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Background. The competing endogenous RNA- (ceRNA-) mediated regulatory mechanisms are known to play a pivotal role in
intervertebral disc degeneration (IDD). Our research intended to establish a ceRNA regulatory network related to IDD through
bioinformatics analyses. Methods. The expression profiles of circRNA, miRNA, and mRNA were obtained from the public Gene
Expression Omnibus (GEO) datasets. Then, we use sequence-based bioinformatics methods to select differentially expressed
mRNAs (DEmRNAs), microRNAs (DEmiRNAs), or circRNAs (DEcircRNAs) related to IDD. We used ChEA3 to verify the
targets of transcription factors (TFs). Then, we used DAVID to annotate the DEmRNAs. Finally, we constructed a potentially
circRNA-miRNA-mRNA network related to IDD by predicting in the database (ENCORI, TargetScan, miRecords, miRmap,
and circBank). Results. We identified 31 common DEmRNAs by Venn analysis, of which MMP2 was regarded as the key hub
genes. Simultaneously, miR-423-5p and miR-185-5p were predicted as the upstream molecules of MMP2. Furthermore, a total
of six DEcircRNAs were predicted as the upstream circRNAs of miR-423-5p and miR-185-5p. Then, a potential circRNA-
miRNA-mRNA network related to IDD was constructed by bioinformatics analysis. Conclusion. A comprehensive ceRNA
regulatory network was constructed, which was found to be significant in IDD progression.

1. Introduction

Low back pain (LBP) is known to cause immense suffering to
patients, as well as substantial healthcare costs over time.
Additionally, it is known to seriously affect the quality of life
of the patients [1–4]. Numerous studies have revealed that
intervertebral disc degeneration (IDD) is a vital cause of
LBP. However, there are no efficient therapeutic strategies
for treating IDD because its pathogenesis remains unknown
[5, 6]. Although the pathogenesis of IDD has not been explic-
itly elucidated yet, extensive studies suggest that multiple fac-
tors, such as genetics, gender, environment, and mechanical

damage, are involved in its pathogenesis [7], attributed to
the various IDD-related disorders [8].

Several studies have shown that treating nucleus pulpo-
sus (NP) tissues can delay or prevent the progression of
IDD [9, 10]. The noncoding RNAs (ncRNAs) play an impor-
tant role in the progression of IDD [11]. Unlike linear RNA,
circRNAs are characterized by a continuous loop of covalent
closures, which restrict the degradation of ribonucleases
(RNases). They serve as competing endogenous RNAs (ceR-
NAs) to sponge miRNAs, but currently, the functional cogni-
tion of the circRNA in IDD is unclear [12, 13]. miRNAs are
small molecules consisting of noncoding single-stranded
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RNAs that contain 18–22 nucleotides, which can be used as
posttranscriptional gene regulatory elements [14]. circRNAs
can compete with miRNA through their miRNA response
elements to compete for endogenous RNA, regulating the
expression of miRNA target mRNA [15, 16].

Based on the analysis of datasets obtained from the GEO
database, we screened DEmRNAs, DEmiRNAs, and DEc-
ircRNAs in IDD compared to normal samples using five pub-
lic datasets (GSE70362, GSE56081, GSE63492, GSE116726,
and GSE67566). Figure 1 shows a flowchart presenting the
entire study. First, we collected microarray datasets related
to IDD, which provided the expression profiles of mRNAs
from the GEO as well as different expressions of mRNAs.
Meanwhile, we obtained DEmRNAs’ sponge miRNAs and
miRNA target circRNAs to identify whether they functioned
as ceRNAs in IDD and constructed a regulatory network
related to IDD. Subsequently, we established a protein-

protein interaction (PPI) network and identified hub genes.
Next, the hub gene analyses on GO, KEGG, and Reactome
enrichment were used to reveal the functions of key genes
in IDD. Our study provides effective data to explore the
mechanism of IDD.

2. Methods

2.1. GEO Dataset Collection. Microarray datasets GSE67567,
GSE70362, and GSE116726 were extracted from the GEO
database [17]. GSE67567 had three subdatasets: GSE67566,
circRNA expression profile; GSE63492, miRNA expression
profile; and GSE56081, mRNA expression profile. The
GSE70362 dataset contained 24 samples from NPs in this
study; we chose Thompson grade I-II as controls and grade
IV-V as degenerations from NPs. Table 1 shows the informa-
tion collected from the datasets.
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Figure 1: Flowchart of the present study.

Table 1: Basic information of the 5 microarray datasets from GEO.

