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To achieve a dose distribution conformal to the target volume while sparing normal tissues, intensity modulation with steep dose
gradient is used for treatment planning. To successfully deliver such treatment, high spatial and dosimetric accuracy are crucial and
need to be verified. With high 2D dosimetry resolution and a self-development property, the Ashland Inc. product EBT3
Gafchromic film is a widely used quality assurance tool designed especially for this. However, the film should be recalibrated
each quarter due to the “aging effect,” and calibration uncertainties always exist between individual films even in the same lot.
Recently, artificial neural networks (ANN) are applied to many fields. If a physicist can collect the calibration data, it could be
accumulated to be a substantial ANN data input used for film calibration. We therefore use the Keras functional Application
Program Interface to build a hierarchical neural network (HNN), with the inputs of net optical densities, pixel values, and
inverse transmittances to reveal the delivered dose and train the neural network with deep learning. For comparison, the film
dose calculated using red-channel net optical density with power function fitting was performed and taken as a conventional
method. The results show that the percentage error of the film dose using the HNN method is less than 4% for the aging effect
verification test and less than 4.5% for the intralot variation test; in contrast, the conventional method could yield errors higher
than 10% and 7%, respectively. This HNN method to calibrate the EBT film could be further improved by adding training data
or adjusting the HNN structure. The model could help physicists spend less calibration time and reduce film usage.

1. Introduction

In addition to dose painting, various strategies of radiation
therapy with steep dose gradients are used to deliver a nonuni-
form dose to a clinical target with reduced toxicity to normal
tissues [1, 2]. To ensure both spatial and dosimetric accuracy,
quality assurance (QA) is vital for treatment centers. Several
two-dimensional dosimetry tools have been introduced to
expedite this QA, including portal dosimetry devices [3, 4],
matrix detectors [5–9], and film dosimeters [4, 10–12]. Of

these, the Gafchromic EBT film is widely used, largely due to
its self-development characteristic, near dose-to-water equiva-
lence [13], high spatial resolution, rereadability, relatively
uniform dose-response across a wide range of photon energies
[2, 11, 14], and inexpensive techniques for read-out using
commercially available flatbed document scanners [15].

Several generations of the Gafchromic film have been
developed, but only EBT2 and EBT3 film models are recom-
mended by Ashland for verifying all beam-modulated
techniques [16]. This is because spatial nonhomogeneity is
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corrected by its yellow marker dye [15, 17–22], so it is less
sensitive to the visible spectrum, and it is available for
repeated scans [23, 24]. With the matte polyester substrate
to avoid the formation of Newton’s rings [25–28], the EBT3
film has active layer composition and dosimetric properties
similar to EBT2 [26], with insignificant side dependence of
the film [29]. Based on the Ashland report, the effective
atomic numbers of EBT2 and EBT3 films are around 6.8
and 7.3, which is approximately water equivalent, increasing
their suitability for patient dosimetry [24, 30].

However, the calibration responses and the fitting
parameters change due to sensitivity variations between
film lots and the so-called film “aging effect” that changes
film sensitivity with shelf life [31–35]. The film aging effect
can be diminished if the background is subtracted using
the net optical density, a conventional calibration method;
but periodical recalibration (e.g., once per quarter) is rec-
ommended [33, 35].

Film calibration can be done by extracting the net optical
density [36], the pixel value [24], and the inverse transmit-
tance [37] appropriate for the delivered dose with the ade-
quate equations. Recently, Zhuang et al. used the pytorch
artificial neural network (ANN) platform (https://pytorch
.org/) with inputs of optical densities for calibrating different
EBT3 lots [38]. Zhuang subsequently did a trial with 400
training inputs from 6 films, where each film had different
lot numbers, and the mean square errors (MSE) of the test
batches reached 18 cGy. In our study, a hierarchical neural
network (HNN) was built using the Keras functional Applica-
tion Program Interface (https://keras.io/guides/functional_
api/). Hierarchical networks, based on a hierarchical organiza-
tion, consist of several ANN subnets, each of which deals with
a specific aspect of the input data. The subnet models with
some input variables determine the overall training pattern
[39]. HNN was previously used for survival analysis [40].
Here, it is used to find a solution for the film age effect and
intralot variation.

