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The development of immunotherapy has greatly changed the advanced-stage non-small-cell lung cancer (NSCLC) treatment
landscape. The complexity and heterogeneity of tumor microenvironment (TME) lead to discrepant immunotherapy effects
among patients at the same pathologic stages. This study is aimed at exploring potential biomarkers of immunotherapy and
accurately predicting the prognosis for advanced NSCLC patients. RNA-seq data and clinical information on stage III/IV
NSCLC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). In TCGA-NSCLC with
stage III/IV (n = 192), immune scores and stromal scores were calculated by using the ESTIMATE algorithms. Univariate,
LASSO, and multivariate Cox regression analyses were performed to screen prognostic TME-related genes (TMERGs) and
constructed a gene signature risk score model. It was validated in external dataset including GSE41271 (n = 91) and GSE81089
(n = 36). Additionally, a nomogram incorporating TMERG signature risk score and clinical characteristics was established.
Further, we accessed the proportion of 22 types of tumor-infiltrating immune cells (TIIC) from the CIBERSORT website and
analyzed the difference between two risk groups. OS of patients with high immune/stromal scores were higher (log-rank P =
0:044/log-rank P = 0:048). Multivariate Cox regression identified six prognostic TMERGs, including CD200, CHI3L2, CNTN1,
CTSL, FYB1, and SLC52A1. We developed a six-gene risk score model, which was validated as an independent prognostic factor
for OS (HR: 3.32, 95% CI: 2.16-5.09). Time-ROC curves showed useful discrimination for TCGA-NSCLC cohort (1-, 2-, and 3-
year AUCs were 0.718, 0.761, and 0.750). The predictive robustness was validated in the external dataset. The C-index and 1-,
2-, and 3-year AUCs of nomogram were the largest, which demonstrated the nomogram had the greatest predictive accuracy
and effectiveness and could be used for clinical guidance. Besides, the increased infiltration of T cells regulatory (Tregs) and
macrophages M2 in the high-risk group suggested that chronic inflammation may reduce survival probability in patients with
advanced NSCLC. We conducted a comprehensive analysis of the tumor microenvironment and identified the TMERG
signature, which could predict prognosis accurately and provide a reference for the personalized immunotherapy for advanced
NSCLC patients.

1. Introduction

Lung cancer remains the leading cause of cancer morbidity
and mortality, according to global cancer statistics. In 2018,
there were approximately 2.1 million new lung cancer cases
and 1.8 million lung cancer deaths, accounting for 11.6% of
all new cases and 18.4% of all cancer deaths, respectively,

globally [1]. Unfortunately, almost 85% of lung cancer
patients are diagnosed with non-small-cell lung cancer
(NSCLC) [2]. Among them, 20% of patients belong to stage
I/II, and surgical resection is considered as the mainly pre-
ferred treatment option. Meanwhile, 80% of patients were
diagnosed as stage III/IV, at which time surgery resect no
longer available and radiotherapy and chemotherapy are
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recommended [3]. However, these treatments often lead to
drug resistance and relapse in the advanced stage after
long-term treatment [4].

In the past decade, immunotherapy has been increasingly
prominent in the comprehensive treatment of advanced
NSCLC due to its high efficacy and safety [5, 6]. Multiple
inhibitory agents, such as programmed death protein-1
(PD-1) and programmed death molecular ligand-1 (PD-
L1), have been approved by the FDA for their significant
therapeutic effects on advanced NSCLC in the first- and
second-line treatment [7]. Results of patient-reported out-
comes with durvalumab after chemoradiotherapy in stage
III, unresectable non-small-cell lung cancer (PACIFIC trial)
has shown a significant increase in progression-free survival
with durvalumab in patients at stage III-NSCLC [8]. This
suggests that immunotherapy has been extended from
patients with distant metastasis (stage IV) to locally
advanced patients (stage III). An accurate pathological stage
is an important basis for selecting lung cancer treatment.
Nevertheless, the complexity and heterogeneity of tumor
immunosuppressive microenvironment led to discrepant
immunotherapy effects among patients at the same patho-
logic stages [9]. For particular individuals, the survival ben-
efits of immunotherapy are minimal and with side effects.
Therefore, an accurate predictive model is urgently needed
to evaluate the prognosis of immunotherapy in patients with
advanced NSCLC. Only in this way, appropriate treatments
could be selected to balance side effects and survival benefits
and to decide whether to implement immunotherapy. No
effective biomarkers have been found to independently pre-
dict the efficacy of immunotherapy for stage III/IV NSCLC.
The development of high throughput technology and bioin-
formatics makes it possible to find more effective biomarkers
in the big data environment.

