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The light field is an important way to record the spatial information of the target scene. The purpose of this paper is to obtain
depth information through the processing of light field information and provide a basis for intelligent medical treatment. In
this paper, we first design an attention module to extract the features of light field images and connect all the features as a
feature map to generate an attention image. Then, the attention map is integrated with the convolution layer in the neural
network in the form of weights to enhance the weight of the subaperture viewpoint, which is more meaningful for depth
estimation. Finally, the obtained initial depth results were optimized. The experimental results show that the MSE, PSNR, and
SSIM of the depth map obtained by this method are increased by about 13%, 10 dB, and 4%, respectively, in some scenarios
with good performance.

1. Introduction

By capturing the stereo information in a specific scene, we
can get accurate spatial information. This information is of
great significance for evaluating the effect of treatment and
rehabilitation. The light field depth information reflects the
precise spatial information of the corresponding target.
Depth image acquisition is the key technology to determine
whether the light field image will be widely used, and it also
plays a major role in 3D reconstruction [1], target recogni-
tion [2], and other fields [3].

At present, the light field depth estimation algorithm is
mainly divided into nonlearning-based methods and
learning-based methods. Nonlearning methods mainly
include focusing and defocusing fusion methods and stereo
matching-based methods. Focusing and defocusing fusion
methods can get the corresponding depth by measuring
the ambiguity of pixels at different focal stacks. Lin et al.
[4] used that nonoccluding pixels exhibit symmetry along
the focal depth dimension centered at the in-focus slice.

They gave the difference between the synthesized focal stack
the hypothesized depth map and that from the LF. Tao et al.
[5] proposed an optimization framework that estimates both
general lightings in natural scenes and shading to improve
depth regularization. Depth maps obtained by the above
methods can retain more details but will introduce defocus-
ing errors and reduce the accuracy of depth maps.

Light field image is obtained by multiple cameras shoot-
ing the same scene from different perspectives. Therefore,
the depth estimation problem can be transformed into a
multiview stereo matching problem. Jeon et al. [6] proposed
the subpixel level multiview stereo matching algorithm
based on cost volume. Wang et al. [7] constructed an
occlusion model and proposed the consistency principle of
angle edge and spatial image edge and combined it with
Canny edge detection operator to divide occluded and non-
occluded regions; the MRF model was used to obtain the
depth map. Zhu et al. [8] deduced the consistency of occlu-
der in spatial and angle spaces and selected the nonoccluded
view for each candidate occlusion point. They established
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the antiocclusion energy function to regularize the depth
map. Lee and Park [9] proposed a depth model that
estimates disparity is represented by the complex number.

In recent years, deep learning has made great achieve-
ments in the field of depth estimation. Feng et al. [10]
proposed a dual-stream network to learn to estimate the dis-
parity of multiple correlated neighborhood pixels from their
epipolar plane image (EPI). The network is used to learn the
weight of EPI, and the output of the two streams is com-
bined for disparity estimation. Jeon et al. [11] designed a
pipeline to determine image consistency. A learning-based
framework is designed to retrieve the best cost measure
and the best depth tag. Huang [12] devised a stereo match-
ing algorithm to employ this framework on dense, sparse,
and even denoised light fields. Li and Jin [13] proposed a
depth foreground estimation algorithm based on the neigh-
borhood distribution in sheared epipolar plane images
(EPIs) to solve the problem of foreground occlusion. Ana
et al. [14] proposed a learning-based framework making
use of dilated convolution, densely connected convolutional
modules, compact decoder, and skip connections.

In this paper, we mainly do the following work: (1) con-
structing the attention module. The SSP model is used to
extract the features of the input pictures, and the features
are input into the full connection layer and the convolution
layer to calculate the weight of the pictures from different
angles. (2) Assigning the weight to the corresponding picture
to make it play different importance in light field depth esti-
mation and (3) building a multistream network for depth
estimation, learning all the input EPI clues of light field pic-
tures, and getting the final depth estimation results. The
experimental results show that the MSE, PSNR, and SSIM
of the depth map obtained by this method are increased by
about 13%, 10 dB, and 4%, respectively, in some scenarios
with good performance.

