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Cervical cancer is one of the most malignant reproductive diseases seen in women worldwide. The identification of dysregulated
genes in clinical samples of cervical cancer may pave the way for development of better prognostic markers and therapeutic
targets. To identify the dysregulated genes (DEGs), we have retrospectively collected 10 biopsies, seven from cervical cancer
patients and three from normal subjects who underwent a hysterectomy. Total RNA isolated from biopsies was subjected to
microarray analysis using the human Clariom D Affymetrix platform. Based on the results of principal component analysis
(PCA), only eight samples are qualified for further studies; GO and KEGG were used to identify the key genes and were
compared with TCGA and GEO datasets. Identified genes were further validated by quantitative real-time PCR and receiver
operating characteristic (ROC) curves, and the highest Youden index was calculated in order to evaluate cutoff points (COPs)
that allowed distinguishing of tissue samples of cervical squamous carcinoma patients from those of healthy individuals. By
comparative microarray analysis, a total of 108 genes common across the six patients’ samples were chosen; among these, 78
genes were upregulated and 26 genes were downregulated. The key genes identified were SPP1, LYN, ARRB2, COL6A3,
FOXM1, CCL21, TTK, and MELK. Based on their relative expression, the genes were ordered as follows: TTK > ARRB2 > SPP1
> FOXM1 > LYN > MELK > CCL21 > COL6A3; this generated data is in sync with the TCGA datasets, except for ARRB2.
Protein-protein interaction network analysis revealed that TTK and MELK are closely associated with SMC4, AURKA, PLK4,
and KIF18A. The candidate genes SPP1, FOXM1, LYN, COL6A3, CCL21, TTK and MELK at mRNA level, emerge as promising
candidate markers for cervical cancer prognosis and also emerge as potential therapeutic drug targets.

1. Introduction

Cervical cancer is the most commonly diagnosed gynaecolo-
gical cancer after breast cancer worldwide [1–4]. In spite of
the effective screening programs and vaccination, incidence
and mortality rates are increasing alarmingly. Nearly
570,000 new cases are diagnosed with the disease resulting
in the death of about 311,000 cases per year in well-
developed countries [3]. As per global mortality rates, India

alone accounts for one-fourth part of the cervical cancer
deaths [2]. The incidence of the disease is very high in India,
nearly 122,844 women are diagnosed with the disease and
around 67,477 deaths are reported annually [5]. It is a
renowned fact that human papillomavirus (HPV) infection
plays a prominent role in the pathogenesis of cervical cancer
and more than 70 percent of cervical cancer cases can be
accredited to two types of virus, i.e., HPV-16 and HPV-18
[6]. Women infected with human papillomavirus (HPV)
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progress to precancerous stages LSIL (low-grade squamous
intraepithelial lesions/CIN I) and HSIL (high-grade intrae-
pithelial lesions or CIN II/CIN III), and these high-grade
lesions further lead to invasive cervical cancer over a period
of time [6, 7]. Oncogenic HPV infection alone is insufficient
to cause malignancy; subsequently, other related genetic
factors like smoking, long-term usage of oral contraceptives,
high parity, sexual behaviour, unwillingness to undergo
screening, and improper hygienic conditions contribute sig-
nificantly [6, 8, 9]. Deciphering the key concepts involved in
the transformation of malignancy and advancement of the dis-
ease, comprehending the underlying molecular mechanisms
and detecting cancer at an early stagemight reduce themortal-
ity rate and would also provide better prognosis. Very limited
studies have been carried out to understand the initiation, pro-
gression, and pathology of this disease in India; therefore, this
study was performed to provide a comprehensive tran-
scriptome analysis of cervical cancer patients of Indian origin.
Molecular signatures for better prognosis and potential thera-
peutic targets from this data analysis were identified and fur-
ther confirmed by comparing it to the TCGA datasets.