In the tumor microenvironment, the immune and stro-
mal components together with their secretory factors create
a chronic inflammation, immunosuppressive, and tumor-
generating environment [10]. The immunotherapy positive
response usually depends on the interaction between tumor
cells and immune regulation in the tumor microenviron-
ment (TME). Immune and stromal cells are the two main
nontumor components of TME [11]. Among these, immune
cells are associated with tumor invasion and metastasis, and
stromal cells have an important effect on tumor growth, pro-
gression, and drug resistance [12, 13]. Our study employed
the ESTIMATE algorithm proposed by Yoshihara et al. [14]
to calculate the stromal score, immune score, and tumor
purity. The algorithm has been used to screen immune-
and stromal-related prognostic genes in gastric cancer, liver
cancer, and renal cancer, while immune/stromal score in
advanced NSCLC based on this algorithm has not been
explored [15–17]. Several studies have indicated immune cell
infiltration is conducive to explain the pathogenesis and pro-
gression of NSCLC. We used the CIBERSORT algorithm
proposed by Newman et al. to analyze the immune cell infil-
tration. The CIBERSORT algorithm could comprehensively,
rapidly, and accurately infer the relative proportion of 22
infiltrating immune cells in tissues compared with immuno-
histochemical technique and flow cytometry [18].

The primary aim of the present study was to identify
TME-related genes based on the ESTIMATE algorithm and
to construct and validate a TME-related prognostic score
model for stage III/IV NSCLC. Secondly, a nomogram which
incorporated the TME-related biomarkers and clinical fea-
tures was constructed to assess the immunotherapy sensitiv-
ity and prognostic characteristics for each patient. Finally, we
explored the relationship between immune cell infiltration
and TME-related risk score model, so as to verify the reliabil-
ity of the model.

2. Materials and Methods

2.1. Data Download and Processing. The gene expression data
of lung cancer tissues was downloaded from The Cancer
Genome Atlas (TCGA) up to July 11, 2020 (https://portal
.gdc.cancer.gov/), by using the Genomic Data Commons
(GDC, https://portal.gdc.cancer.gov/) tool. The download
conditions of the expression profiles for tumors were as fol-
lows: (1) primary site was “bronchus and lung”; (2) disease
types were “Adenomas and Adenocarcinomas” and “Cystic,
Mucinous, and Serous Neoplasms”; (3) projects were
“TCGA-LUAD,” “TCGA-LUSC,” and “TCGA-MESO.”
Demographic information and clinical pathologic data for
the NSCLC patients, including age, gender, race, histology
classification, tumor location, tumor stage, T/N/M stage, over-
all survival (OS) time, overall survival status, progression-
free survival (PFS) time, and progression-free survival status,
were retrieved and downloaded from the website of cBioPor-
tal (http://www.cbioportal.org/). Based on the requirement to
research purpose and data integrality, inclusion criteria were
as follows: (1) pathological stages were stage III, stage IIIa,
stage IIIb, and stage IV; (2) disease types were lung adenocar-
cinoma (LUAD), lung squamous cell carcinoma (LUSC), and
mesothelioma (MESO). Exclusion criteria are as follows: (1)
repeated measurements; (2) missing follow-up time, and
tumor stage information; (3) follow-up time was 0 days.
Finally, our study identified 192 tumor samples as training
dataset. Fragments per kilobase million (FPKM) data were
translated into transcripts per million (TPM) data. After
deleting duplicate records and expression quantification of
TPM data, 19,745 protein-coding genes remained.

Two microarray cohorts, the GSE41271 and the
GSE81089 datasets, were selected as external validation.
Raw data and annotation files were downloaded from the
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm
.nih.gov/geo/). Clinical information was retrieved from the
website of Sangerbox (http://sangerbox.com/Index). After
deleting samples with a follow-up time of 0 and stage I/II,
our study finally included 91 and 36 patients from two data-
sets, respectively. The raw data were processed by RMA back-
ground correction, log2 transformation, and normalization by
using the “affy” package. Since all data were downloaded from
publicly available databases, no ethical approval was required.

2.2. Identification of Immune and Stromal-Related DEGs.
The ESTIMATE algorithm (https://sourceforge.net/projects/
estimateproject/) was used to calculate immune scores, stro-
mal scores, and ESTIMATE scores [14]. We used the
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“maxstat” statistic to identify the optimal cut-point for contin-
uous variables, which could be achieved through the “survmi-
ner” package [19]. Immune and stromal scores were classified
into high- and low-score groups according to the optimal cut-
off values, respectively. The Kaplan-Meier (K-M) survival
curve was used to estimate OS probability, and the log-rank
test was employed to compare survival differences between
the two groups.

