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Sonchus brachyotus DC. possesses both edible and medicinal properties and is widely distributed throughout China. In this study,
the complete cp genome of S. brachyotus was sequenced and assembled. The total length of the complete S. brachyotus cp genome
was 151,977 bp, including an LSC region of 84,553 bp, SSC region of 18,138 bp, and IR region of 24,643 bp. Sequence analyses
revealed that the cp genome encoded 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The
GC content was 37.6%. One hundred mononucleotide microsatellites, 4 dinucleotide microsatellites, 67 trinucleotide
microsatellites, 4 tetranucleotide microsatellites, and 1 long repeat were identified. The SSR frequency of the LSC region was
significantly greater than that of the IR and SSC regions. In total, 175 SSRs and highly variable regions were recognized as
potential cp markers. By analyzing the IR/LSC and IR/SSC boundaries, structural differences between S. brachyotus and 6 other
species were detected. According to phylogenetic analyses, S. brachyotus was most closely related to S. arvensis and S. oleraceus.
Overall, this study provides complete cp genome resources for S. brachyotus that will be beneficial for identifying potential
molecular markers and evolutionary patterns of S. brachyotus and its closely related species.

1. Introduction

Sonchus L. is a genus of annual, biennial, or perennial herba-
ceous plants in the Asteraceae (Compositae) family. Cur-
rently, the Sonchus genus includes 95 species [1–3], and it
is widely distributed throughout Europe, Asia, Africa, and
Pacific Islands [2]. Only 8 of the 95 species are distributed
throughout China: Sonchus arvensis, Sonchus asper, Sonchus
brachyotus, Sonchus lingianus, Sonchus oleraceus, Sonchus
palustris, Sonchus transcaspicus, and Sonchus uliginosus.
Specifically, they are distributed in Northeast, Northwest,
North, Central, and South China and other regions and
grow on mountain grassy slopes, roadsides, and fields with
very rich resources, according to the Flora of China [4].

In China, S. brachyotus can be used not only as food but
also as medicine to treat diseases [5]. S. brachyotus contains

many major and trace elements that are important for the
health and metabolism of the human body and is often used
in health products as an edible plant [6–8]. When S. bra-
chyotus is used as a medicinal whole herb, it has the function
of clearing heat, detoxification, cooling blood, and stopping
bleeding, and it is often used in the treatment of diseases
such as acute pharyngitis, acute dysentery, appendicitis,
enteritis, and hemorrhoids [6, 9]. A previous study showed
that S. brachyotus has antimicrobial activities against several
pathogenic microorganisms [8]. For example, an extract
from S. brachyotus can induce the apoptosis of A549 cells
and inhibit their growth and proliferation, indicating that
S. brachyotus can potentially be used to prevent and restrain
tumor growth [10]. Pan et al. [11] also showed that an
extract from S. brachyotus could exhibit antimicrobial activ-
ity against Escherichia coli, Enterobacter cloacae, Klebsiella
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pneumoniae, Salmonella enterica, Staphylococcus aureus,
and Micrococcus luteus; this is especially true in the case of
Escherichia coli. In addition, functional antioxidant compo-
nents of S. brachyotus, including caffeic acid, rutin, orientin,
and luteolin, can scavenge free radicals [12]. Although the
chemical composition of S. brachyotus has been reported,
S. brachyotus and S. arvensis are similar in morphology
and difficult to distinguish, and their phylogenetic relation-
ships are not very clear.

The chloroplast is an important plastid that provides
necessary energy for growth via photosynthesis and plays
vital roles in the physiology and development of plants.
Chloroplasts, as semiautonomous organelles, possess a
genetic information expression system. In contrast to
nuclear DNA, chloroplast (cp) DNA exhibits single-parent
inheritance. The cp genome is more conserved than mito-
chondrial and nuclear genomes in terms of gene type,
genome organization, and genome structure [13], so the cp
genome has become an important means for reconstructing
the phylogenetic relationships among plant species [14–21].
With the development of bioinformatics analysis and
sequencing technology, studies on the evolution of species
using cp genome sequences are increasing.

In this study, we sequenced and analyzed the complete
cp genome of S. brachyotus and reconstructed the phylogeny
of Compositae based on the cp genomes of 42 species. The
following questions were addressed: (1) what are the features
of the cp genome of S. brachyotus? (2) How many potential
microsatellite markers can the cp genome provide? (3)
Which types of structural variation events have occurred
across the cp genomes in the Sonchus genus?