2. Materials and Methods

2.1. Sample Collection. A total of 10 tissue samples, 7 biopsies
from cervical cancer patients (squamous cell carcinoma) and 3
from the normal subjects, were collected from the Mehdi
Nawaz Jung (MNJ) Cancer Hospital and CC ShroffMaternity
Hospital, Hyderabad. Normal cervical tissues (nontumor sam-
ples) were obtained from the women who underwent hyster-
ectomy for other gynaecological-related problems. The
institutional ethical committee review board of Osmania Uni-
versity and MNJ Cancer Hospital has approved the study.

2.2. DNA Isolation and Detection of HPV. DNA was isolated
from the tumor and nontumor (controls) biopsy samples
using the QIAamp DNA mini kit (Cat: 51104), and the qual-
ity was determined by biospectrophotometer (Eppendorf).
The DNA isolated was subjected to beta-globin (housekeep-
ing gene) PCR using specific primers to check the quality of
DNA. The GP5+/GP6+ primers [10], which amplify the
HPV DNA by binding to the L1 region of the HPV genome,
were used to detect the human papillomavirus (HPV) posi-

tivity in the DNA samples of both tumors and nontumor
samples. The primer sequences have been given in Table 1.

2.3. RNA Isolation. Total RNA was isolated from cervical
cancer (tumor) and normal cervix (nontumor) tissues by
using the RNeasy Plus universal kit (Qiagen, Cat No:
73404). The quality of RNA was affirmed by using biospec-
trophotometer (Eppendorf), and RIN (RNA integration
number) values were assessed using Agilent 2100 bioanaly-
zer. To check the integrity of 28s and 18s rRNA, the total
RNA was run on formaldehyde agarose gel and the degraded
samples were excluded from the study.

2.4. Affymetrix Microarray Hybridization Analysis. A total of
10 high-quality RNA samples were labelled and hybridized
on human Clariom D gene chips, as per the manufacturer’s
protocol (Affymetrix, Santa Clara, CA, USA # 902922).
Briefly, double-stranded complementary DNA (cDNA) and
complementary RNA (cRNA) were synthesized from total
RNA, and then, biotinylated cDNA was hybridized onto the
human transcriptome array 2.0 for 16 hours in an Affymetrix
GeneChip 645 hybridization oven at 45°C. The arrays were
stained by using GeneChip Fluidics Station 450. Later, the
chip was scanned with GeneChip™ scanner 3000 [11]. The
fluorescent signals of the array were obtained as DAT files.
Raw data of ARR and DAT image files contain pixel intensity
values. Affymetrix GeneChip Command Console (AGCC)
software is used for converting the raw data of ARR and
DAT image files into intensity data (.CEL files and .CHP files).
Affymetrix Clariom D .CEL files were normalized to produce
probe-level signal expression values (.CHP files) by using
Expression Console (EC) software (version 1.4.1). The CHP
files were transferred to transcriptome analysis console
(TAC) software (version 4.0.2) and analyzed the expression
pattern of the genes, exons, splice variants, and the related
pathways involved in the cervical cancer progression [12].

The microarray data have been submitted to the GEO
database with accession number GSE127265 with the link
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE127265.

2.5. Creation of Venn Diagram Using Python. To generate the
Venn diagrams for common up and downregulated genes

Table 1: Primer sequences and amplicon sizes of selected genes used in the real-time qPCR reaction.

Genes Forward primer Reverse primer Amplicon sizes (bp)

SPP1 CGAGGTGATAGTGTGGTTTATGG GCACCATTCAACTCCTCGCTTTC 128

TTK CCGAGATTTGGTTGTGCCTGGA CATCTGACACCAGAGGTTCCTTG 110

MELK TCCTGTGGACAAGCCAGTGCTA GGGAGTAGCAGCACCTGTTGAT 153

FOXM1 GGAGCAGCGACAGGTTAAGG GTTGATGGCGAATTGTATCATGG 115

LYN GCTGGATTTCCTGAAGAGCGATG CGGTGAATGTAGTTCTTCCGCTC 117

ARRB2 ACTGGACCCTCTCTTGCTGA CTTTTCACTGTCCCCTTCCA 122

COL6A3 CCATCCGAGACTTCATTGCT CCCTTTTTGTTGGATGGGTA 132

CCL21 AGCAGGAACCAAGCTTAGGCTG GGTGTCTTGTCCAGATGCTGCA 133

Beta-actin CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT 135

GP5+/GP6+ TTTGTTACTGTGGTAGATACTAC GAAAAATAAACTGTAAATCATATTC 150
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from 6 patients, we used Pyvenn (https://github.com/
tctianchi/pyvenn) and Pandas packages (https://pypi.org/
project/pandas) of python.

