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Background. Berg Balance Scale (BBS) can be considered the standard for assessment of functional balance but has a noted ceiling
effect in active transtibial amputees (TTAs). Development of ceiling-free measures based on quantitative measurement techniques
that is suitable for patients in any experience levels, yet sensitive enough to capture improvements in any stage of prosthetic
rehabilitation, is needed. Research Question. Does a scoring scheme based on Multiattribute Utility (MAU) theory assess
balance abilities of multileveled TTAs comparable to BBS? Methods. A case-control study including 28 participants (8 novice
TTAs, 10 experienced TTAs, and 10 healthy controls) was conducted. Guided by MAU theory, a novel balance model was
developed and initially validated by Spearman correlation between index-generated scores and expert assigned scores,
providing preliminary evidence of validity. Floor/ceiling effects were tested, and between-group comparisons of static/dynamic
balance were conducted by paired t-test or Wilcoxon signed-rank test depending on data distribution normality. Results. BBS
score was correlated with computed balance index (r = 0:847, p < 0:001). The BBS score of novice/experienced TTAs was 39/
54, and the computed balance index was 38/75. A ceiling effect of BBS (30%) was observed in the experienced TTA group,
whereas no ceiling effects were found for the computed index in any combination of TTA groups. Group differences between
novice and experienced TTAs were observed in center of pressure (COP) ellipse shift area, COP path length, COP average
velocity, gait speed, and cadence (all p < 0:05). Significance. Evidence from first stage validation of the proposed MAU balance
model indicated that the model performed well. This proposed method can monitor the progress of balance for varied
experience-leveled TTAs and provide clinicians with useful information for assessing the rehabilitation training.

1. Introduction

Individuals with lower limb loss face gait and balance limita-
tions. Although many factors can affect the gait and posture,
balance is the only physical capacity measure shown to have
a strong relationship with gait performance [1]. As part of
prosthetic rehabilitation, focus is given to assessing and
improving balance abilities so as to enhance self-efficacy, inde-
pendence, and especially mobility safety. However, a balance
assessment method that is suitable for patients in any experi-
ence level and sensitive enough to capture improvements in
any stage of prosthetic rehabilitation is still needed.

Several evaluation methods have been frequently used to
assess mobility and balance in persons with lower limb loss.

The Berg Balance Scale (BBS) has been introduced in varied
populations such as community-dwelling older adults [2],
stroke survivors [3], Parkinson’s patients [4], and lower limb
amputees, where it has been confirmed to have excellent reli-
ability and validity [5]. Additionally, it has been used to
assess the risk of falling [6]. However, also reported were
ceiling effects that may limit the utility when assessing phys-
ically active prosthesis users [7]. Timed Up and Go Test
(TUG-T) [8] and One-Leg Standing Test (OLS-T) [9] are
also frequently used in the clinic to assess balance or detect
fall risk as performance-based measurements without the
need of expensive equipment. Rather than self-report mea-
sures or tests, some authors prefer quantitative measurement
techniques, such as assessments of the center of pressure
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(COP), plantar pressure, or spatiotemporal gait parameters
in relation to posture control and gait [10, 11]. But those
single-task measurements lack a detailed evaluation of func-
tional balance.

Multiattribute Utility (MAU) theory serves to integrate a
diverse set of observations or measurements into a coherent
outcome with a single summary score and is increasingly
used for a variety of purposes beyond economic evaluations.
The MAU instruments can be a succinct indicator of health-
related quality of life employed in a clinical context [12, 13].
Brennan et al. proposed MAU models for quantitative eval-
uation of nursing practice as opposed to relying on costly
and nonreproducible global judgments by experts [14].
What the MAU needs is a set of attributes, scales to measure
each attribute, and the weight that designates the relative
contribution of each individual attribute to the overall
performance.