Type Series Platform Source name Samples (control/IDD)

mRNA GSE70362 GPL17810 Nucleus pulposus 24 (8/16)

miRNA GSE63492 GPL19449 Nucleus pulposus 10 (5/5)

miRNA GSE116726 GPL20712 Nucleus pulposus 6 (3/3)

mRNA GSE56081 GPL15314 Nucleus pulposus 10 (5/5)

circRNA GSE67566 GPL19978 Nucleus pulposus 10 (5/5)
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Figure 2: Continued.
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2.2. Differential Expression Analysis. The data processing
flow was as follows. (1) All raw expression data were
imported and further analyzed using the R software. (2) If

annotation information from GPL was incomplete, we used
the Gemma software [18, 19] (https://gemma.msl.ubc.ca/
home.html) to get the annotation information. (3) The data
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Figure 2: mRNA, miRNA, and circRNA expression profile of normal and IDD groups: pink represents the IDD group and blue the represents
normal group; red represents upregulated expression value and green represents downregulated expression value. (a) Heat map of GSE56081.
(b) Heat map of GSE70362. (c) Heat map of GSE63492. (d) Heat map of GSE116726. (e) Heat map of GSE67566.
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was preprocessed by the “dplyr” program package: the probes
were filtered, and the background was adjusted. Next, the
“limma” program package was used to normalize the data.
(4) We used “limma” to determine DEmRNAs, DEmiRNAs,
and DEcircRNAs in each dataset with the criteria of ∣log2
ðfold changeÞ ∣ >1 and P value < 0.05 [20].

2.3. Protein-Protein Interaction Network Mapping. We iden-
tified the mRNAs that were common between the two groups
of microarray chips, namely, GSE56081 and GSE70362.
STRING online software (https://string-db.org) was used to
assess the potential interactions between the proteins
encoded by the DEmRNAs [21, 22]. The results obtained
from the STRING website were imported into Cytoscape

3.7.1. We used the cytoHubba plugin from Cytoscape 3.7.1
to determine the central proteins.

2.4. Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes Enrichment Analysis. DAVID [23] (https://david
.ncifcrf.gov/) is a gene function annotation online tool web-
site. We imported the list of common DEmRNAs into the
DAVID website and obtained the GO/KEGG analysis results
of these genes [24, 25].

2.5. Transcription Factor Enrichment Analysis. We used the
ChEA3 software regarding the common DEmRNAs to per-
form the enrichment analysis of transcription factor (TF),
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Figure 3: mRNA, miRNA, and circRNA expression profile of normal and IDD groups, expression value and green represents downregulated.
(a) Volcano plots of mRNAs from GSE56081. (b) Volcano plots of mRNAs from GSE70362. (c) Volcano plots of miRNAs from GSE63492.
(d) Volcano plots of miRNAs from GSE116726. (e) Volcano plots of circRNAs from GSE67566.
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as these TFs were probably meaningful for further explora-
tion of the mechanism of IDD [26].

2.6. circRNA-miRNA-mRNA Network Construction. Three
algorithms (ENCORI [27], TargetScan [28–30], and miRe-
cords [31]) were used to depict miRNAs, predicted by the
key DEmRNAs. We hypothesized that the intersection
results of miRNAs predicted in the database and DEmiRNAs
analyzed in the R software were the crucial miRNAs. Then,
we used ENCORI and circBank [32] databases to predict
miRNA-bound circRNAs. Correspondingly, the intersection
of circRNAs predicted in the database and DEcircRNAs ana-
lyzed in R software is regarded as the key circRNAs. Further,
we predicted mRNAs targeted by the miRNA using miRmap
[33]. Finally, all results were imported into Cytoscape to
build a circRNA-miRNA-mRNA network.

3. Results

3.1. GEO Dataset Collection and Data Preprocessing. Five
microarray datasets from the GEOwere included in this study.
GSE56081 contained 3412 DEmRNAs (930 downregulated
and 2482 upregulated), and GSE70362 contained 148 DEmR-
NAs (81 downregulated and 67 upregulated) (Figures 2 and
3). Besides, GSE116726 and GSE63492 contained 930 (420
downregulated and 510 upregulated) and 56 (25 downregu-
lated and 31 upregulated) DEmiRNAs, respectively, and 628
DEcircRNAs were selected from GSE67566.

3.2. Establishment of the PPI Network. Thirty-one common
DEmRNAs, which were common between GSE56081 and
GSE70362, were selected for further analysis (Figure 4(a)).

A PPI network was constructed using the common DEmR-
NAs, which included 16 nodes and 20 interaction pairs
(Figure 4(b)). The cytoHubba plugin identified two hub pro-
teins, MMP2 and COL6A2, in this network.

3.3. Transcription Factor Enrichment Analysis. ChEA3 was
used to enrich the TF targets of common DEmRNAs to fur-
ther explore their distribution and biological functions. TFs
play a regulatory role by regulating gene expression and tran-
scription. The results showed that the functions of the TF tar-
gets included collagen fibril organization, skeletal system
development, and regulation of ossification (Figure 5(a)).
The TFs were verified that were distributed into various tis-
sues, such as the muscle, blood vessel, and adipose tissue
(Figure 5(b)). The top 10 TFs included TWIST2, TWIST1,
OSR1, PRRX1, FOXC2, PRRX2, AEBP1, ZNF469, FOXS1,
and RFX8 (Figure 5(c)).