2.6. DEGs Validation by Quantitative PCR (qPCR). Eight sig-
nificant target genes obtained from transcriptome data were
selected to perform the quantitative PCR. Primer sequences
of selected DEGs are given in Table 1. In brief, 1μg of total
RNA from each sample (tumor and nontumor) was
reverse-transcribed by iScript™ cDNA synthesis kit (Bio-
Rad, Cat#1708891). From that, 50 ng of reverse-transcribed
RNA (1μl) was used to perform the expression analysis of
selected genes by using SYBR Green Master Mix (KAPA
SYBR® FAST (2X) Universal, Cat no: KK4601) in Agilent
AriaMx real-time PCR detection system, with a final volume
of 20μl reaction in each well. The protocol consists of 40
cycles at 95°C for 10 minutes (hot start), 95°C for 15 seconds
(melting), and 60°C for 30-60 sec (annealing and extension),
as recommended by the manufacturer’s instructions. All the
samples were processed in triplicates, and beta-actin gene
was used as an endogenous control for reference. The results
were normalized with endogenous control by using the Livak
method (2−ΔΔCt) [13]. Statistical analysis for qPCR was per-
formed in GraphPad Prism 6 (GraphPad Software Inc., San
Diego, CA), mean ± standard error ðSEMÞ, and mean ±
standard deviation ðSMDÞ where all the values were calcu-
lated by Student’s t-test with a significant p value < 0.05.

2.7. Receiver Operating Characteristic (ROC) Curves. Receiver
operating characteristic (ROC) curve displays the discrimi-
natory accuracy of the marker for distinguishing between
two groups. The ΔCT values of each sample were used to plot
receiver operating characteristic (ROC) curve. ROC is a plot
of the sensitivity (true positive rate) vs. 1 − specificity (false
positive rate) and is used for estimating possible threshold
values of all the identified markers. The area under the
ROC curve (AUC) value of the DEGs defines the usefulness
of markers with respect to its ability to separate the two dif-
ferent groups of cervical tissue biopsies. The highest Youden
index was calculated by using the ROC curve; the Y-index is
associated with optimal threshold cutoff point (COP) for the
DEGs. The COP values indicate increased or decreased
expression levels of DEGs in cancer and normal samples.
All the plots were obtained by using R-Studio version 3.6.3.

2.8. Gene Ontology (GO) and KEGG Functional Enrichment
Analysis. To determine the significantly implicated func-
tional genes and biological pathways of selected DEGs,
enrichment analysis was performed from the publicly avail-
able bioinformatics online database DAVID (The Database
for Annotation, Visualization and Integrated Discovery)
(Version 6.8, https://david.ncifcrf.gov), which aids in analyz-
ing the GO and KEGG pathways of dysregulated genes. Gene
Ontology (GO) is a standard recognized classification system
for defining biological functions (BF), molecular functions
(MF), and cellular components (CC) of differentially
expressed genes, and KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway enrichment analysis was used to

determine the significant signaling pathways with significant
p value < 0.05.

2.9. Gene Expression Data Retrieved from GEO and GEPIA.
The microarray gene expression profiles of GSE63514 and
GSE9750 were obtained from the publicly available NCBI-
Gene Expression Omnibus (GEO) database of cervical cancer
(http://www.ncbi.nlm.nih.gov/geo). Gene expression profil-
ing interactive analysis (GEPIA) web tool was used to analyze
the box plots of RNA sequencing expression data from cervi-
cal cancer squamous cell carcinoma (CESC) of TCGA dataset
(306 tumor and 13 nontumor samples) and GTEx projects
[14]. These two data mining sites were used to cross-
validate the expression of DEGs in cervical cancer tissues in
comparison to the normal tissues.