For a balance model, attributes derived from varied
quantitative measurements (static/dynamic balance) that
are mostly used in functional balance evaluations would
allow diverse important parameters to be entered into one
analytical model. This paper presents a novel MAU
approach to create a balance model and demonstrates its
use of scoring algorithms to generate an index for evaluating
global balance. Additionally, a preliminary validation of the
balance model against the BBS scores assigned by clinicians
is conducted.

1.1. Subjects. A sample of unilateral transtibial amputees
(TTAs) was recruited for this Institutional Review Board-
approved study. Participants were included from two
groups, which were experienced TTAs (from outpatients)
and novice TTAs (from inpatients undergoing their first-
time prosthetic fitting). A sample of healthy nonamputee
adults was included as the controls. For the experienced
TTAs, inclusion criteria were an activity classification of K-
level 2 to K-level 4, with experience in prostheses use for
more than one year. Individuals needed to have no existing
skin damage or limb pain. Individuals with abnormal sen-
sory function (e.g., visual impairment and vestibular organ
disease) or with neurological disorders that affect balance
(such as stroke) were excluded from participation. Informed
written consent was obtained prior to the data collection.
The target sample size was 30 (10/group).

1.2. Protocol Design

1.2.1. Berg Balance Scale. The BBS was proposed by Kather-
ine Berg in 1989 [15]. It can measure static and dynamic bal-
ance ability among individuals by observing COP shifting
when completing various functional activities in sitting and
standing positions. The degree of success in achieving each
task (14 tasks in total) is given a score of 0, 1, 2, 3, or 4,
and the final measure is the sum of all scores. The lowest
possible total score is 0, and the highest is 56. A score lower
than 40 indicates a risk of falling.

1.2.2. Static Balance Attributes Extraction. Participants were
asked to stand upright on the Zebris PDM-S measurement
platform (Zebris Medical, Munich, Germany). The sampling

frequency was 100Hz. Participants were instructed to keep
balance while standing, and their feet should be parallel to
avoid plantar pressure changes caused by COP displace-
ment. Standing balance tests were done with shoes on, since
there are few instances of barefoot standing or walking with
the prosthesis in daily life. Three trials per subject were con-
ducted with each lasting 15 seconds. The values were aver-
aged for the final results.

A shift of COP is an indirect measure of postural sway
and also a measure of a TTA’s ability to maintain balance.
The static balance attributes include COP ellipse shifts area
(mm2), COP path length (mm), and COP average velocity
(mm/s). Taking into account that the novice unilateral TTAs
could hardly load bodyweight symmetrically on both legs at
first, the percentage ratio of plantar pressure on affected ver-
sus sound side (%) was measured. Additionally, the percent-
age ratio of left versus right plantar pressure in the healthy
participants (%) was computed for comparison.

1.2.3. Dynamic Balance Attributes Extraction. Participants
were asked to walk at a self-selected speed along a 30-
meter corridor. Gait data were collected simultaneously by
a G-walk sensor (BTS Bioengineering, Milan, Italy), a wear-
able sensor that has been widely used in research involving
lower limb amputees [16, 17] or healthy people [18]. The
wireless triaxial accelerometer device was fixed to the fifth
lumbar vertebrae with an ergonomic belt, which allowed
subjects’ unimpeded walking. The data was transmitted to
a computer at a 100Hz sampling frequency through Blue-
tooth. In recent literature [18] on the reliability and concur-
rent validity of G-walk, it was reported that the G-walk
sensor is reliable for all measured spatiotemporal parame-
ters, with excellent concurrent validity for gait speed,
cadence, stride length, and poor to moderate validity for sin-
gle/double support time and swing/stance duration.

Through this test, ten gait parameters including gait
speed (m/s), cadence (step/min), percentage of stance phase
(%), swing phase (%), double support time (%), and single
support time (%) on each side were obtained. In this study,
six of ten variables (gait speed, cadence, stance phase L%,
stance phase R%, double support L%, and double support
R%) that are most strongly related to dynamic balance were
selected and extracted as dynamic balance attributes.