2. Materials and Methods

2.1. Preparation of Materials. The plant material was trans-
planted from the shore of the Yellow River in Anning District
of Lanzhou, Gansu Province, China (36°5′10′N, 103°34′47′E)
to pots in a laboratory (Figure S1). Then, fresh leaf tissue (1–2
grams) was sent to Genepioneer Biotechnologies Inc.,
Nanjing, 210023, China, for sequencing.

2.2. DNA Extraction, Genome Sequencing, and Annotation.
Total genomic DNA was extracted from 100mg of fresh
leaves of S. brachyotus using the CTAB (cetrimonium bro-
mide) method [22]. The Illumina NovaSeq 6000 platform
was used to construct and sequence a genomic library on
the basis of the standard Illumina paired-end (PE) protocol.
The raw reads were trimmed using NGS QC Toolkit_v2.3.3
[23]. After trimming of low-quality reads and adapter
sequences, the clean reads were aligned with the reference
genome of Lactuca sativa (NC_007578.1) and S. arvensis
(NC_054161) from the NCBI GenBank database using
Burrows-Wheeler Alignment (BWA) [24], and sequenced
reads of chloroplast genomes were “selected” from clean
sequence data. The matched PE reads were assembled using
SPAdes v3.10.1 software [25]. The reference sequences of the
genomes were compared for collinearity of conserved and
rearranged genomes by MUMmer v3.23 [26]. Annotation
was performed with BLAST v2.2.25 (https://blast.ncbi.nlm

.nih.gov/Blast.cgi), HMMER v3.1b2 (http://http://www

.HMMER.org/), and Aragorn v1.2.38 (http://130.235.244

.92/ARAGORN/). BLAST v2.2.25 was applied to compare
coding sequences (CDSs) of chloroplasts in the NCBI data-
base, the preliminary draft annotation was examined and
adjusted manually by comparison with the reference cp
genome, and the gene annotation results of the cp genome
were then obtained. The rRNA and tRNA annotation infor-
mation was obtained by using HMMER v3.1b2 and Aragorn
v1.2.38 to compare the rRNA and tRNA sequences of chlo-
roplasts in the NCBI online database. The annotated cp
DNA sequences were submitted to the NCBI database by
BankIt to obtain the GenBank sequence login number
MT850048. OGDRAW v1.1.1 software [27] was then used
to map the cp genomes of S. brachyotus according to the
chloroplast sequence assembly results.

2.3. Repeat Structure and Sequence Analysis. Vmatch v2.3.0
(http://www.vmatch.de/) was utilized to explore the redupli-
cative structure of the cp genome of S. brachyotus and to
locate a variety of styles of repeat sequences for forward, palin-
dromic, inverted, and complementary sequences. The param-
eters were set to a minimum length of 30bp and a Hamming
distance of 3. Microsatellite (mono-, di-, tri-, tetra-, penta-,
and hexanucleotide repeats) detection was performed using
MISA v1.0 (http://pgrc.ipk-gatersleben.de/misa/misa.html),
with parameters of 1–8 (mononucleotide motifs with a mini-
mum of 8 repetitions), 2–5, 3–3, 4–3, 5–3, and 6–3.

2.4. Identification of Highly Divergent Regions.We used pub-
lished cp genome sequences of 6 species of Sonchus, namely,
Sonchus webbii (GenBank accession number NC_042383),
Sonchus acaulis (NC_042382), Sonchus canariensis (NC_
042381), Sonchus boulosii (NC_042244), Sonchus arvensis
(NC_054161.1), and Sonchus oleraceus (MG878405), to ana-
lyze the borders and synteny of the inverted repeat (IR) and
single-copy (SC) regions of S. brachyotus and the above 6
species. We used IRScope software (https://irScope
.shinyapps.io/Irapp/) to generate a comparison diagram of
the IR boundary [28]. Entire genome sequences were evalu-
ated to appraise realignments and extensive sequence vari-
ances using Mauve 2.3.1 [29]. Moreover, the cp genome
was arranged using MAFFT v7.427 [30] to identify diver-
gence hotspots, after which sliding window analyses were
conducted via DnaSP v5 [31] to determine the nucleotide
diversity (Pi) of the complete cp.