2.10. Construction of Protein-Protein Interaction (PPI)
Network. The differentially expressed genes (DEGs) obtained
from microarray analysis were analyzed by using a bioinfor-
matics tool STRING (Search Tool for the Retrieval of Inter-
acting Genes/Proteins) Cytoscape version 3.6.1 [15]. It
predicts the potential interaction between genes at the pro-
tein level; a combined score greater than 0.4 was used to con-
struct the PPI network of the proteins. In this composite
network, each node represents a specific protein and each
edge (line) represents the interaction among the proteins.

3. CytoHubba

CytoHubba plugin Cytoscape explores the significant hub
genes from the biological networks employed by eleven node
rankingmethods which include local-based methods (degree,
edge percolated component, maximum neighborhood com-
ponent (MNC), density of maximum neighborhood compo-
nent (DMNC), and maximal clique centrality) and global-
based methods (bottleneck, eccentricity, closeness, radiality,
betweenness, and stress). It uses ranking features to rank dif-
ferent nodes in a network, and based on their values, hub
genes are reported. Maximum clique centrality (MCC) is a
better scoring method to identify essential nodes from the
network [16]. Based on the scoring, CytoHubba finally selects
top 10 proteins from the given network.

4. Results

4.1. Identification of Gene Signatures Using Microarray Data
in Cervical Cancer. This study intended to identify the dif-
ferential gene expression pattern in cervical cancer patients
of Indian origin. Cervix tissue biopsies were collected, and
HPV infection was determined by HPV consensus PCR
(Figure S1). Only HPV-positive samples were selected for
total RNA isolation, and quality of the RNA was verified
by 1.2% formaldehyde gel. Total RNA was subjected to
microarray analysis using the human Clariom™ D chip
array (Affymetrix, Santa Clara, CA). The gene expression
data analysis was performed by two sequential steps, (a)
preprocessing (normalization) and (b) descriptive statistics.
For preprocessing, we used SST-RMA (signal space
transformation-robust multichip analysis) algorithm to
normalize the signal intensity of the expression data. After
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normalization, data is subjected to PCA (principal
component analysis) for monitoring the distribution of
samples. Based on the PCA, two samples (1 control and 1
diseased with IDs GSM3633379 and GSM3633376) were
found to be outliers; hence, not included in further analysis,
and the remaining samples were distributed into two
groups, six patients’ samples in one group and 2 controls in
another group (Figure 1(a)). Hierarchical clustering is a

descriptive statistical method employed to identify the
differential expressed genes with a fold change (≥2 and ≤-2)
and ANOVA p value of ≤0.05. The results revealed
clustering of that data into two, namely, clusters A and B
representing control and patients (Figure 1(b)). In the
figure, the red color represents upregulated and green color
represents downregulated genes. A total of 15,325 genes
were differentially expressed in patients when compared to

PCA2 15.3%

PCA1 34.0%

PCA3 12.2%
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Figure 1: Identification of gene signatures using microarray data analysis in cervical cancer. (a) Principal component analysis (PCA) of
transcriptome data. Three-dimensional scatter plot represents the gene expression patterns between patients’ and control samples. (b)
Hierarchical clustering displays differentially expressed genes in cervical squamous cell carcinoma. Red color indicates a high-level
expression of genes (fold change > 2), and green color indicates the low-level expression of genes (fold change < 2) with p value < 0.05. (c)
Distance plot shows frequencies of up- and downregulated genes in patients’ samples.

4 BioMed Research International



Patient 1

Patient 2
Patient 3

Patient 4
Patient 5

Patient 6

(a)

