CASP9 exp:Þ plus
ð−0:015 ∗ PLCG1 exp:Þ. We divided 500 patients equally
into subgroups at low risk and at high risk (as shown in
Figure 4(g)) following the results of median values. Accord-
ing to principal component analysis (PCA), the patients
who were at various risks were greatly grouped into two parts
(as shown in Figure 4(d)). The mortality number of the
patients in the group at high risk was more and got a shorter
time for survival compared to the ones in the group at low
risk (as shown in Figure 4(g), on the right of the dotted line).
The OS time had a significant difference. It was retrieved
between the group at high risk and the group at low risk
(P = 0:0016, as shown in Figure 4(e)). The time-dependent
analysis of receiver operating characteristic (ROC) was used
to evaluate the specificity and sensitivity of the prognostic
model. Also, the area under the ROC curve (AUC) was 0.67
for ten-year, 0.62 for eight-year, 0.62 for five-year, and 0.59
for three-year, as well as 0.54 for one-year survival (as shown
in Figure 4(f)).

3.4. Exterior Validation of the Pattern of the Risk. Four hun-
dred and forty-two patients who had LUAD from the

1 0.5 0 –0.5 –1

(c)

Figure 2: Expression and interaction of 33 pyroptosis-related genes. (a) Heatmap of the genes concerning pyroptosis between the tissues of
the tumor (T, red) and the common tissues (N, blue) (red: level of expression at a high level; green: level of expression at a low level). P
values: ∗P less than 0.05, ∗∗P less than 0.01, and ∗∗∗P less than 0.001. (b) The network of protein-protein interaction (PPI) indicated the
interaction of genes concerning the pyroptosis (the interaction score = 0:4). (c) Relevant network of the genes concerning pyroptosis
(blue line: negative relationships; red line: positive relationships; the depth of the color shows the relationship intensity).
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GSE72094 cohort of Gene Expression Omnibus (GEO) were
regarded as the set of validation. The data of the expression
of genes were generalized using the “Scale” function before
further analysis. One hundred and ninety-nine patients in
the cohort of GEO were identified as the group at low
risk. The patients were grouped into the group at high risk
following the median value of the risk (as shown in
Figure 5(d)). The PCA indicated perfect separation between
the group at low risk and the group at high risk (as shown
in Figure 5(a)). The patients in the subgroup at low risk (on
the left of the dotted line, according to Figure 5(d)), lived lon-
ger, compared to the ones in the subgroup at high risk. What
is more, according to the analysis of Kaplan-Meier, an
explicit significance was found in the rate of survival between
these groups (P = 0:0013, as shown in Figure 5(c)). Our
model was found to have ideal efficacy for prediction
(AUC = 0:64 for five-year and 0.62 for three-year, as well as
0.61 for one-year survival) with analyzing the curve of ROC
in the cohort of GEO (Figure 5(b)).

3.5. Independent Value of the Prognostic regarding the Model
of Risk. Univariate Cox regression analyses and multivari-
able Cox regression analyses were used, and the risk scores

of the gene model would be regarded as the independent fac-
tor of the prognostic. Firstly, the score of the risk would be
regarded as an independent factor showing low survival
within the two cohorts, including GEO and TCGA (HR:
14.257, 95% CI: 3.475–58.502; HR: 3.731, 95% CI: 2.071–
6.724, as shown in Figures 6(a) and 6(c)). To make it evi-
dent, the multivariate analysis was adopted following the
adjustment of other confounding factors. The score of the
risk can be defined as a prognostic factor (HR: 3.837, 95%
CI: 2.034–7.240; HR: 7.812, 95% CI: 1.888–32.320, shown
Figures 6(b) and 6(d)) for patients with LUAD in the cohort
of TCGA and GEO. A heatmap was constructed from char-
acteristics in clinics regarding the cohort of TCGA (as
shown in Figure 6(e)). M, T, and gender of the patients
and the status of survival were found to have diverse distri-
butions between the subgroup at a low risk and the subgroup
at a high risk (P less than 0.05).

3.6. Functional Analyses and Immune Analyses following the
Risk Model. The R package of “limma” was applied to extract
the DEGs via the application of the criteria FDR less than
0.05 and |log2FC| greater than or equal to one, for follow-
up investigation of the significances in the pathways and
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Figure 3: The tumors were classified according to the pyroptosis-related DEGs. (a) 535 patients were grouped into two subgroups following
the consensus matrix (k = 2). (b) OS curve of Kaplan-Meier regarding the two clusters. (c) Characters of pathology in clinics and heatmap
regarding the two subgroups sorted according to the DEGs (T: primary tumor; T1: diameter of tumor ≤ 3 cm and no peripheral metastasis;
T2: 3 cm ≤ diameter of tumor ≤ 5 cm or spreading to hilum with atelectasis; T3: 5 cm ≤ diameter of tumor ≤ 7 cm; T4: tumor ≥ 7 cm; N:
lymph node; N0: no lymph node metastasis; N1: peribronchial or ipsilateral hilar lymph node metastasis; N2: ipsilateral mediastinal or
subcarinal lymph node metastasis; N3: contralateral hilar, mediastinal or scalenus, and supraclavicular lymph node metastasis; M: distant
metastasis; M0: no distant metastasis; M1: has distant metastasis).
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functions of the genes between the subcategories sorted fol-
lowing the model of the risk. The enrichment analysis of Gene
Ontology (GO) and the analysis of pathway of Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) were adopted following
the DEGs. In the TCGA cohort, 3852 DEGs between the low-
and high-risk groups were identified. Among them, 1916
genes were upregulated in the high-risk group, while the other
1936 genes were downregulated (Supplement table 3).