3.4. GO and KEGG Analysis. According to DAVID database
analysis, GO analysis identified 18 enriched GO terms and 4
KEGG pathways from 31 common DEmRNAs. Figure 6
shows the enriched GO terms. The most enriched GO terms
in BP were “GO: 0007155-cell adhesion” (P = 0:001, n = 6); in
CC was “GO: 0070062-exosome” (P = 0:0037, n = 12); and in
MF were “GO: 0030020-extracellular matrix structural con-
stituent conferring tensile strength” (P = 0:0099, n = 2).
KEGG mainly included “hsa04974: protein digestion and
absorption” (P = 0:0008, n = 4), “hsa04151: PI3K-Akt signal-
ing pathway” (P = 0:0055, n = 5), “hsa04512: ECM-receptor
interaction” (P = 0:0149, n = 3), and “hsa05146: amoebiasis”
(P = 0:0216, n = 3).
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Figure 4: (a) The Venn diagram of common DEmRNAs from GSE56081 and GSE70362. (b) PPI network of DEmRNAs in IDD including 16
mRNAs.
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3.5. Construction of the circRNA-miRNA-mRNA Network
in IDD. The PPI network identified MMP2 and COL6A2
as the hub mRNAs in IDD. Furthermore, MMP2 is known
to play a more important role in IDD [34]. After using
ENCORI, TargetScan, and miRecords to predict the

mRNA-miRNA pairs, ENCORI and circBank were used
to predict the circRNA-miRNA pairs. This study found
that MMP2 had target relationships with hsa-miR-185-5p
and hsa-miR-423-5p, using the intersection of miRNAs
predicted by the database and DEmiRNAs (Figure 7(a)).
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Similarly, six circRNAs were predicted in the network by
the intersection of circRNAs predicted by the database and
DEcircRNAs. Among them, miR-185-5p predicted three cir-
cRNAs (hsa_circ_0011950, hsa_circ_0042415, and hsa_circ_
0043438) (Figure 7(b)), and miR-423-5p predicted three cir-
cRNAs (hsa_circ_0002874, hsa_circ_0000554, and hsa_circ_
0000894) (Figure 7(c)). Eventually, we created an mRNA-
miRNA-circRNA network potentially related to IDD
(Figure 8).

4. Discussion

IDD is known to be related to LBP and spine-related dis-
eases. However, the pathogenesis of IDD remains poorly
understood. circRNAs, a novel class of ceRNA, without a
5′ cap or 3′ tail, have been proven to play an important
regulatory role in IDD. Additionally, numerous studies

have illustrated that circRNAs serve as miRNA sponges
to modulate the pathogenesis of IDD [35, 36]. In the
ceRNA theory, mRNA and circRNA regulate each other’s
expression by targeting their common miRNAs, which are
important for understanding the progression of the disease.
Previous studies have shown that the dysregulation of mul-
tiple ncRNA, such as miR-21 [37], miR-455-5p [38], and
circ-FAM169A [39], contributes to the progression of
IDD. Zhu et al. [40] used the GSE67567 dataset in the
GEO database to construct a regulatory network of
lncRNA/circRNA-miRNA-mRNA interactions in IDD and
predicted multiple ceRNA regulatory axes. In this study,
bioinformatics analysis identified two hub genes (MMP2,
COL6A2) as crucial genes in IDD, as determined by topolog-
ical feature analysis of genes in a PPI network and module
screening to explore the effects of ncRNAs on pathogenesis
and treatment of IDD.
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Figure 6: (a) The dot plots of GO enrichment analysis. (b) The dot plots of KEGG enrichment analysis. (c) Chord plot showing the important
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MMP2 is known to play a significant role in the pro-
cess of IDD [41]. Song et al. [34] found that miR-874-3p
protected the intervertebral disc from degeneration by sup-
pressing the expression of MMP2 and MMP3. Guo et al.
[42] proved that the circ-TIMP2-miR-185-5p-MMP2 sig-
nal axis promoted ECM imbalance in NPs. Bioinformatics
analysis showed that most of the 31 DEmRNAs in IDD
were associated with cell adhesion and cell exosome, and
the phosphatidylinositol-3 kinase (PI3K)/Akt signaling
pathway was involved in the pathogenesis of IDD. The down-
regulation of hsa-circ-0002874 [43] could regulate the

miR1273f/MDM2/P53 signaling pathway to reverse the pacli-
taxel (PTX) resistance of non-small-cell lung cancer (NSCLC)
and induce apoptosis. The expression of hsa-circ-0000554 was
found to be enhanced in esophageal cancer tissues and radio-
resistant esophageal cancer tissues [44]. Based on the identi-
fied IDD-related hub DEmRNAs, we established a circRNA-
miRNA-mRNA regulatory network, which could serve as
diagnostic and prognostic biomarkers.

However, this study had several limitations. This research
was mainly done using bioinformatics analysis; thus, further
studies are required for experimental verification.
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5. Conclusion

In this study, bioinformatics methods were used to analyze
and identify differentially expressed genes and ncRNAs
involved in the progression of IDD. A total of 31 differentially
expressed genes were predicted, of whichMMP2 was regarded
as the key hub genes. Furthermore, a total of six DEcircRNAs
as well as miR-423-5p and miR-185-5p were predicted as the
upstream circRNAs and miRNAs of MMP2. This regulatory
network would be of great significance in exploring the IDD
mechanism.
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