2.5. Phylogenetic Analyses. A total of 43 cp genomes available
in GenBank were recovered to infer the phylogenetic rela-
tionships, including newly sequenced S. brachyotus and 42
published Compositae species (Table S1). Multiple
alignments were performed using complete cp genomes
based on the conserved structure and gene order of the
chloroplast genomes. All the nucleotide sequences were
aligned using MAFFT v7.308 [32] to assess the taxonomic
and phylogenetic relationships of S. brachyotus. Two
methods were employed to construct phylogenetic trees,
including maximum parsimony (MP) and Bayesian
inference (BI). MP analyses were performed using Mega
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11.0 software [33], and the addition sequence was set as
1,000 replications for the heuristic search. BI analyses were
conducted using MrBayes v3.2.6 [34] based on the model
GTR+G inferred from Modeltest 3.7 [35]. The first 25% of
trees generated were discarded as burn-in, and the
remaining trees were used to construct a majority-rule
consensus tree with posterior probability (PP) values for
each node.

3. Results

3.1. Chloroplast Genome Features, Sequencing, and Assembly
of S. brachyotus. After trimming of low-quality reads and
adapter sequences, the total length of the reads was approx-
imately 7.5Gb and 24,858,121 clean reads were produced by
the Illumina NovaSeq 6000 platform. Based on a combina-
tion of de novo and reference-guided assembly, the cp
genome of S. brachyotus was obtained. The complete cp
genome sequence of S. brachyotus was submitted to the
NCBI database under GenBank accession number
MT850048. The total length of the cp genome of S. brachyo-
tus was 151,977 bp (Table 1, Figure 1). The cp genome con-
tained four characteristic regions: a large single-copy (LSC)
region of 84,553 bp, a small single-copy (SSC) region of
18,138 bp, and a pair of inverted repeats (IRa and IRb) of
24,643 bp. The base composition of the complete cp genome
sequence was analyzed and found to be 31.3% T, 31.1% A,
18.7% C, and 18.9% G. The overall GC content was 37.6%,
which is very close to those of other Sonchus species. Fur-
thermore, the GC contents were unevenly distributed across
regions of the cp genome and were found to be 35.71%,
31.44%, and 43.08% for the LSC, SSC, and IR regions,
respectively.

The S. brachyotus cp genome included 132 genes, 1 or 2
more genes than the other 6 Sonchus genomes, of which
there were 87 protein-coding genes, 8 rRNA genes, and 37
tRNA genes (Table 1). Eight protein-coding genes (ndhB,
rpI2, rpI23, rps7, rps12, ycf2, ycf15, and ycf1), 7 tRNA genes
(trnI-CAU, trnL-CAA, trnV-GAC, trnI-GAU, trnA-UGC,
trnR-ACG, and trnN-GUU), and 4 rRNA genes (rrn16,
rrn23, rrn4.5, and rrn5) were duplicated in the IR region in
the cp genomes. There were 113 unique genes, and 16 genes
(trnK-UUU, rps16, rpoC1, atpF, trnG-UCC, trnL-UAA, trnV-
UAC, rps12, petB, petD, rpl16, rpl2, ndhB, trnI-GAU, trnA-
UGC, and ndhA) contained 1 intron, whereas 2 protein-

coding genes (ycf3 and clpP) contained 2 introns (Table 2).
The majority of these intron-containing genes were located
in the LSC region.

3.2. Simple Sequence Repeats and Large Repeat Sequences. In
this study, we explored the presence of various microsatel-
lites (mono-, di-, tri-, tetra-, penta-, and hexanucleotides)
in the cp genome of S. brachyotus. A total of 175 microsatel-
lites were detected in the cp genome of S. brachyotus, and the
most common simple sequence repeats (SSRs) were mono-
nucleotides (notably for A/T), with 100, accounting for
57% of the SSRs in S. brachyotus. The second most abundant
motif type was the trinucleotide type, especially TAA, with a
total number of 67 in S. brachyotus (approximately 38%).
The proportion of other SSR types was relatively low
(approximately 2% for dinucleotides and tetranucleotides).
Intriguingly, the SSRs in S. brachyotus were chiefly distrib-
uted in coding regions (46.5%), with much lower numbers
distributed in noncoding introns (12.6%) and intergenic
regions (41%). The SSRs were spaced disproportionately
through the cp genome, with the largest number of SSRs sit-
uated in the LSC region, followed by the IR and SSC regions,
in the quadripartite structure regions (Figure 2(a)).