2. Materials and Methods

Gafchromic EBT3 films from different lots were scanned by
an Epson 10000XL scanner in a fixed portrait orientation to
create 127 dpi tiff images before and after calibration deliv-
ery, referred to as prescan and postscan, respectively. Just
before calibration delivery, a 6MV photon beam from an
Elekta Synergy accelerator was quickly calibrated at the depth
of 5 cm (SSD 95 cm, field size 102 cm2 and 1 cGy/MU)
according to AAPM TG reports [41–44]. Then, the film
was tightly sandwiched in a 30 cm cubic RW3 polystyrene
phantom, and the cubic phantom was located above another
10 cm thick backup plates. The film plane was parallel to the
beam central axis with its midline, the line longitudinally sep-
arated the film into two equal parts, oriented to be coincident
with the central beam.

A dose in the daily treatment range was delivered to the
film, and the film dose at midline was exactly calculated by
the delivered MU and the verified percentage depth doses
[24, 36, 37, 45–47]. After 24 hours, each film was rescanned
with the same 127 dpi, and all the tiff format images were

analyzed using the Matlab and Keras software. Lot No.
03211802 EBT3 films (Lot C) were exposed 17 times at differ-
ent dates within 20 months for film calibration. The time
interval between the 16th and 17th calibration was 4 months.
The previous 11 and 16 times calibrations of lot C films were
collected to be portion I and II training data with 2394 and
3762 inputs, respectively. The training data of portion II
was used to manage the film aging effect since it needs longer
collection, and the 17th calibration film was used for the test
data. Portion I was used for the intralot variation verification
test by using lot A (lot No. 07191602) with 7 calibrations and
lot B (lot No. 03071603) with 3 calibrations. For comparison
with the developed HNN method, the conventional method
is introduced below.

2.1. Conventional Method. The red-channel net optical den-
sity (R-NOD) of the calibration film can be written as

RNOD = log10
RPVpre
RPVpost

" #
, ð1Þ

where RPVpre and RPVpost are the extracted red-channel
pixel value (PV) from the prescan (background) image and
the postscan image, respectively.

The R-NOD extracted from the midline of the film is
fitted to the delivered dose using the power function

Dfit = a × RNOD + b × RNODc, ð2Þ

where Dfit is the fitted dose; and a, b and c are fitting param-
eters. The fitting process was repeated twice, the first time
with a and b not bound, but c bound between 1 and 3. After
obtaining the fitted c value, it was rounded to the nearest
tenth. Then, the second fitting process was started with the
same parameter values as the first. The percentage error
between the calculated dose and delivered dose, Etr, using
the conventional method can be written as

Etr = Dc −Ddð Þ/Dd × 100%, ð3Þ

where Dc is the calculated dose by equation (2) and Dd is the
delivered dose.

The films of the first calibration of lots A and B and
the 16th calibration of lot C were used to calculate the fit-
ting parameters individually through the power function
of equation (2). All the other films of lots A and B and
the 17th calibration of lot C were used for the verification
test.

2.2. Deep Learning HNN Method. A hierarchical neural
network (HNN) was built using the Keras deep learning
Application Program Interface (API), written in Python
and running on top of the machine learning platform Ten-
sorFlow. The input parameters for the HNN training are
R-NOD, red-channel irradiated PV (R-IPV) extracted
from the postscan image with the red-channel background
PV (R-BPV) extracted from the prescan image, green-channel
irradiated PV (G-IPV) with green-channel background PV
(G-BPV), blue-channel irradiated PV (B-IPV) with blue-
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channel background PV (B-BPV), red-channel inverse trans-
mittance (R-IT) with green-channel inverse transmittance
(G-IT), and with blue-channel inverse transmittance (B-IT).
The inverse transmittance (IT), TW , can be written as

TW = 216 − 1
� �

/PVW ð4Þ

where W represents one of the R, G, and B channels.
Some of the input parameters may depend on each other;

however, all have been used for film calibration with different
techniques [24, 36, 37] since each has its own advantages.
The red-channel PV has the highest sensitivity to the dose
range of daily treatment, while the green-channel PV and
blue-channel PV have higher dynamic responses to higher
delivered doses [37, 48]. As the earliest used parameter, with
many published papers, R-NOD was gradually replaced by
the IT of the RGB used for the three-channel calibration
technique [36, 37]. The three-channel background PV was
intended to manage the film aging effect. These ten kinds of
inputs were reorganized as five input groups: (1) R-NOD,
(2) R-IPV/R-BPV, (3) G-IPV/G-BPV, (4) B-IPV/B-BPV,
and (5) R-IT/G-IT/B-IT; as shown in Figure 1.