The rest of this paper is organized as follows: in Section
2, we introduce the principle of light field and EPI and
review the related work. Section 3 proposes EANet and the
attention module. Section 4 shows the experimental results
on the light field datasets. Finally, the paper is concluded
in Section 5.

2. Related Work

2.1. Disparity Estimation in 4D Light Field. The light field
can be represented by a four-dimensional function L ðu, v,
x, yÞ. As shown in Figures 1 and 2, the light in the light field
is parameterized by intersecting plane ðu, vÞ and ðx, yÞ.

In Figure 1, the point P is the space point, the plane Π is
the camera plane, and the plane Ω is the imaging plane.
Obviously, the required 4D light field depth γ and the
relative position of point P in the two planes have a clear
geometric relationship, as shown in formula (1).

γ =
f B1 − B2ð Þ
L1 − L2

����
����, ð1Þ

where γ is the depth of point P, B1 and B2 are the distance
between the image position of point P in the Π plane and

the central viewing angle, respectively, and L1 and L2 are
the distance between the point where the light of point P
passes through the Ω plane and the central point of the
respective subaperture viewing angle. Accurate depth
information γ can be obtained by calculating the disparity
∣L1 − L2 ∣ of point P on the Π plane.

2.2. EPI. Epipolar plane image (EPI) contains spatial and
angular information of two-dimensional slices of the light
field images. EPI lines with different slopes are formed from
projections of the same point at different angles. By calculat-
ing the slope of such a line in EPI, we can obtain the parallax
of the pixels in the image.
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Figure 1: 4D light field schematic.
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As shown in Figure 3, the Δu is disparity. The relationship
between Δu and γ in Figure 2 can be expressed as formula (2).

γ = ‐ f
Z
Δu: ð2Þ

2.3. EPI-Based Depth Estimation Method. Feng et al. [10]
constructed a shallower CNN and the output of the fully con-
nected layer. Jiang et al. [15] used a fine-tuned- flow-based
network to estimate the initial depth and then refined the
initial result with a multiviewpoint stereo refined network.
Shin et al. [16] proposed an end-to-end network to predict
depth, which takes as input multiple directions viewpoints
instead of EPI patches. Li and Jin [13] proposed a depth
foreground estimation algorithm based on the neighborhood
distribution in sheared epipolar plane images (EPIs) to solve
the problem of foreground occlusion. Li et al. [17] designed
a multiscale aggregated light field depth estimation network,
which greatly improves the calculation speed and reduces
the network complexity. Zhang et al. [18] proposed a novel
method for 4D light field (LF) depth estimation exploiting
the special linear structure of an epipolar plane image (EPI)
and locally linear embedding. Wang et al. [19] proposed an
enhanced rotation parallelogram operator based on color
constraint and histogram integral (spo-ch).

However, the above studies did not consider that the
repetition of structures in light field images, the redundancy
of multiview information, and the importance of each sub-
pore viewpoint in depth estimation are different.

Our paper proposes the EANet network architecture
based on the study of the EPI structure of light field images
and the attention mechanism in deep learning. We design an
attention module in the multistream convolutional neural
network. The prediction results of the new module are used
to increase the weight of images, which are more valuable in
depth estimation. This method is evaluated on the HCI light
field datasets, and the results show that the accuracy of the
light field depth estimation has been improved.

3. Proposed Method

Based on the above analysis, this paper proposes a depth
estimation method based on the EANet (EPI-Attention-
net). Firstly, we used the new module to predict the attention
map. At the same time, we convoluted the light field images
in the four directions separately, extracted the EPI features,
and connected them. Nextly, the connected EPI feature
was integrated with the attention map and learning contin-
ued. Eventually, we obtained the optimized light field depth
estimation results.
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3.1. EANet Model. The network model proposed in this
paper is shown in Figure 4. We first preprocess the input
light field image and EPI information and encode the image
according to the mapping relationship between EPI
information and depth information. Next, a multilayer
neural network is set up in the part after the multichannel
network fusion. The neural network will learn the EPI infor-
mation contained in the input image data during training
and combine it with the prediction results obtained by the
attention module.