Repeat motifs are valuable for phylogenetic reconstruc-
tion. Consequently, we examined the forward, palindromic,
complementary, and reverse repeats in the S. brachyotus cp
genome (Figure 2(b)). Overall, 35 pairs of repeat sequences
were identified in the cp genome of S. brachyotus, which
contained 16 palindromic repeats and 19 forward repeats;
however, complementary and reverse repeats were not
found in S. brachyotus. The lengths of the repeats ranged
from 30 to 24,643 bp in S. brachyotus, and the most common
repeat length was 30 bp (approximately 34%), followed by
repeats of 43 bp (11%) and 31–42 bp (approximately less
than 10%), while those of 43–24,643 bp (approximately
2%) were comparatively rare. The repeats were mainly dis-
tributed in noncoding regions, including intergenic spacers
(IGSs) and introns. However, several coding and tRNA
genes, such as ycf2, ycf3, psbN, psaB, psaA, ndhA, rpI16,
and trnS, also contained repeat sequences.

3.3. Expansion and Contraction of Border Regions. The
expansion and contraction of the borders and adjacent genes
of cp genomes give rise to genome size variations among
various plant lineages. Hence, the borders and adjacent

Table 1: Summary of the features of 7 Sonchus chloroplast genomes.

Taxon
Length (bp) Number of genes

GC content (%)
Genome LSC SSC IR Total Protein coding tRNA rRNA

S. brachyotus 151,977 84,553 18,138 24,643 132 87 37 8 37.6

S. arvensis 151,967 84,251 18,184 24,766 130 87 37 6 37.6

S. oleraceus 151,808 84,142 18,217 24,739 130 87 37 6 37.6

S. boulosii 152,016 83,988 18,566 24,731 130 88 36 6 37.6

S. acaulis 152,017 84,355 18,244 24,746 131 88 37 6 37.6

S. canariensis 152,075 84,338 18,245 24,746 131 88 37 6 37.6

S. webbii 152,194 84,269 18,409 24,758 131 88 37 6 37.6

LSC: large single copy; SSC: small single copy; IR: inverted repeat; tRNA: transfer RNA; rRNA: ribosomal RNA.
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Figure 1: Gene map of the S. brachyotus chloroplast genome. The genes inside and outside of the circle are transcribed in the clockwise and
counterclockwise directions, respectively. Genes belonging to different functional groups are indicated in different colors. The thick lines
indicate the extent of the inverted repeats (IRa and IRb) that separate the genomes into small single-copy (SSC) and large single-copy
(LSC) regions.
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genes of the other 6 published Sonchus plant species were
compared with those of S. brachyotus to analyze the expan-
sion and contraction diversification in connection regions
(Figure 3). The entire genome structure, the gene order,
and the gene number were conserved, as were the IRb/SSC
and IRa/LSC boundaries of the seven Sonchus cp genomes.
The rps19 genes in the LSC region of the 6 species were
amplified and generated products of 87 and 89 bp (89 bp
for S. oleraceus, S. boulosii, S. canariensis, S. acaulis, and S.
arvensis; 87 bp for S. webbii) for the IRb region; in S. bra-
chyotus, this gene was completely situated in the LSC region,
and the distance to the connection was 31 bp. The rpl2 gene
in the IR regions was 27, 145, 146, and 147 bp from the LSC
in the 7 species (27 bp for S. brachyotus; 145 bp for S. webbii;
146 bp for S. boulosii; and 147 bp for S. oleraceus, S. canar-
iensis, S. acaulis, and S. arvensis). The trnH gene in the
LSC region was contracted by 1, 2, 3, and 32 bp from the
connection region of IRa/LSC (1 bp for S. webbii; 2 bp for
S. brachyotus, S. boulosii, S. canariensis, and S. acaulis; 3 bp
for S. arvensis; and 32 bp for S. oleraceus). The ycf1 gene

spanning the SSC/IRb junction showed a length of 44 bp
in S. oleraceus, S. boulosii, S. canariensis, S. acaulis, and
S. arvensis, but in S. brachyotus and S. webbii, it showed
a length of 11 and 2 bp. The ndhF gene was located
completely within the SSC region, and the distance to
the IRb/SSC junction was 0, 5, and 14 bp. The ycf1 gene
extended over the boundary region between the SSC and
IRa regions. The trnN gene was located entirely within
IRa and was contracted by 793–814 bp. The variations in
the IR/SC boundary regions in the 7 Sonchus cp genomes
were responsible for the length differences in the four
regions and whole genome sequences.