This structure can be described with the functions O1,
O2 ⋯O7 : O1 = f (R-NOD), O2 = f (R-IPV, R-BPV), O3 =
f (G-IPV, G-BPV), O4 = f (B-IPV, B-BPV), O5 = f (R-IT,
G-IT,B-IT), O6 = f ðO2,O3,O4Þ, and O7 = f ðO1,O5,O6Þ,
where O1ð:Þ is approached with one input, 20 neurons in
the 1st hidden layer, 10 neurons in the 2nd hidden layer, 7
neurons in the 3rd hidden layer, and one output (i.e., model
1-20-10-7-1); O2ð:Þ is approached with a model 2-10-7-2-1;
O3ð:Þ is approached with a model 2-10-7-1; O4ð:Þ is
approached with a model 2-10-7-1; O5ð:Þ is approached with
a model 3-15-7-1; O6ð:Þ is approached with a model 3-10-7-
1; and O7ð:Þ is approached with a model 3-20-6-1. Figure 2
illustrates the detailed structure.

“Selu,” “elu,” “relu,” “softplus,” and “linear” are activa-
tion functions. The initial weighting was set as a uniform,
random number generator seed 435. The optimization algo-
rithm “Adam” is used as an extension to stochastic gradient
descent in place of classical stochastic gradient descent to
update network weights more efficiently and steadily. Since

the training deals with a multiple-regression problem, a
mean squared error (MSE) objective function is optimized
through the “Adam” optimizer. MSE is also a desirable met-
ric that is used to evaluate performance of the model. The
other two metrics used in this HNN are “mean absolute
error” (MAE) and “accuracy.” Then, the fitting process was
executing with batch size of 20 and 500 epochs. The valida-
tion split is 0.45; that is, 45% training data was held back
for validation.

The number of hidden layers, neurons, and activation
functions were systematically adjusted so all the calculated
doses converged to be equal to the delivered doses, which
can be examined through the value of MSE and MAE and
the illustration of the delivered dose with the calculated
dose. The training results using portion I films is shown
in Figure 3, where the red line is one calibration data of
portion I.

2.3. Intralot Verification Test. Due to sensitivity variations
between lots, the calculated dose through the trained HNN
model for the 1st calibration film of lot A and lot B film is
found clearly away from the line, where calculated doses are
equal to delivered doses. To make the lot C training results
work for lots A and B, the calculated film doses of the 1st cal-
ibration films of lots A and B through the trained HNN are
refitted to the delivered dose Dd as below:

Drfit = e ×H3 + f ×H2 + g × H + k, ð5Þ

where Drfit is the fitted dose; e, f , g, and k are fitting param-
eters; and H is the calculated dose through the trained HNN.
The fitting results are shown in Figure 4. equation (5) is then
used to calculate the film doses of lots A and B.

2.4. Aging Effect Verification Test. The 17th calibration film of
lot C is used for the verification test of film aging. The dose of
the 17th verification film is calculated through the trained
HNN that was executed by using the films of portion II,
and the calculated dose is compared with the delivered dose.
Here, the refit (equation (5)) is not performed, since the test
lot and training lot are the same lot.

ANN

ANN

R-NOD

ANN ANN ANNANN

R-IPV R-BPV G-IPV G-BPV B-IPV B-BPV

ANN

R-IT G-IT B-IT

O1

O2
O3

O4

O5

O6

O7

Figure 1: Simplified deep learning HNN frame using the Keras functional API for film-dose calibration.
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Applying the deep learning HNN method, the H value of
the first calibration film of lots A and B was used to calculate
the fitting parameters of equation (5), and all the other films

of lots A and B and the 17th calibration lot C film will be used
for the verification test of the interlot and aging effect, respec-
tively. The percentage error between the calculated dose and
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Figure 2: Detailed structure of the deep learning HNN.
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the delivered dose, Ehnn, using the HNN method can be writ-
ten as

Ehnn = Drd =Ddð Þ/Dd × 100% ð6Þ

where Drd will be the film doses calculated through equation
(5) for lot A and lot B and Drd =H for the lot C film of the
17th calibration.