Differential expression analysis of high- and low-score
groups was performed with a “limma” package [20]. The P
value was adjusted by the false discovery rate (FDR) [21].
The up- and downregulated genes of immune and stromal
were obtained based on the criteria of fold change ≥ 1:5 and
adjusted FDR < 0:05. The intersection between immune-
related differentially expressed genes (DEGs) and stromal-
related DEGs was identified by using the VENNY online
website (https://bioinfogp.cnb.csic.es/tools/venny/). Heat
maps and volcano plots of DEGs were realized by the “pheat-
map” package and “ggplot2” package.

2.3. Function and Pathway Enrichment Analysis of DEGs.
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis of
DEGs could be implemented by the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID,
https://david-d.ncifcrf.gov/) [22–24]. GO analysis included
three main parts of biological process (BP), cellular compo-
nent (CC), and molecular function (MF). We selected the
top ten of GO terms in three parts to draw the histogram.
The top fifteen KEGG analysis terms were exhibited in the
bubble chart (adjusted P value < 0.05 was statistically
significant).

2.4. Construction and Validation of the TMERG Prognostic
Risk Score Model. Firstly, a univariate analysis of differential
genes was performed to screen out significant genes. Subse-
quently, the least absolute shrinkage and selection operator
(LASSO) Cox regression model was utilized for the further
screen prognostic genes to reduce redundant genes and avoid
overfitting the model. Finally, a Cox stepwise regression anal-
ysis was served to determine all independent prognostic
genes in the model [25]. The formula of TMERG signature
is as follows: risk score =∑ ðβi ∗ ExpiÞ (i represented the
rank of prognostic genes, βi represented every gene coeffi-
cient, and Expi represented every gene expression).
Advanced NSCLC were separated into high-risk and low-
risk groups according to the optimal cut-point of risk score.
The Kaplan-Meier (K-M) survival curve was used to estimate
OS probability and PFS probability, and the log-rank test was
employed to compare survival time differences between the
two groups. “Survival” package, “glmnet” package, “survmi-
ner” package, and “forestplot” package were used to conduct
the above analysis.

The TMERG signature risk score model was validated by
91 and 36 advanced NSCLC patients from the GSE81089 and
GSE41271 datasets. According to the risk score formula of
the training set, two independent validation sets were also
divided into a high-risk group and a low-risk group, respec-
tively. Similarly, the K-M survival curve and log-rank test

were employed to compare survival probability differences
between the two groups. The performance of the risk score
model in the training set and validation set was assessed
based on the time-dependent ROC, which was realized by
“timeROC.” The area under the curve (AUC) is more than
0.6, indicating good prediction discrimination.

2.5. Construction of Nomogram and Performance Assessment.
In order to assess the independent prognostic effect of
TMERG signature, all possible prognostic factors, including
demographic, clinical-pathological characteristics, and gene
risk score model, were incorporated into univariate and mul-
tivariate Cox proportional hazard regression. The results
were visualized using the “forestplot” package in R software.

The nomogram could accurately predict the survival
probability of an individual patient based on clinical charac-
teristics and TMERG signature risk score and has been
widely used in clinical diagnosis and prediction [26]. In the
present study, a nomogram was constructed including all
meaningful prognostic factors. For each individual, a total
score could be calculated by adding up the score of each
prognosis factors, thereby predicting 1-, 2-, and 3-year sur-
vival probabilities. Subsequently, time-dependent ROC and
calibration were used to assess the performance of nomo-
gram, which was realized by the “timeROC” and “rms” pack-
age [27]. If probabilities approach the 45-degree angle line in
a calibration plot, it indicates that there was a good consis-
tence between the risk score prediction and the actual
observations.

2.6. Estimated Infiltrating Immune Distribution Based on
TMERG Signature. CIBERSORT is a deconvolution algo-
rithm for immune cell subtype expression based on linear
support vector regression [18]. LM22 provides the annotated
gene expression signatures for 22 immune cell subtypes,
including seven T cell types, naive and memory B cells,
plasma cells, natural killer (NK) cells, and myeloid subsets.
The standardized gene expression data was uploaded to the
CIBERSORT website (http://cibersort.stanford.edu/), and
the algorithm was run based on LM22 signatures and 1000
arrangements. P < 0:05 for the type of immune cells, indicat-
ing that the hypothesis of the type of immune cells is accu-
rate, it is considered qualified for further analysis. We
evaluated the fractions of tumor immune infiltrating cell
(TIIC) type components in every NSCLC sample by using
the CIBERSORT algorithm. Unsupervised hierarchical clus-
tering analysis was performed to visualize the proportions
of TIIC in high-risk group tissues and low-risk group tissues.
The Wilcoxon test was performed to compare the differences
of TIIC between high-risk group tissues and low-risk group
tissues.