Gene Name Fold change ANOVA p value Function

ANK2 –3.35 0.000011 Ion channel binding protein

CCL21 –3.11 0.04527 Chemokine signaling pathway

COL6A3 –3.04 0.011224 ECM-receptor interaction

CYR61 –4.8 0.000885 Integrin binding protein

KLF4 –3.2 0.006834 DNA binding transcription factor

SLIT3 –4.46 0.001017 Axon guidance mediated pathway

FOXM1 3.32 0.004787 FOXM1 signaling pathway

SPP1 6.13 0.000404 PI3k-AKT pathway

TTK 7.4 0.000458 positive regulation of cell proliferation

KIF14 4.96 0.001902 Microtubule associated protein

ARRB2 2.7 0.024238 G-protein coupled receptor signaling

LYN 2.49 0.006381 Tyrosine kinase signaling /NF-kappa 𝛽 pathway

ATAD5 3.52 0.002665 DNA binding protein

MELK 6.03 0.00035 G2/M transition of mitotic cell cycle

ECT2 5.88 0.001919 Signaling G-protein

CDKN2A 7.9 0.002591 Cell cycle

KIF18A 5.01 0.000103 Mitotic sister chromatid segregation protein

LAMP3 4.34 0.00994 Lysosome associated membrane protein

PLK4 3.39 0.001139 Mitotic nuclear protein

SMC4 4.34 0.005528 Chromosome organization

(b)

Figure 2: Continued.
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controls, and six patients showed 1267, 3463, 2726, 2741,
2102, and 3026 transcripts, respectively. Subsequently, we
plotted a distance plot, to find whether transcripts (up and
down) were distributed equally among the patients or not.
The frequency of upregulated genes in all patients is higher
than downregulated genes (Figure 1(c)). Patient 1 showed
892 up (coding-147) and 375 down (coding-59), patient 2
showed 1802 up(coding-155) and 1661 down (coding-337),
patient 3 showed 1526 up (coding-149) and 1200 down
(coding-201), patient 4 showed 1475 up (coding-143) and
1266 down (coding-208), patient 5 showed 1254 up
(coding-131) and 848 down (coding-157), and patient 6
showed 1748 up (coding-209) and 1278 down (coding-214)
dysregulated genes.
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Figure 2: Identification of common deregulated genes in cervical cancer patients. (a) Venn diagram representing the total number of
common upregulated (left panel) and downregulated (right panel) DEGs in patients’ samples. (b) A set of key genes involved in molecular
signaling pathway based on the GO and KEGG pathway analysis. (c) Relative expression of dysregulated genes validated by qPCR.
Statistical analysis revealed that the difference in expression between normal and tumor was significant (p ≤ 0:05).
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Figure 3: ROC curve for DEGs based on the RT-qPCR data. The figure represents a plot of the sensitivity (true positive rate) vs. 1 − specificity
(false positive rate) for all the ΔCT values. The AUC values indicate that the two groups may be distinguished by expression analysis of these
markers. The point on the dotted line shows the highest Youden (Y) indices associated with the COP. The resolute values of AUC, Y , and
COP for the examined DEGs are listed in Table 2.

Table 2: Statistical analysis based on the ΔCT values of the control
vs. the patient group of DEGs.

Genes AUC
Y

-index
COP
(ΔCT)

p
value

95% confidence
interval

SPP1 0.941 0.769 8.82 0.0003 0.851 to 1.031

TTK 0.936 0.756 9.22 0.002 0.821 to 1.051

MELK 0.806 0.571 9.96 0.025 0.589 to 1.023

FOXM1 0.824 0.542 9.56 0.007 0.663 to 0.984

LYN 0.875 0.675 10.79 0.020 0.659 to 1.091

ARRB2 0.847 0.573 7.94 0.003 0.696 to 0.997

COL6A3 0.829 0.514 3.28 0.024 0.628 to 1.029

CCL21 0.826 0.589 8.86 0.012 0.649 to 1.003
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4.2. Identification and Validation of Common Differentially
Expressed Genes (DEGs) in Cervical Cancer Patients. To iden-
tify the common genes involved in the progression of cervical
cancer across patients, we performed a comparative analysis
using Venn diagram software. The results showed that a total
of 104 common DEGs were identified, of which 78 are upreg-
ulated (logFC > 2) and 26 are downregulated (logFC< -2)
(Figure 2(a)). To identify the cellular pathways associated with
the progression of cancer, these 104 common genes were sub-
jected to GO functional and KEGG pathway enrichment anal-
ysis by using DAVID database. Of these, 20 genes are involved
in chemokine signaling, tyrosine kinase signaling, cell division,
and cell-cell signaling pathways which are listed in the table
(Figure 2(b)). In order to validate themicroarray findings, eight
DEGs were selected based on the involvement of cancerous
pathways in other cancers and also in cervical cancer, but very
limited studies have been reported in Indian population: SPP1
(PI3K-Akt signaling pathway-hsa0415) [17], TTK (cell cycle-
hsa04110) [18], MELK (cell cycle-hsa04110) [19], FOXM1
(cellular senescence-hsa04218) [20, 21], LYN (viral carcinogen-
esis-hsa05203) [22], ARRB2 (MAPK signaling pathway-
hsa04010) [23], COL6A3 (ECM-receptor interaction) [24],