1.2.4. Procedures. Standing balance tests were performed
twice for novice TTAs: immediately after prosthetic fitting
(T0) and on discharge day (T1) (range of T0 to T1 was 18
to 32 days). Between T0 and T1, in the course of the initial
management of the amputees as inpatients in a rehabilita-
tion unit, they were given training that included standing
in parallel bars, carrying weight, shifting COP, walking
inside/outside the parallel bars. This rehabilitation training
is routine after prosthesis fitting for a new amputee. Walking
tests were performed only once at T1, as participants in this
group were mostly unable to walk at T0. For the experienced
TTA or healthy subjects, none of the rehabilitation training
was conducted. Standing balance and walking tests were
scheduled only once in a random order with ten minutes’
rest in between to avoid fatigue. BBS scores were recorded
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as clinical evaluation of balance abilities for all the
participants.

1.3. Model Building. MAU theory provides the theoretical
basis to translate the assessment of functional balance tests
into a multidimensional evaluation scheme. The theory also
supports the development of an index where a weighted sum
reflects the extent to which a balance model achieves func-
tional balance ideals. Classical MAU theory approaches rely
on a complex elicitation process to build the attribute hierar-
chy by experts, estimate the subjective valuation for each
attribute scale, establish weights, and confirm the computa-
tional function [19]. These subjective analytical demands
have discouraged the use of MAU theory as an objective
measurement device.

In our context, nine quantitatively accessed gait parame-
ters mostly reflecting the static or dynamic balance abilities
were employed as attributes. Entities vary in the degree or
amount of attribute in order to represent the nature and dis-
tribution. Attributes are described by numerical or phrase-
anchored scales, in which the scale values reflect the degree
or amount of the attribute possessed by the entity. The
values on these scales are referred to as single-attribute util-
ities, and they are specific for each entity. In the case of the
MAU model used in this study, the utility of specific attri-
butes (such as speed) was used as the measurement
outcomes.

To determine the utility of the attributes, normalization
was achieved by averaging the value of each attribute from
the lowest to highest score by using the calculation described
by Edwards and Newman [20]:

La =
La − Lmin
Lmax − Lmin

, ð1Þ

where La is the actual location value of a particular attribute,
Lmax is the maximum value, and Lmin is the minimum value
of La.

Then, the attributes of COP ellipse shift area, COP path
length, and COP average velocity as negative indicators were
transformed as needed to be positive indicators. This is to
reflect that a larger value in the aforementioned attributes
denotes a lower balance capacity.

Weights were assigned to each attribute to identify its
contribution to the final results, as they are unlikely to be
of equal importance. It is necessary to normalize the weights
so that the weights of all attributes sum up to 1:

0 <W i < 1 = 1, 2,⋯N ,

〠
N

i=1
Wi = 1:

ð2Þ

To determine the weight for each attribute, a more
objective scheme—coefficient of variation (CV)—was
employed:

Ci =
σi
μi
, ð3Þ

where Ci is the CV of an attribute, σi is the standard
deviation, and μi is the mean of the attribute. The rule of
the calculation is that the greater the data differentiate, the
greater the attribute weight. In this way, the final index will
be well able to discern differences in the comprehensive eval-
uation system, while avoiding the ceiling effects. The final
normalized weight of each attribute was computed as fol-
lows, and results are shown in Table 1:

WI =
Ci

∑N
i=1Ci

: ð4Þ

To choose a functional form for the MAU model, MAU
theory suggests that when two or more attributes can inde-
pendently have a large impact on overall benefit, a multipli-
cative or multilinear model is appropriate [21]. The
functional form in this study was chosen as follows:

BI = 〠
N

i=1
Wi × Ak

i

 !1/k

, ð5Þ

where BI is the balance index, N is the total number of attri-
butes, Wi is the weight of attribute i, Ai is the utility of attri-
bute i, and k equals 1 in this study.