2.7. Statistical Analysis. If the sample satisfies normal distri-
bution, an independence t test was used to determine the sig-
nificance of the differences in mean values between the two
groups, and a one-way ANOVA test was used for variables
in more than two groups. If the sample did not satisfy normal
distribution, Wilcoxon is used to compare the two groups of
variables, and Kruskal-Wallis was used to compare more

3BioMed Research International

https://bioinfogp.cnb.csic.es/tools/venny/
https://david-d.ncifcrf.gov/
http://cibersort.stanford.edu/


than two groups of variables. The K-M survival curve was
drawn to calculate survival probability, and the log-rank test
was used to determine the significance of the difference in
survival probability between the two groups. Correlation
coefficient was calculated using Spearman’s correlation anal-
yses. All statistical analyses were implemented by R software
3.6.3. P < 0:05 was considered as statistically significant.

3. Results

3.1. Patient Demographic and Clinical Characteristic. The
entire training cohort involved gene expression data and
clinical information of 192 advanced NSCLC patients from
TCGA database. GSE41271 (n = 91) and GSE81089 (n = 36)
were used as two independent verification cohorts. The
detailed demographic and clinical pathologic characteristics
of the three independent cohorts are listed in Table 1.

3.2. Association of Immune and Stromal Scores with Clinical
Stage and Prognosis. The ESTIMATE algorithm was applied
to estimate the immune scores and stromal scores. Immune
scores range from -1181.63 to 3348.10, and stromal scores
range from -1805.27 to 1923.43. Both immune and stromal
scores roughly increased with increasing tumor invasion
stage. Tumors with low invasion (T1) yielded significantly
higher stromal and immune scores than those high invasion
groups (T2 and T3) (P < 0:05). There was no significant dif-
ference in immune and stromal scores in different M stages,
N stages, and pathological stages (Figure S2).

The optimal cut-off values were calculated by the R pack-
age “maxstat.” Advanced NSCLC patients were separated
into a high-score group and a low-score group by the optimal
cut-off value (Figure S3). According to the log-rank test
results, the mean OS time of patients with a high immune
score was significantly longer than that of patients with a
low immune score (log-rank test P = 0:044) (Figure 1(a)).
Similarly, patients with a high stromal score had better OS
probability than those with a low stromal score (log-rank
test P = 0:043) (Figure 1(b)). The PFS of the high immune
score group was significantly higher than that of the low
immune score group (log-rank test P = 0:004) (Figure 1(d)).
There was no significant difference in PFS between high
and low stromal score groups (log-rank test P = 0:076)
(Figure 1(e)).

3.3. Identification of Immune and Stromal-Related DEGs.We
used the “limma” package to analyze RNA-expression data.
Immune- (or stromal-) related differentially expressed genes
(DEGs) were identified by comparing the RNA-expression
comparison of NSCLC patients with high and low immu-
ne/stromal scores. A cluster analysis screened out immune-
related DEGs with high scores and low groups displayed in
a heat map (Figure 2(a)). A volcano plot exhibited signifi-
cantly differentially expressed genes (Figure 2(c)). A total of
1126 immune-related differential genes were identified,
which contain 139 upregulated genes and 987 downregulated
genes. The heat map and volcano map of stromal-related
DEGs are shown in Figures 2(b) and 2(d). A total of 1497
stromal-related DEGs including 302 upregulated genes and

1195 downregulated genes were screened. A Venn diagram
displayed 711 intersecting DEGs related to immune and stro-
mal, namely, TME-related DEGs, including 67 upregulated
and 644 downregulated genes (Figure 2(e)).

Top terms of GO analysis included immune response,
defense response, response to wounding, and inflammatory
response in BP; plasma membrane, plasma membrane part,
and extracellular region in CC; and carbohydrate binding,
cytokine activity, and polysaccharide binding in MF
(Figure 2(f)). The results of KEGG enrichment were also
related to immune responses, including cytokine-cytokine
receptor interaction, chemokine signaling pathway, and cell
adhesion molecules (CAMs) (Figure 2(g)). Collectively, these
results indicated that the enriched GO terms and KEGG
pathways were mainly related to immune response.

3.4. Screening of Prognostic TMERG and Construction of
TMERG Signature. A total of 77 genes related to the

Table 1: The clinical characteristics of advanced NSCLC in training
and validation cohort (n (%)).