and CCL21 (chemokine signaling pathway-hsa04062) [25].
These 8 genes (SPP1, TTK, MELK, FOXM1, LYN, ARRB2,
COL6A3, and CCL21) were further validated inmore numbers
of cancer tissue samples by quantitative real-time PCR (qRT-
PCR). Among these, TTK gene showed significant upregula-
tion followed by ARRB2 (TTK > ARRB2 > SPP1 > FOXM1
> LYN > MELK). CCL21 was found to be significantly down-
regulated as compared to COL6A3 as shown in (Figure 2(c)),
and all these genes behaved similarly as seen in the microarray
data and our study is in accordance with other published
reports of cervical cancer.

4.3. Receiver Operating Characteristic (ROC) Curves Analysis.
The ROC curves were graphically plotted from the data
derived by RT-qPCR using the ΔCT values, and AUC was
determined. The AUC (Figure 3) and COP values with the
highest Youden indices for all the represented upregulated
and downregulated DEGs have been listed in Table 2. The
ΔCT values under the COP (upregulated) of SPP1, TTK,
MELK, FOXM1, LYN, and ARRB2 and the ΔCT over the
COP (downregulated) of COL6A3 and CCL21 were consid-
ered to be positive for the malignancy in the test group
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Figure 4: Schematic work flow (with inclusion and exclusion criteria) for GEO datasets analysis.
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(cervical squamous tissue biopsies) and were statistically
significant at p < 0:05.

4.4. Data Mining of Selected DEGs in Cervical Carcinoma. To
determine the clinical significance of selected DEGs in
patients of cervical carcinoma, we performed data mining
using the NCBI-GEO (Gene Expression Omnibus) and
TCGA (The Cancer Genome Atlas) databases. NCBI-GEO
datasets’ raw data files were analyzed by using Expression
Console (EC) and Transcriptome Analysis Console (TAC)
software provided by the Affymetrix, Santa Clara, CA, USA.
In brief, Expression Console (EC) software is used to convert
the raw data files (.CEL files) in to probe-level signal expres-
sion values (.CHP files). The Transcriptome Analysis
Console (TAC) software is used to analyze these signal
expression values (.CHP files) for downstream analysis of
all library files in Affymetrix platforms. The gene expression
profile from the GSE63514 dataset consists of 28 cancerous
and 24 normal cervical tissues, and GSE9750 dataset consists

of 33 cancers and 24 normal cervical tissues; the gene chip
platforms of both these datasets were Affymetrix HG-
U133_Plus_2.0 and Affymetrix HG-U133A array. The inclu-
sion criteria of selecting the datasets was that the data
obtained from normal tissue and cancer tissues samples ana-
lyzed on Affymetrix platform and the raw data files from cell
lines and early lesions/CIN cases were excluded as the study
is aimed at identifying the dysregulated genes between nor-
mal and cancerous tissues. Schematic work flow (with inclu-
sion and exclusion criteria) for the GEO datasets analysis is
shown in Figure 4. Both GEO datasets’ CEL raw files were
analyzed using Expression Console and TAC software pro-
vided by the Affymetrix (Figure 5). Gene expression profile
of selected DEGS in the GSE63514 and GSE9750 GEO data-
sets is shown in Figure 5(a). GEPIA is a web-based tool for
cancer and normal gene expression profiling based on TCGA
database. The interactive analysis tool was applied to confirm
the expression level of the eight DEGs (SPP1, TTK, MELK,
FOXM1, LYN, ARRB2, COL6A3, and CCL21) in cancer