In the multichannel network, we set up three conv-
blocks, and the setting of each block is shown in the lower
right corner of Figure 4. This part of the network extracts
EPI structural features of light field information in different
directions. After getting the EPI features in four directions,
we connect them.

On the other hand, we use the attention module to
process all the light field images and get the attention map.
The model mainly includes the SPP layer, FE block, cost
volume, and full connection layer.

After obtaining the multidirectional EPI features and
attention map, we connect and merge them to learn in the
subsequent network. We set up eight conv-blocks in the
subsequent network and add an optimized block (composed
of two 2D conv and a Relu layer) at the end.

The neural networks in this model all use sequential
models to connect the convolutional layers and activation
function layers in the network. This model is characterized
by single input and output, with only adjacent relations
between layers, and no cross-layer connections. The
convolutional layers shown in Figure 4 are all 2D convolu-
tion operations. We set the size of the convolution kernel
to 2 × 2 and the step size to 1. The activation function adopts
the linear rectification function (Relu), and the Relu function
is shown as formula (3).

f xð Þ =max 0,WTX + b
� �

, ð3Þ

where linear rectification is used as the activation function of
the neuron, which introduces a nonlinear output to the out-
put ðwTx + bÞ of the neuron in the upper layer, and f ðxÞ is
the output to the next convolutional layer. The linear rectifi-
cation function (Relu) avoids the problems of gradient
explosion and gradient disappearance to a certain extent.

Since the deep neural network is a multilayer overlay, it
will reduce the learning speed. Moreover, the changes in
the input of the lower layer tend to become larger or smaller,
causing the upper layer to fall into the saturation zone, mak-
ing the learning stop prematurely. Therefore, we choose
batch normalization (BN) after the last activation of the
function layer. As shown in formula (4),

h = f g ⋅
X − μ

σ
+ b

� �
, ð4Þ

where μ is the translation parameter and σ is the scaling
parameter. These two parameters are used to translate and
scale the data so that the data conforms to a standard distri-
bution with a mean of 0 and a variance of 1. b is the retrans-
lation parameter, and g is the rescaling parameter to ensure
that the expressive ability of the model does not decrease due
to standardization.
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3.2. Attention Module. In recent years, the attention mecha-
nism has become more and more widely used in the field of
artificial intelligence. The 4D light field image contains a
large number of subaperture viewpoints with different view-
ing angles. These subaperture viewpoints contain abundant
parallax information, but they also have a lot of redundant
information.

Tsai et al. [20] designed a light field depth estimation
network by constructing a deep-level complex neural net-
work, combining residual network with an attention
mechanism. Their work combines the current mainstream
methods of in-depth learning.

However, there are still some deficiencies, such as not
using the EPI structure in the light field to handle all

Cotton Ground truth SPO Epinet Manet Ours

Boxes Ground truth SPO Epinet Manet Ours

Dino Ground truth SPO Epinet Manet Ours

Sideboard

(a) (b) (c) (d) (e) (f)

Ground truth SPO Epinet Manet Ours

Figure 8: Experimental results of HCI. In each group of pictures, the first line is the overall view, and the second line is the partial enlarged
picture.

Table 1: EANet iteration data.

Iteration (1000) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

EANet MAE 1.92 1.83 1.63 1.78 1.62 1.63 1.61 1.58 1.59 1.51

EANet BP 2.27 2.13 2.01 2.1 2.04 1.93 1.8 1.68 1.7 1.74
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perspectives, which makes the network structure too
complex, leads to computational complexity and runtime
too long to be well applied in even feedback scenarios.
Inspired by it, we introduce an attention module to mark
the more important views for depth estimation from the
light field image.