Characteristics
Training set Validation set

TCGA
(n = 192)

GSE41271
(n = 91)

GSE81089
(n = 36)

Age (year)

<65 82 (42.71) 33 (36.26) 13 (36.11)

≥65 110 (57.29) 58 (63.74) 23 (63.89)

Gender

Male 117 (60.94) 54 (59.34) 14 (38.89)

Female 75 (39.06) 37 (40.66) 22 (61.11)

Histological type

LUAD 104 (54.17) 55 (60.44) 27 (75)

LUSC 88 (45.83) 36 (39.56) 9 (25)

Metastasis (M_stage)

M0 160 (83.33) 85 (93.41) 33 (91.67)

M1 32 (16.67) 6 (6.59) 3 (8.33)

Lymph node (N_stage)

N0 30 (15.63) — —

N1 47 (24.48) — —

N2 106 (55.21) — —

N3 9 (4.69) — —

Tumor invasion (T_stage)

T1 21 (10.94) — —

T2 85 (44.27) — —

T3 45 (23.44) — —

T4 41 (21.35) — —

Tumor stage

III 160 (83.33) 85 (93.41) 33 (91.67)

IV 32 (16.67) 6 (6.59) 3 (8.33)

Smoking

Yes 166 (86.46) 80 (87.91) —

No 26 (13.54) 11 (12.09) —

Abbreviations: LUAD= lung adenocarcinoma; LUSC = lung squamous cell
carcinoma.
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Figure 1: Association of stromal and immune scores with the prognosis of advanced NSCLC in TCGA. Kaplan-Meier survival curves and
log-rank test between high and low (a) immune score groups, (b) stromal score groups, and (c) ESTIMATE score groups.
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prognosis of advanced NSCLC from 711 DEGs were
screened by univariate Cox analysis. LASSO regression anal-
ysis models further identified 19 genes associated with OS
(Figures 3(a) and 3(b)). Six significant independent prognos-
tic genes were selected by multivariate Cox regression analy-
sis (Figure 3(c)). Among them, CD200, CHI3L2, FYB1, and
SLC52A1 were protective genes, whereas CNTN1 and CTSL
were risk genes. Patients with high expression of protective
four genes have a high survival probability, whereas high
expression of two risk genes is associated with lower sur-
vival probability (Figure S3). The prognostic gene risk score
model = ð−0:326 × expression value of CD200Þ + ð−0:187 ×
expression value of CHI3L2Þ + ð0:111 × expression value of
CNTN1Þ + ð0:505 × expression value of CTSLÞ + ð−0:310 ×
expression value of FYB1Þ + ð−0:252 × expression value of
SLC52A1Þ. According to the optimum cut-off threshold of
0.463, all advanced NSCLC patients were separated into a
high-risk group (n = 68) and a low-risk group (n = 124).

The differences of OS and PFS in the two risk score groups
are significant by the log-rank test (OS: P < 0:001; PFS: P <
0:001, Figures 3(d) and 3(e)).

According to time-dependent ROC analysis, the AUCs of
the OS predicted value in 1-, 2-, and 3-year were 0.718, 0.761,
and 0.681. And the AUCs of 1-, 2-, and 3-year were 0.801,
0.827, and 0.784 for the PFS prediction. The results showed
that the discrimination of the prognostic model was good.

3.5. Validation of TMERG Signature in External Dataset. To
verify the predictive robustness of the TMERG signature, its
performance was evaluated in two independent external
cohorts (GSE41271 and GSE81089). The risk score of each
patient in the testing sets was calculated according to the rel-
ative expression levels of the six genes, using the same for-
mula established in the training set. In each dataset,
samples were divided into a low-risk group and a high-risk
group with the optimal cut-off. The OS of patients in the
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Figure 3: Identification of TME-related genes associated with advanced NSCLC prognosis. (a, b) Seventy-seven TMERGs were identified by a
LASSO regression analysis. (c) Forest map showing six independent prognostic genes identified by a multivariate Cox regression analysis. (d,
e) Kaplan-Meier survival curves and log-rank test of OS and PFS between high- and low-risk score groups in TCGA. (d, e) The AUC for 1-, 2-,
and 3-year predicted OS and PFS in TCGA.
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low-risk group was significantly lower than that in the high-
risk group (GSE41271: P < 0:045; GSE81089: P < 0:021,
Figures 4(a) and 4(b)).

The evaluation of the validation cohort is based on time-
dependent ROC. Results of time-dependent ROC indicated
that the AUCs for 1, 2, and 3 years were 0.702, 0.620, and
0.637 in GSE41271 (Figure 4(c)). The AUC values of the
six-gene signature in predicting 1-, 2-, and 3-year survival
of advanced NSCLC patients were 0.770, 0.641, and 0.680
in GSE81089 (Figure 4(d)). In summary, the prognostic risk
score model of advanced NSCLC was verified to be effective
and robust.