1.4. Validation and Statistical Analysis. The test of the ability
of an MAU model to mimic human judgment aims to dem-
onstrate that the balance ability scores computed by the
index match those assigned through the clinician’s appraisal.
Upon the finding that data distribution was nonnormal, a
nonparametrical Spearman’s correlation coefficient was used
to assess the correlation between the computed balance
index and the exact BBS score to validate the balance model.
The strength of association was defined as weak (<0.5),
moderate (0.5–0.8), or strong (>0.8). Flooring/ceiling effects
were calculated as the percentage of participants who
achieved the minimum or maximum possible BBS score.
Flooring or ceiling effects of 20% or greater were considered
clinically significant [22]. To identify differences between the
novice TTAs (at T1) and experienced TTAs, various statisti-
cal tests were performed. Normality of parameters of static
and dynamic balance was assessed based on the Shapiro-
Wilk test. Paired t-tests were applied if data was normally

Table 1: Weight assigned to each attribute.

Attributes Weight

COP ellipse shift area 0.18

COP path length 0.18

COP average velocity 0.18

Gait speed 0.08

Cadence 0.05

Stance phase A% 0.02

Stance phase S% 0.03

Double support A% 0.17

Double support S% 0.11

3BioMed Research International



distributed; otherwise, Wilcoxon signed-rank tests were
applied. All statistical tests were carried out with IBM SPSS
version 24. The level of significance was set at α < 0:05.

2. Result

Thirty participants were recruited, of which 28 completed
the protocol (8 novice TTAs, 10 experienced TTAs, and 10
healthy controls) and were included in the analysis
(Table 2). For the static balance tests, the parameters of
COP ellipse shift area (p < 0:001), COP path length
(p < 0:05), and COP average velocity (p < 0:05) tested at T1
were significantly larger in novice TTAs than the respective
values in experienced TTAs (Table 3). The plantar pressure
on the prosthesis side for novice TTAs increased from T0
to T1; however, it did not reach the levels seen in experi-
enced TTAs. Across all parameters, there were significant
differences at T1 between novice TTAs and experienced
TTAs. As for the dynamic balance, gait speed (p < 0:001)
and cadence (p < 0:001), respectively, were significantly
lower for novice TTAs than experienced TTAs (Table 4).

Comparing to the healthy individuals, COP ellipse shift
area, COP path length, COP average velocity, gait speed,
and cadence were all significantly different between novice
and experienced TTAs. The parameters plantar pressure,
stance phase, and double support time of healthy individuals
were used to determine normative range for comparison.
They were analyzed as a ratio of left/right side in healthy
individuals and of affected/sound side in TTAs.

The BBS scores and computed balance index are shown
in Table 5. Spearman correlation between the BBS score
and the computed balance index was 0.847 (p < 0:001) when
all the TTAs were included. For the novice TTAs, it was

0.929 (p = 0:038), higher than the combined groups, while
it was 0.004 (p = 0:817) when only experienced TTAs were
included.

As shown in Table 6, a ceiling effect of BBS was observed
for few of the prosthesis users (3/18). In the group of novice
TTAs, no ceiling effects were exhibited at all (0/8). However,
for the experienced TTAs, the BBS scores were clustered at
the top of the scale, with several subjects reaching the

Table 2: Participant demographics.

Subject Sample Age (years) Height (m) Weight (kg) Time since amputation (months)

Novice TTA 8 41:5 ± 10:9 1:64 ± 0:09 72:2 ± 12:6 7 ± 2 (5-10)

Experienced TTA 10 40:6 ± 11:2 1:74 ± 0:08 76:5 ± 8:5 57 ± 30 (25-112)

Healthy controls 10 32:8 ± 6:5 1:74 ± 0:06 66:5 ± 9:4 ——

Novice TTA denoting new prosthesis users with initial hospitalized; outpatient denoting the experienced prosthesis users. Results are shown as mean ± SD.
Time since amputation is shown as mean ± SD (range).