GSE63514

Gene Name Fold change ANOVA p value ANOVA p value

SPP1 6.56 0.000003

TTK 2.44 5.03E-07

MELK 3.73 5.37 E-12

FOXM1 2.49 1.11E-07

LYN 1.78 0.003313

CCL21 –1.03 0.069

ANOVA p value

GSE9750

Gene Name Fold change

SPP1 17.93 1.00E-04

TTK 2.84 0.000002

MELK 3.72 7.04E-14

FOXM1 2.71 2.11E-15

LYN 2.87 4.11-08

(a)
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Figure 5: Data mining based on GEO and TCGA datasets. (a) Gene expression profile of selected DEGS in GEO datasets GSE63514 and
GSE9750. (b) Box plot representing relative expression patterns of dysregulated genes in cervical squamous cell carcinoma (CESC) using
the TCGA database.
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Figure 6: Continued.
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and normal tissues (Figure 5(b)). The gene expression pro-
files of all genes were significant except for ARRB2.

4.5. Protein-Protein Interaction Network of DEGs and
CytoHubba. PPI network of dysregulated genes (78 upregu-
lated and 26 downregulated) was constructed in the STRING
with the help of Cytoscape. The resultant network has 53
nodes and 106 edges (Figure 6(a)). CytoHubba plugin selects
the top 10 highest scored genes from the network by using
the maximum clique centrality (MCC) scoring method
(Figure 6(c)). By comparing the 8 DEGS microarray data
with high scoring CytoHubba genes, it was found that only
TTK and MELK proteins were interacting with other genes
(Figure 6(b)). Thus, the results suggest that analyzing and
validating these two genes at the protein level might be useful
for therapeutic applications of cervical cancer.

5. Discussion

Development of cervical cancer is a complex process; persis-
tent infection of human papillomavirus (HPV) is a prerequi-
site for cervical cancer and its precursor lesions [26] along
with HPV; genetic and epigenetic factors also play a crucial
role in pathogenesis. Microarray has been extensively used
to study the genetic alterations in cancer and to identify the
disease-specific prognostic biomarkers and therapeutic
targets; therefore, we performed microarray-based tran-
scriptome analysis to identify the dysregulated genes in cervi-
cal cancer.

This study revealed the 108 common genes were differen-
tially expressed (78 upregulated and 23 downregulated
genes) between patients’ samples compared to the normal
cervix. Based on the results obtained from the data mining
and GO and KEGG pathway enrichment analysis [27], which
are widely used for the selection of essential genes, we
selected further a total of eight genes for experimental valida-
tion by using real-time PCR assay. The selected genes for the
analysis are SPP1, TTK, MELK, FOXM1, LYN, ARRB2,
CCL21, and COL6A3, and apart from CCL21 and COL6A3,

all other genes were upregulated in the clinical samples. The
clinicopathological significance of selected genes was ana-
lyzed by ROC curves, and the inferences of AUC for diagnos-
tic ability of selected DEGs were specified. All the selected
DEGs, both the upregulated and downregulated, showed sig-
nificant investigative value for differentiating between
healthy controls and patients (Figure 3, Table 2). The Youden
index for the ROC curve for all the DEGs can be used as the
ideal diagnostic cutoff value.

It is clear from our study that SPP1 (secreted phospho-
protein 1), also called as osteopontin, is highly upregulated
in all the tested cancer samples and also has been reported
in other population studies; hence, SPP1 emerges as a poten-
tial prognostic biomarker for cervical cancer screening in
women [28, 29]. Aberrant activation of OPN expression has
been reported in gastric, colon, renal, breast, oesophageal,
and endometrial cancers [30, 31]. TTK is a dual-specificity
protein kinase, and the dysregulated expression of this pro-
tein has shown to be involved in cell proliferation in multiple
cancers. Upregulation of TTK has shown to be associated
with malignant transformation of cervical cancer [18, 32,
33]. Maternal embryonic leucine zipper kinase (MELK) is a
serine/threonine-protein kinase, which plays an important
role in embryogenesis and cell cycle control. It is overex-
pressed in malignant tumors including hepatocellular carci-
noma, breast cancer, cervical cancer, and ovarian cancer
[19, 34–36]. Forkhead box M1 (FOXM1), a known driver
of tumorigenesis [37], plays a key role in a wide variety of cel-
lular processes such as cell cycle regulation (G2 to M progres-
sion), angiogenesis, cell differentiation, cellular senescence,
and epithelial-mesenchymal transition (EMT). In the major-
ity of cancers, overexpression of FOXM1 induces the pro-
gression of the disease [21, 37, 38]. LYN is a tyrosine kinase
which is deregulated in a variety of cancers like breast, pros-
tate, melanoma, and cervix [39–42]. β-Arrestin 2 (ARRB2)
belongs to the arrestin family, which helps to modulate the
desensitization and trafficking of G protein-coupled recep-
tors (GPCRs). It regulates cell proliferation and promotes cell
invasion and migration in renal cancer [43].