3.6. Construction of Nomogram and Performance Assessment.
To determine whether TMERG signature is an independent
prognostic factor for patients with advanced NSCLC,
TMERGs along with covariates including age, gender, histo-
logical type, M stage, N stage, T stage and tumor stage, and
smoking history were involved in the univariate and multi-
variate Cox regression models. The results of univariate and
multivariate Cox regression analyses demonstrated that the
pathological N stage, pathological T stage, and risk score
were independent prognostic factors for advanced NSCLC
patients (Figures 5(a) and 5(b)). We constructed a nomo-
gram, combining these independent prognostic factors, as a
quantitative approach for calculating survival. Every patient
could obtain a total score by adding a corresponding score
for each prognostic factor (Figure 6(a)). Higher total scores
corresponded to a worse survival probability of patients. Fur-

thermore, the AUCs of the nomogram were 0.720, 0.799, and
0.772 at 1, 2, and 3 years, respectively (Figure 6(b)). Calibra-
tion showed that the 1-, 2-, and 3-year probabilities approach
the 45-degree angle line, implying that there was a good con-
sistence between the nomogram prediction and the actual
observations (Figure 6(c)).

We compared the predictive performance of the nomo-
gram, N stage, T stage, and TMERG risk score model. The
result showed the AUCs for nomogram predicting 1-, 2-,
and 3-year OS were the largest in all models. The C-index
of pathologic N stage, pathologic T stage, risk score model,
and nomogram was 0.558, 0.569, 0.639, and 0.703, respec-
tively (Table 2). Taking together, combining our risk score
model might increase the predicting sensitivity and specific-
ity of the conventional TNM stage and bring some net bene-
fit, which might help clinical management.

3.7. Infiltrating Immune Cell Distribution in Advanced
NSCLC. To further confirm the correlation between our
TMERG signature and immune microenvironment, we
applied the CIBERSORT algorithm to calculate TIIC propor-
tions and construct 22 kinds of TIIC profiles for patients with
advanced NSCLC (Figure 7(a)). The difference of the propor-
tion of immune infiltrating cells between high-risk and low-
risk samples was displayed in the heat map (Figure 7(b)).
The results from theWilcoxon test showed that a total of four
kinds of TIICs were different in two risk score groups
(Figure 6(c)). Among them, the immune cells with signifi-
cantly higher infiltrated in high-risk samples compared with
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low-risk samples were T cells regulatory (Tregs) and macro-
phages M2 (P < 0:05). T cells CD8 and macrophages M1
were significantly higher in low-risk samples than those in
high-risk samples (P < 0:05). Therefore, different immune
infiltrates in advanced NSCLC patients might be used as
prognostic indicators and targets of immunotherapy.

4. Discussion

There has been growing awareness in cancer research that
cancer is a complex ecosystem composed of both tumor cells
and nontumor cells. Nontumor components in tumor tissues
form TME. TME can not only promote tumor cell prolifera-
tion and protect tumor cells from apoptosis and metastasis
but also play a crucial role in immunotherapy. Our study cal-
culated immune scores/stromal scores in TME by using the

ESTIMATE algorithm, resulting in immune scores were pos-
itively correlated with OS time. The TMERG risk score
model involving 6 genes (CD200, CHI3L2, CNTN1, CTSL,
FYB1, and SLC52A1) was constructed and validated. Com-
pared with the TNM staging system and single TME-
related biomarkers, the multigene comprehensive model
has the advantages of accurate prediction and abundant
information. The nomogram, combining molecular level
and clinical characteristics, may provide more precise prog-
nostic predictions for individuals.

In the present study, we comprehensively elucidated the
TME, especially the two nontumor components, namely,
immune cells and stromal cells. Immune and stromal scores
calculated by the ESTIMATE algorithm clarified the diversity
of immune and stromal components in the TME. Our results
illustrated that immune and stromal scores were positively
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Figure 5: Univariate and multivariate Cox regression analysis of prognostic factors in TCGA. (a) Univariate Cox regression analysis of all
potential prognostic factors in TCGA. (b) Multivariate Cox regression analysis of all independent prognostic factors in TCGA.
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Figure 6: Nomogram and performance assessment. (a) Nomogram based on clinical factors and TMERG risk score. (b) The AUC for 1-, 2-,
and 3-year predicted OS in nomogram. (c) Calibration for the possibility of 1-, 2-, and 3-year predicted OS in nomogram.
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Figure 7: Continued.

Table 2: Comparison of the nomogram with the N stage, T stage, and risk score model.

Models 1-year AUC (95% CI) 2-year AUC (95% CI) 3-year AUC (95% CI) C-index (95% CI)

N stage model 0.560 (0.465-0.655) 0.612 (0.532-0.693) 0.566 (0.475-0.657) 0.558 (0.499-0.617)

T stage model 0.576 (0.482-0.669) 0.587 (0.499-0.675) 0.595 (0.496-0.694) 0.569 (0.510-0.628)

Risk score model 0.718 (0.641-0.796) 0.761 (0.695-0.827) 0.750 (0.681-0.818) 0.639 (0.586-0.692)

Nomogram 0.720 (0.629-0.812) 0.799 (0.726-0.872) 0.772 (0.693-0.851) 0.703 (0.650-0.756)

Abbreviations: 95% CI = confidence interval.
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correlated with tumor invasion and negatively correlated
with survival time in advanced NSCLC patients. This dem-
onstrated from different perspectives that immune/stromal
cells within TME play an indispensable role in tumorigenesis.