As shown in Figure 5, the attention module generates
attention images, which reflect the importance of the light

field images of each scene to the depth estimation results.
The attention module has three modes. In the first mode,
we perform attention evaluation on each image; in the
second mode, only the 0° and 90° direction images are used
for mirroring calculation; in the last mode, add 45° and 135°

direction. Three methods are used together to get the atten-
tion map. We integrate the attention map with the convolu-
tional layer in the neural network in the form of weight and
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Figure 9: MSE (%) of results on HCI dataset.

Table 3: PSNR (dB) of results on HCI dataset.

Cotton Boxes Dino Sideboard

Ours 52.60 30.60 46.52 44.21

Epinet [16] 38.45 31.62 36.16 32.96

Manet [17] 47.41 36.70 46.29 42.80

SPO [21] 33.63 31.15 43.81 41.81

Average 43.02 32.52 43.20 40.45

Table 2: MSE (%) of results on HCI dataset.

Cotton Boxes Dino Sideboard

Ours 1.36 4.57 1.45 2.98

Epinet [16] 1.64 4.48 1.57 3.29

Manet [17] 1.41 4.88 1.52 3.41

SPO [21] 14.2 9.98 3.12 4.28

Average 4.65 5.98 1.92 3.49
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then strengthen the weight of the subaperture viewpoints
which are more meaningful for depth estimation.

As shown in Figure 6, specifically, first, we convoluted
the light field images, preprocessing them. Then, feature
extraction was performed in the SSP module, and textured
areas and nonlambdoid surfaces were excluded. FE block
extracts features based on the connections of neighboring
regions and connects all the feature maps to obtain an out-
put feature map. Next, in cost volume, we adjust the relative
position of feature views, calculating the five-dimensional
(batch size × disparity × height × width × feature dimension)
cost after these feature maps are connected. Finally, the input
cost volume is pooled to generate an attention map, followed
by a connectivity layer and an activation layer. Take the HCI
dataset as an example, with 9 × 9 subaperture viewpoints in
each scene, so we end up with 9 × 9 attention maps.

Compared with other networks, our network learns
light field depth information from different perspectives,
and EPI information from different perspectives is comple-
mentary to each other. At the same time, the attention
module is used to preprocess the data to improve the
accuracy of depth estimation.

4. Experimental Results

In the network, we randomly sampled light field images
and patch-wise training, with the size of 23 × 23. The
batch size is 16, and the learning rate is 1e-6, using the
Rmsprop optimizer.

As shown in Figure 7 and Table 1, Figure 7 shows the
change curve of EANet with the number of iterations, and
Table 1 shows the parameters of the number of iterations
at some nodes (data per thousand times in the table). When
the number of iterations reached around 10000, the BP error
and network MAE (mean absolute error) base were stable.

The experiment in this paper is carried out on the HCI
light field dataset, which is convenient for performance com-
parison with other methods tested on this dataset. As part of
the nonlambdoid surface is contained in the light field dataset,
there are also scenarios where there are untextured regions
with very small disparity. We excluded these interfering cases.

4.1. Subjective Analysis. The results of our method are shown
in Figure 8. Figure 8(a) is the LF center view of the light field
image, Figure 8(b) is the ground truth of the scene in the
light field data, Figure 8(c) is the result of SPO (Zhang et al.
[21]), Figure 8(d) is the result of Epinet (Shin et al. [16]),
Figure 8(e) is the result of Manet, and Figure 8(f) is the
result of our method.

In the result images, the depth of the color represents the
distance in the light field. The lighter the color, the closer the
depth. Through comparison, we can find that our method is
good in detail. For example, the grid part of the boxes scene
fully maintains the structure of the angle information. In
button and sideboard, edge information is also well reflected.
But there is little difference with other methods in the non-
textured region. The specific quantization parameters are
compared in the next section.

4.2. Quantitative Evaluation. For each method in Figure 8,
we calculated their MSE, PSNR, and SSIM to evaluate the
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Figure 10: PSNR (dB) of results on HCI dataset.

Table 4: SSIM of results on HCI dataset.