According to the results, the DEGs had relationships
about ribosome, organelle inner membrane, cell adhesion
molecule binding, and establishment of protein localization
to organelle (Figures 7(a)–7(d)). The functional analyses
showed the differences between the patterns of immunity
of the subcategories. There are enrichment scores of the pat-
terns of 13 pathways concerning immunity and 16 sorts of
the cells of immunity between the group at low risk and
the group at high risk within GEO and TCGA using the
single-sample gene set enrichment analysis (ssGSEA). In
the cohort of TCGA (as shown in Figure 8(a)), the subgroup
at a high risk mostly had lower infiltration levels of immune
cells compared to the subgroup at a low risk. All 13 path-
ways of immunity indicated weaker patterns in the group
at risk at a high level, compared to the one at low risk in
the cohort of TCGA (as shown in Figure 8(a)). Evaluating
the immune status in the cohort of GEO led to similar find-
ings (Figure 8(b)).

4. Discussion

In our study, we identified a prognostic models of five
pyroptosis-related genes, and confirmed the validity and
practicability of the model, which can provide a lot of guid-
ance for clinical application.

To further understand our prognostic model, we
searched the function of those genes. PLCG1, known as
phospholipase C, gamma 1. The protein encoded by this
gene catalyzes the formation of inositol 1,4,5-trisphosphate
and diacylglycerol from phosphatidylinositol 4,5-bispho-
sphate. This reaction uses calcium as a cofactor and plays
an important role in the intracellular transduction of
receptor-mediated tyrosine kinase activators. NOD1 is
known as nucleotide-binding oligomerization domain con-
taining 1. This gene encodes a member of the NOD (nucle-
otide-binding oligomerization domain) family. This member
is a cytosolic protein. It is said that this gene initiates inflam-
mation. NLRC4 encodes a member of the caspase recruit-
ment domain-containing NLR family. Family members
play essential roles in innate immune response to a wide
range of pathogenic organisms, tissue damage, and other cel-
lular stresses. NLRP1 is involved in the composition of
inflammasome, and the activation of inflammasome can also
induce pyroptosis. It has been identified that many inflam-
masomes are involved in host defense response against a
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variety of pathogens, and pathogens have evolved various
corresponding mechanisms to inhibit inflammasome activa-
tion.CASP9 is the only gene with HR>1; this gene encodes a
member of the cysteine-aspartic acid protease (caspase) fam-
ily. Sequential activation of caspases plays a central role in

the execution-phase of cell apoptosis. The more expression
of CASP9, the more apoptosis occurred in those cells.

Pyroptosis, the prototype of programmed cell death, is
crucial to the development of multicellular organisms.
Pyroptosis was characterized by the activation of the caspase
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Figure 6: Univariate Cox regression analysis and multivariate Cox regression analysis of the value of the risk. (a) Univariate analysis of the
cohort of TCGA. (b) Multivariate analysis of the sample of TCGA. (c) Univariate analysis of the cohort of GEO. (d) Multivariate analysis of
the sample of GEO. (e) The heatmap (red: presentation at a great level; green: expression at a weak level), indicating the relationships
between the risk groups and the clinicopathological characteristics (∗P less than 0.05).
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Figure 8: The values of ssGSEA regarding cells of immunity and pathways of the immunity were compared. (a) Sixteen immune cells and 13
pathways about immunity were compared between the low-risk group (marked in yellow) and the high-risk group (marked in blue) among
TCGA. (b) Sixteen immune cells and 13 pathways about immunity were compared between the low-risk group (marked in yellow) and the
high-risk group (marked in blue) in GEO cohort. ∗P less than 0.05; ∗∗P less than 0.01; ∗∗∗P less than 0.001.
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family of cysteine proteases. Activate the caspase to receive
external or internal apoptosis cues, and then activate the
executioner caspase to initiate the death program [17–22].
A large number of studies have shown that pyroptosis is
closely related to the occurrence and development of cancer
and other diseases. A further study on the mechanism of
pyroptosis and its relationship with tumors will broaden
our understanding of tumors and provide a new perspective
for the prevention and treatment of tumors [23–25]. Our
study is aimed at finding some pyroptosis-related genes
which can be constructed as a prognostic model.

Our study has great clinical significance. We established
the prognosis model of five genes related to pyroptosis.
These five genes can be used to diagnose patients, and the
prognosis model can be used to predict the prognosis of
patients. If we can establish relevant targeted drugs to target
these five genes in the future, it may open up new ideas for
cancer treatment and create great clinical value. Secondly,
we explain the relationship between different immune sub-
types and prognosis models. The poor immune infiltration
in the high-risk group may indicate that tumor cells are
not recognized and attacked by immune cells, which leads
to poor prognosis. We can use immunoactivation therapy
for the high-risk group, so as to improve the tumor infiltra-
tion degree of immune microenvironment in the high-risk
group. We can also take advantage of the high level of
immune infiltration in the low-risk group and use immuno-
therapy to improve the interests of patients to a new height.

However, we still have some shortcomings and limita-
tions. For example, the innovation of bioinformatics analysis
is not abundant. The sample size selected is only from
LUAD, not LC. These may lead to a narrow range of clinical
indications.

Although our study has some limitations, our study
clearly provides a five-gene prognosis model, which can be
used as an independent prognostic factor to predict the sur-
vival of patients and can also be used for immunotyping of
lung cancer patients. This provides a great guiding value
for clinical diagnosis and treatment.
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