Table 3: Static functional balance tests.

Novice TTA
Experienced TTA Healthy controls

T0 T1

COP ellipse shifts area (mm2) 1240:33 ± 124:29 676:78 ± 122:31 253:33 ± 136:87∗∗ 138:47 ± 52:96
COP path length (mm) 583:55 ± 63:87 357:50 ± 60:58 135:94 ± 55:22∗ 89:87 ± 23:43
COP average velocity (mm/s) 39:33 ± 4:28 24:28 ± 4:32 9:34 ± 3:55∗ 6:43 ± 1:62
Plantar pressure A (%) 26:93 ± 0:66 40:45 ± 1:17 47:50 ± 7:85∗ ——

Plantar pressure S (%) 73:17 ± 0:66 59:56 ± 1:17 54:30 ± 6:93∗ ——

Plantar pressure L (%) —— —— —— 49:40 ± 1:06
Plantar pressure R (%) —— —— —— 50:27 ± 0:98
Paired t-test was applied if the data was normally distributed by the Shapiro-Wilk test. Otherwise, nonparametric. The Wilcoxon signed-rank test was applied.
Healthy controls are shown as normal range. ∗p < 0:05 and ∗∗p < 0:001.

Table 4: Dynamic functional balance tests.

Novice
TTA

Experienced
TTA

Healthy
controls

Gait speed (m/s) 0:77 ± 0:07 1:17 ± 0:16∗∗ 1:33 ± 0:11
Cadence (step/
min)

73:50 ± 6:02 99:64 ± 7:29∗∗ 123:04 ± 5:22

Stance phase A (%) 61:77 ± 4:04 58:57 ± 3:01 ——

Stance phase S (%) 61:61 ± 4:14 62:19 ± 5:76 ——

Double support A
(%)

7:50 ± 1:11 11:05 ± 6:07 ——

Double support S
(%)

14:23 ± 3:54 12:79 ± 5:56 ——

Stance phase L (%) —— —— 60:33 ± 1:57
Stance phase R (%) —— —— 60:7 ± 1:53
Double support L
(%)

—— —— 10:01 ± 1:16

Double support R
(%)

—— —— 9:97 ± 1:13

Paired t-test was applied if the data was normally distributed by the
Shapiro-Wilk test. Otherwise, nonparametric. The Wilcoxon signed-rank
test was applied. Healthy controls are shown as normal range. ∗p < 0:05
and ∗∗p < 0:001.
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maximum score of 56 resulting in ceiling effects of 30% (3/10).
By comparison, no ceiling effect was observed for the com-
puted balance index in any combination of prosthesis user
groups. Healthy subjects as the control group all reached the
perfect BBS score.

3. Discussion

Our balance models arose from the structural and contextual
dimensions of functional balance tests and were applicable to
every balance dimension. Evidence from our first stage valida-
tion of the balance model indicates that the model performed
well. By extension, with intangible, theoretical formulations
that support the translation of human perception into numer-
ical scaling strategies provide the necessary formalization of
clinician judgment into practical research tools. The nature
of attributes included in our model parallels those proposed
in other studies of functional balance evaluation with COP
or gait assessment instruments in terms of scope, topical
theme, and diversity [23, 24]. Han et al. [23] proposed that
by tracking the path of COP using the F-scan insole system
during stance phase, the balance and pattern of progression
can be determined. Huijben et al. [24] suggested that lower
walking speed of older adults results in lower gait quality,
which underlies the differences that can contribute to falling
risks. Considering that these key variables reflect one or sev-
eral aspects of gait quality or balance abilities, our method of
devising a composite score based on more detailed evaluation
of functional balance appears to be suitable to monitor the
progress of rehabilitation in extension of the applications of
aforesaid researches.