Immune-related genes and stromal-related genes were
overlapped to obtain TME-related genes, which were identi-
fied as candidate genes predicting the prognosis of advanced
NSCLC and representing the TME pattern. GO analysis
shows that 711 TMERGs are involved in immune-related
biological processes such as immune response, defense
response, response to wounding, and inflammatory response.
KEGG analysis revealed DEG enrichment in immune-related
pathways including cytokine-cytokine receptor interaction,
chemokine signaling pathway, and cell adhesion molecules
(CAMs). Functional annotation again demonstrated that
the immune- and stromal-related DEGs could be representa-
tive of TME patterns and were significantly associated with
immune infiltration status in NSCLC.

Univariate, LASSO, and multivariate Cox regression
analyses were used to screen the independent prognosis
genes to establish a TMERG signature, which had a high
accuracy in predicting OS and PFS of advanced NSCLC
patients. We found that TCGA-NSCLC patients in the low-
risk group had a significantly longer OS and PFS than
patients in the high-risk group, and these findings were vali-
dated in two independent GEO datasets subsequently. Time-
dependent ROC curves and C-index also indicated that the

TMERG risk score had a beneficial effect on prognosis pre-
diction. Although AUCs and C-index of the TMERG risk
score model were higher than the traditional pathological N
and T stage, the nomogram combining the TMERG risk
score model and the pathological stage had the best accuracy
and resolution.

The six genes that composed the risk score could be con-
sidered as potential therapeutic targets. Among these,
CD200, CHI3L2, FYB1, and SLC52A1 are the protective fac-
tors in the model. CD200 molecule (CD200) is a member of
the immunoglobulin superfamily, which is expressed by var-
ious cell types, including B cells, T cells, thymocytes, endo-
thelial cells, and neurons [28]. CD200 has been reported to
inhibit antitumor responses by modulating the function of
macrophages and T cells [29–31]. On the contrary, Yoshi-
mura et al. corroborated that high expression of CD200 is a
protective factor for the prognosis of NSCLC [32]. Specifi-
cally, the mRNA expression levels of several inflammatory
chemokines were significantly increased when CD200 was
deleted realized by RT-qPCR. These opposite results suggest
that the effect of CD200 depends on the tumor stage and
type. Chitinase 3-like protein 2 (CHI3L2), a glycosyl hydro-
lase family member, encodes a protein similar to bacterial
chitinase but lacking chitinase activity. Upregulation of
CHI3L2 could increase the phosphorylation level of ERK1
and ERK2, thus inhibiting tumor cell mitosis and prolifera-
tion in glial cell tumors [33, 34]. FYN Binding Protein 1
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Figure 7: Immune infiltrations of high- and low-risk groups in TCGA. (a) Relative proportion of immune infiltration in high- and low-risk
groups. (b) Heat map of 22 immune cell proportions in high- and low-risk score groups. (c) Correlation of significantly different immune cells
between high- and low-risk score groups.
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(FYB1) also is known as adhesion and degranulation-
promoting adapter protein (ADAP). ADAP is necessary for
T cell activation [35]. Recent studies have shown that T cells
use ADAP to increase activation and adhesion of β2 integrin
in cells stimulated by infection or chemokines. In addition,
ADAP promotes antitumor response through expression in
primary NK cells and il-2-stimulated lymphocyte-activated
killer cells [35]. The alias of Solute Carrier Family 52Member
1 (SLC52A1) is protease-activated receptor 2 (PAR2). PAR2
is a member of G-protein-coupled receptors. PAR2 dele-
tion could reconstruct TME, establish immunosuppressive
microenvironment, and promote tumor progression through
accumulating protumor medullary cells which include mac-
rophages and marrow-derived suppressive cells and reducing
antitumor T cells. The specific mechanism is that PAR2 defi-
ciency directly enhances immunosuppressive activity by pro-
moting production of reactive oxygen species mediated by
STAT3 [36]. These studies suggest that PAR2 is a favorable
prognostic factor for some cancer.

CNTN-1 and CTSL are independent prognostic risk
factors. Contactin-1 (CNTN-1) is a nerve cell adhesion
molecule that has been proved to be involved in the devel-
opment of the nervous system [37]. In recent years, it has
been reported that the abnormal expression of CNTN-1 is
closely related to the tumor occurrence and progression
[38–42]. For example, Chen et al. found that increased
expression of CNTN-1 could promote the metastasis of gas-
tric cancer cells [43]. Zhang et al. demonstrated that silencing
CNTN-1 could improve the sensitivity of chemotherapy
drugs and inhibit the metastasis and invasion of NSCLC
tumor cells [44]. Cathepsin L (CTSL), a lysosomal cysteine
protease member, is mainly involved in the terminal degra-
dation of intracellular phosphorylated proteins [45]. Increas-
ing evidences indicate that CTSL is highly specifically
expressed in various cancers [46–49]. Sullivan et al. found
that CTSL promotes tumor cell replication and metastasis
by activating epithelial to mesenchymal transition (EMT)
gene transcription [46]. Previous studies have also found that
inhibition of CTSL could inhibit EMT-mediated invasion
and metastasis of NSCLC cells.