Cotton Boxes Dino Sideboard

Ours 0.99 0.93 0.99 0.98

Epinet [16] 0.92 0.72 0.92 0.86

Manet [17] 0.98 0.88 0.98 0.96

SPO [21] 0.95 0.83 0.98 0.95

Average 0.96 0.84 0.97 0.94
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performance of each method. The MSE (mean squared
error) is calculated by formula (5).

MSE =
1
N
〠
1

N

GT ið Þ −Dep ið Þð Þ2, ð5Þ

where N is the total number of pixels in the depth map and
Dep and GT represent the final depth map and ground truth
of light field, respectively. The i represents each pixel in the
image. Table 2 and Figure 9 show the MSE of light field
scenes in Figure 8 of SPO, Epinet, Manet, and ours. Our
method has been greatly improved in cotton by about 13%.

PSNR is the most widely used objective image evalua-
tion index based on the error between corresponding
pixels. The PSNR (peak signal-to-noise ratio) is calculated
by formula (6).

PSNR = 10 ⋅ log10
maxI2

MSE

� �
, ð6Þ

where maxI is the maximum value of pixels in the image.
Table 3 and Figure 10 show the PSNR of light field scenes.

The SSIM (structural similarity) is an index to measure
the similarity of two images. Comparing GT with a depth
map can reflect the accuracy of depth estimation. The SSIM
is calculated by formula (7).

SSIM x, yð Þ =
2μxμy + c1

� �
2σxy + c2
� �

μ2x + μ2y + c1
� �

σ2x + σ2y + c2
� � , ð7Þ

where x and y represent depth map and ground truth,
respectively, μ is the mean of the image, σ2x and σ2x are the
variance of the image, σx,y is the covariance of x and y,

and c is a constant term. Table 4 and Figure 11 show the
SSIM of light field scenes. It can be seen from Figure 10 that
our method has improved in all scenarios, about 4%.

By observing the results in Tables 2–4, we can draw the
following conclusion: Table 1 shows that in most cases, we
achieved better MSE performance. In sideboard, compared

Ablation experiment in “herbs” scene

(a) (b) (c)

Ablation experiment in “origami” scene 

Ablation experiment in “bedroom” scene

Ablation experiment in “bedroom” scene

Figure 12: Ablation experiment.
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with Epinet and Manet, the MSE of this method is reduced
by 0.31 and 0.38 on average. In Table 3, our method has
been greatly improved in cotton and sideboard, about 13%.
It can be seen from Figure 9 that our method has improved
in all scenarios, about 9.26%. In Table 4, our SSIM is also
significantly higher than average.

4.3. Ablation Experiment. To show the improvement of the
EANet by our method, we designed a corresponding abla-
tion experiment.

We conducted experiments on “herbs,” “origami,”
“bedroom,” and “bicycle.” Figure 12 is a comparison of the
result images, and Table 5 is the comparison of MSE, PSNR,
and SSIM in four scenarios. Figure 12(a) is the center view of
each scene, and Figures 12(b) and 12(c) are the results of
whether to add the attention model.

In Table 5, we use “√” and “×” to indicate whether the
attention model is useful or not. Our method reduces the
MSE by about 10%, increases the PSNR by 0.3 dB, and SSIM
by 0.03%. Compared with Figure 11 and Table 4, our
method can better extract and save the edge details and
angle information of the image in the depth estimation
process, improve the accuracy of the depth map, and reduce
the error.

5. Conclusion

In this paper, we propose a depth estimation network based
on the attention module and light field EPI cues. First, the
importance of the light field images is predicted by focusing
on the module. Then, the prediction results are combined
with the depth estimation network. Finally, accurate depth
information is obtained. This network has both accuracy
and computational efficiency. It calculates the importance
of images while fully considering the angle of light field
and EPI information and further explores the value of pic-
tures from different perspectives. Our approach achieves
competitive results in visual quality, PSNR, and SSIM.

The work in this paper has laid the research foundation
for the subsequent development of light field reconstruction,
but there are still shortcomings in many aspects, such as
increasing the number of real datasets, the reflection area,
and no texture. We leave this to future work.
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