The floor/ceiling effects of BBS in people with transtibial
amputation were also evaluated in this study. The BBS per-
formance by the experienced TTAs (BBS score, mean 54
(range 50-56)) and its difference to the novice TTAs’ scores
was comparable to that of other populations of prosthesis
users, including transtibial or transfemoral prosthesis users

(53 (49-55) vs. 52 (49-54)) [7], users or nonusers of ambula-
tory aids (52 (47-56) vs. 41 (34-49)) [25], and fear or not of
falling (49 (47-52) vs. 53 (50-55)) [7]. Our results suggest
that slight ceiling effects exist in experienced TTAs, and
30% of these participants achieved the maximum score of
BBS. Similar ceiling effects have been reported for several
other pathological conditions that cause unsteadiness [22,
26, 27]. No ceiling effect was observed when the sample size
only included novice TTAs. This suggests that TTAs with
low balance ability may be more suitably assessed by BBS,
and without incurring the ceiling effects. Similarly, Azuma
et al. [25] reported no ceiling effects in transfemoral ampu-
tees, with most participants over age 60 having low BBS
scores, even though younger participants had close to perfect
BBS scores. Therefore, to address this problem, our pro-
posed method could be a complementary balance assess-
ment tool for active prosthesis users.

After amputation, novice TTAs needed a certain amount
of time to resume standing and walking. More importantly,
they are facing challenges in mobility safety at the early stage
of resuming their regular life after hospital discharge. Before
our study, no BBS scores of hospitalized novice TTAs have
been reported. Our finding of BBS scores of 39 (35-46)
points out a considerable risk of falling in this population.
The results in Table 3 detail how especially three parameters
relative to COP were, respectively, significantly larger for the
novice than the experienced TTAs, indicating a greater risk
of balance-related problems and falling. As for the dynamic
balance, recent work [24] suggested that lower gait speed is
indicative of lower gait quality in older adults, which can
be extrapolated to aged prosthesis users. This was confirmed
by our results in Table 4, showing that the novice TTAs had
a significantly lower gait speed and cadence than the experi-
enced TTAs. Although the healthy subjects were more stable
while standing and faster while waking, the results of experi-
enced TTAs may be interpreted as a benchmark of balance
ability after returning to the society. To monitor the recovery
over time, our method appears suitable and sensitive enough
to capture improvements of functional balance for a broad
population of prosthesis users.

4. Limitations

One limitation of this research is the small sample size, as
the recruited participants were split into three groups. How-
ever, the sample size is comparable to many studies in pros-
thetics and orthotics. A future larger-scale study has been
motivated by the here presented preliminary findings.

It is possible that the core attributes of the balance model
may change over time. In this initial validation, the perfor-
mance of the MAU model was sufficient to support further
testing. A field study to determine the performance of the
balance model to match new prosthetists evaluating new
patients could provide evidence of generalizability.

5. Conclusion

In this paper, we proposed a novel method to provide useful
evaluation of functional balance in various experience levels

Table 5: Berg Balance Scale score and computed balance index.

Berg Balance Scale
score

Computed balance
index

Novice TTA 39 (35, 46) 38 (22, 47)

Experienced
TTA

54 (50, 56) 75 (49, 96)

Healthy
controls

56 (56, 56) ——

Results are shown as mean (range).

Table 6: Flooring and ceiling effects of Berg Balance Scale scores.

Flooring effects Ceiling effects

Novice TTA 0 (0) 0 (0)

Experienced TTA 0 (0) 3 (30%)∗

All prosthetic subjects 0 (0) 3 (16.7%)

All prosthetic subjects were combined novice and experienced TTA groups.
Results are shown as number (%) of subjects who reached minimum or
maximum possible BBS score. ∗Significant effect was over 20%.
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of TTA by quantitative measurement techniques. Guided by
MAU theory, nine factors became elements in a computa-
tional index that when summed, assigns a score to a given
patient reflecting the extent to which that patient’s balance
ability approximates able-bodied levels. Spearman correla-
tion between the index-generated scores and the expert
assigned scores provided evidence supporting the prelimi-
nary validation of the balance model.
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