3. Results and Discussion

Figure 5 illustrates the training results of the 2394 inputs
from the portion I films of lot C, with the H values calculated
through the trained HNN using the 1st calibration film of lots
A and B, and their refit doses calculated through equation
(5). A black line, “Perfect”, shows the ultimate goal of calcu-
lated doses equal to delivered doses.

Since lots A and B are different from lot C, the H values
(blue dots), calculated doses using the trained HNN, are
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Figure 4: Refit of the HNN dose of the 1st calibration films of (a) lot A and (b) lot B through equation (5).
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apart from the black line (Figure 5). After the refitting proce-
dure (equation (5)), the calculated dose (red line) approaches
the black line.

To calculate the fitting parameters of equations (2) and
(5), 228 and 114 data points were extracted from the 1st

calibration film of lots A and B, respectively. For the verifica-
tion test, the complete 684 and 228 inputs of lots A and B,
respectively, excluding the 1st calibration, were used to calcu-

late Drd (equation (6)) and compared with the delivered doses
(Figure 6). The percentage error, Ehnn, is within 4.5% using the
deep learning HNN method. The percentage error, Etr, gener-
ally is also within 4.5%, by using the conventional R-NOD
method, but would be higher than 7% and 5% for the delivered
doses around 70 cGy, of lot A and lot B, respectively.

The 17th calibration film of lot C is used for the verifica-
tion test of the aging effect. The calculated dose through the
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Figure 5: H values of training data (yellow dots), Drfit by equation (5) (red line), “Perfect” black line (calculated doses equal to delivered
doses), and the H values (blue dots) of 1st calibration films of (a) lot A and (b) lot B.
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trained HNN compared with the delivered dose is within 4%
(Figure 7). The calculated dose through the R-NOD by equa-
tion (2), where the fitting parameters are obtained from the
16th calibration film, four months before the 17th calibration
date, is generally lower than the delivered dose with a mean
percentage error of 6.8%, though some exceed 11%. This
higher percentage error is because of the aging effect, which

means the recalibration is needed if using the conventional
method. In contrast, the HNN method can help compensate
for this effect.

The MSE calculated after the HNN training of portions I
and II is 11.19 (2394 inputs) and 14.47 cGy (3762 inputs),
MAE 2.39 cGy and 2.55 cGy, respectively. The averaged
MSE of all the verification tests is less than 6.4 cGy.
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Figure 6: Percentage differences between the calculated dose (equation (2), equation (5)) and the delivered dose for the verification test of Lot
A and Lot B films.
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Compared with the study of Zhuang et al. using pytorch with
2-6-3-1 pretraining ANN and 2-6-3-9-1 protraining ANN,
400 NOD training inputs and 80 test NOD inputs [38], more
training data and test data (thousands vs. hundreds), were
used in our study. Our results also show a lower averaged ver-
ification test MSE, 6.4 cGy vs. 10.4 cGy.

Examining either high dose or low dose aspects, the
two data ends shown in Figure 3 for the training process
of our HNN model, it can be seen that if one part con-
verges well, the other part will have divergences. The final
chosen model is actually the compromise of the above.
There are some trials that may improve the HNN model-
ing in future work: (1) modifying the activation functions,
hidden layers, and the neuron numbers of the HNN
model; (2) using R-NOD to separate the delivered doses
to several ranges, with each range having its own well-
trained HNN model; and (3) add new, appropriate param-
eters to the HNN model.

If the film used is not from the training lot, its H
value generally will substantially depart from the “perfect”
line (Figure 5) due to intralot variability of the film sen-
sitivity, which requires physicists to calibrate new film
lots at least once (by equation (5)). To apply our HNN
model, equation (5) was used for the new lot refit, and
it proved to be workable (Figure 6). However, equation
(5) may not be feasible if the film sensitivity of a new
lot varies so much that the H values will be far from
the “perfect” line. Future research could consider resolv-
ing intralot variation, by putting the new lot calibration
parameters into the HNN training model and giving
them higher weights.

4. Conclusions

A deep leaning HNN method to calibrate the EBT3 film with
better calibration accuracy than the conventional R-NOD
method is presented. About the aging effect, the percentage
error of the HNN method is within 4% and proved to be
unaffected, while the averaged percentage error of the con-
ventional R-NOD method is about 6.8%. This new technique
can be improved by updating the new calibration data into
the HNN training system whenever physicists perform the
recalibration. Basing on collecting calibration data with the
HNN method, physicists could spend less calibration time
and reduce film usage.
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