ZWILCH

SMC4 MELK
ESCO2

KIF18A
AURKA KIF14

CENPN
PLK4

TTK

(b)

Rank Network Score Gene

1 9606.ENSP00000349961 21054 SMC4

2 9606.ENSP00000216911 21011 AURKA

3 9606.ENSP00000270861 20958 PLK4

4 9606.ENSP00000298048 20904 MELK

5 9606.ENSP00000358813 20903 TTK

6 9606.ENSP00000263181 20222 KIF18A

7 9606.ENSP00000377007 10086 CENPN

8 9606.ENSP00000311429 10086 ZWILCH

9 9606.ENSP00000356319 10082 KIF14

10 9606.ENSP00000306999 5886 ESCO2

(c)

Figure 6: PPI network and CytoHubba. (a) STRING creates PPI network of dysregulated genes; each circle represents the node (gene). (b, c)
Based on the ranking of the highly interconnected dysregulated top 10 hub proteins predicted by CytoHubba.
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Collagen alpha-3(VI) chain (COL6A3) is associated with
cell anchoring and helps in microfibril formation [44]. It
forms a filamentous network with collagen types I and III
and ECM remodeling to create a tumor microenvironment.
A recent study by Huang et al. (2018) showed significantly
upregulated expression of COL6A3 in bladder cancer. They
suggested that COL6A3 may regulate the levels of EMT-
related proteins to enable cell migration and metastasis
[45]. Reports on gastric cancer and colorectal cancer also
showed high expression of COL6A3 [24, 46], but interest-
ingly in our study, COL6A3 has shown lower expression
and this downregulation might be due to mucinous nature
of the cervical tissue. CC chemokine ligand (CCL21) plays
an important role in homing of immune cells, peripheral tol-
erance, and development and function of T regulatory cells.
CCL21 mediates its activity through binding to its receptor
CCR7. Various studies have shown that elevated levels of
CCL21/CCR7 lead to migration and proliferation of cancer-
ous cells [47, 48], although decreased expression of CCL21
was reported in human colorectal adenocarcinoma [49].
Downregulation of CCL21 is attributed to upregulated
expression of SPP1 in cervical cancer tissue [50]. Further,
we validated these DEGs by using the TCGA database. Over-
all, our results show concordance between the qPCR data and
TCGA data.

6. Conclusion

We have identified a panel of genes SPP1, MELK, TTK,
ARRB2, FOXM1, LYN, CCL21, and COL6A3, which were
highly dysregulated in cervical squamous cell carcinoma in
comparison to the normal cervical epithelium through
microarray analysis, and further gene expression was vali-
dated using qPCR and analyzed by receiver operating charac-
teristic (ROC) curves. Some of these aberrantly dysregulated
genes were previously reported in other cancers and also in
cervical cancer, but very limited studies have been reported
in Indian population. Among these, SPP1 and CCl21 were
found to be potent secretary molecules contributing to the
progression of cervical cancer; thus, the current study pro-
jects these genes as potential therapeutic targets in general
for cervical cancer and in specific for the Indian population.
These genes need to be further validated in larger cohorts
of Indian populations to establish them as potential diagnos-
tic and prognostic markers, as well as prospective therapeutic
targets for cervical cancer.
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