Immune cells in TME play key roles in either tumor-
promoting or tumor-suppressive effects. Although T cell sub-
sets play an important role in tumor inhibition, some T cell
types promote tumor progression through different growth
factors [50]. For example, the presence of CD8+ and CD4+

T cells could improve clinical outcomes and prolong survival
in different cancers [51–54], while T cell regulation (Tregs)
may inhibit antitumor immune response and support the
establishment of immune hyporesponse microenvironments
in some tumor types [55]. Macrophages, an important com-
ponent of TIICs, serve as the key mediator between inflam-
mation and cancer [56, 57]. Macrophages could be
differentiated into classical macrophage M1 and substitute
macrophage M2, which have antitumor and protumor
effects, respectively [58]. According to our results, the Tregs
and macrophages M2 accounted for significantly higher pro-
portions in high-risk samples than that in low-risk samples,
whereas T cells CD8 and macrophages M1 accounted for sig-
nificantly higher in low-risk samples than those in high-risk

samples. Therefore, we inferred that the upregulated Tregs
and macrophages M2 in the high-risk group may contribute
to worse prognosis of NSCLC. The low-risk group had a bet-
ter OS, which may be attributed to the upregulation of CD8+

T cells and macrophage M1. To sum up, exploring the regu-
latory mechanisms of different immune cell types is vital for
finding new therapeutic strategies and improving the immu-
notherapy response of NSCLC.

Nowadays, some studies have been aimed at finding
prognostic prediction of patients with advanced non-small-
cell lung cancer. He et al. considered that the imaging bio-
markers extracted by tumor mutational burden could effec-
tively predict the therapeutic effect of immune checkpoint
inhibitors in advanced NSCLC patients [59]. Moik et al. dem-
onstrated that inflammation and hemostasis could serve as
biomarkers for unfavorable prognosis and poor therapy
response in advanced lung cancer patients [60]. Perrone
et al. found that hypercholesterolemia implies a low-grade
inflammatory state that could distinguish the best beneficia-
ries of immunotherapy in NSCLC [61]. Mildner et al. pro-
posed that PD-1+ CD4+ T cell count and PD-1+ CD8+ T
cells could act as the liquid biomarkers of immunological fac-
tors [62]. The present study differed from previous reports
about advanced NSCLC prognosis and had its own advan-
tages. Firstly, no study provided a reliable TME-related sig-
nature for advanced-NSCLC prognosis. Immunotherapy is
the optimal treatment for advanced NSCLC, and the detec-
tion of some liquid immune biomarkers is often unstable or
impractical, thereby TME-related signature based on the
ESTIMATE algorithm may be more comprehensive and
effective than other single biomarkers. Secondly, we further
demonstrate the diagnostic efficacy of our TME-related sig-
nature in two independent external GEO datasets and verify
the robustness of the model. Finally, the multivariate Cox
regression model adjusted for other clinical covariates, which
could demonstrate that TME-related gene signature was an
independent prognostic factor for advanced NSCLC patients.

Nevertheless, our current research remains a few limita-
tions. Firstly, the main source of clinical characteristics for
our dataset was TCGA database. The majority of patients
were from North America, and thus, extending our findings
to other races of patients should be with great caution. Sec-
ondly, our study provides the evidence that six novel TME-
related genes are significantly related to the prognosis of
advanced NSCLC patients, which was analyzed through data
mining merely. The function and mechanism of these genes
depend on further experimental studies to elucidate. In addi-
tion, our retrospective study could lead to reporting bias;
thus, the result of new TMERG signature needs to be further
validated in prospective studies.

5. Conclusions

In summary, we have demonstrated the effectiveness of the
ESTIMATE algorithm applied to screen TMERG in
advanced NSCLC. The single gene of CD200, CHI3L2,
CNTN1, CTSL, FYB1, and SLC52A1 and the combination
model have been confirmed to have an association with the
prognosis of advanced NSCLC patients, and the stability
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and independence have been verified. We also found that the
risk score was related to the immune cell infiltration compo-
nent, which further authenticated the reliability of the risk
score model. The potential interaction among six genes and
their predictive value in immunotherapy needs to be vali-
dated in prospective cohorts for advanced NSCLC patients.
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