3.4. Sequence Divergence and Hot Spots. To clarify the level
of genomic differences, the cp genome sequences of S. bra-
chyotus plants were compared via Mauve. The local collinear
block sequences (LCBSs) confirmed by Mauve showed high
sequence similarity among the 7 Sonchus cp genomes, which
indicated that the genome structure was quite conserved at
the gene sequence level (Figure 4). As anticipated, the SC

Table 2: List of genes found in the chloroplast genome of S. brachyotus.

Category of
genes

Group of genes Names of genes

Self-
replication

Large subunit of ribosome
(LSU)

rpl33, rpl20, rpl36, rpl14, rpl16∗, rpl22, rpl2(2)∗, rpl23(2), rpl32

Small subunit of ribosome
(SSU)

rps16∗, rps2, rps14, rps4, rps18, rps12(2)∗, rps11, rps8, rps3, rps19, rps7(2), rps15

RNA polymerase subunits rpoB, rpoC1∗, rpoC2, rpoA

Ribosomal RNA genes rrn16(2), rrn23(2), rrn4.5(2), rrn5(2)

Transfer RNAs (tRNAs)

trnH-GUG, trnK-UUU∗, trnQ-UUG, trnS-GCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-
UUC, trnR-UCU, trnG-UCC∗, trnT-GGU, trnS-UGA, trnG-GCC, trnfM-CAU, trnS-GGA,
trnT-UGU, trnL-UAA∗, trnF-GAA, trnV-UAC∗, trnM-CAU, trnW-CCA, trnP-UGG, trnI-
CAU(2), trnL-CAA(2), trnV-GAC(2), trnI-GAU(2)∗, trnA-UGC(2)∗, trnR-ACG(2), trnN-

GUU(2), trnL-UAG

Photosynthesis

Photosystem I psaB, psaA, ycf3∗∗, psaI, ycf4, psaJ, psaC

Photosystem II psbA, psbK, psbI, psbM, psbD, psbC, psbZ, psbJ, psbF, psbE, psbB, psbT, psbN, psbH

Subunits of NADH
dehydrogenase

ndhJ, ndhK, ndhC, ndhB(2)∗, ndhF, ndhD, ndhE, ndhG, ndhI, ndhA∗, ndhH

Cytochrome b/f complex petN, petA, petL, petG, petB∗, petD∗

ATP synthase atpI, atpH, atpF∗, atpA, atpE, atpB

Large chain of rubisco rbcL

Other genes

Translation initiation
factor

infA

Maturase matK

Protease clpP∗∗

Envelope membrane
protein

cemA

Subunit of acetyl-CoA-
carboxylase

accD

Cytochrome c biogenesis
protein

ccsA

Hypothetical chloroplast
reading frames

ycf2(2), ycf15(2), ycf1(2)

∗Genes containing a single intron. ∗∗Genes containing 2 introns.
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regions were less conserved than the IR regions. The most
divergent areas were 5,000–20,000, 25,000–40,000, 45,000–
80,000, and 110,000–130,000 bp in size.

We generated 113 loci from S. brachyotus and calculated
the Pi value of each gene with VCFtools. The Pi values
obtained from S. brachyotus ranged from 0 to 0.099 (ycf1).
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Figure 2: SSR numbers according to their distribution and repeat type and repeat numbers according to repeat type and repeat length in S.
brachyotus. (a) Number of SSR motifs in S. brachyotus. (b) Variation in the distribution of forward (F), reverse (R), complementary (C), and
palindromic (P) repeats and the number of different repeats in the chloroplast genome of S. brachyotus.
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Figure 3: Comparison of the border positions of LSC, SSC, and IR regions among 7 chloroplast genomes from Sonchus species. Gene names
are indicated in boxes.

Figure 4: Mauve alignment of the 7 Sonchus chloroplast genomes. The rectangles represent the similarity between genomes, and the lines
between rectangles represent a type of collinearity. The small square indicates the gene location in each genome. White represents CDSs,
green represents tRNAs, and red represents rRNAs.
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The number of variable sites in the IR region was more con-
served than that in the LSC and SSC regions, and 5 of these
sites were highly variable: ycf3, matK, rpl36, ndhF, and ycf1.
Three of the sites (ycf3, matK, and rpl36) were located in the
LSC region, and 2 (ndhF and ycf1) were located in the SSC
region (Figure 5). Five divergence hotspots in the most var-
iable regions (Pi > 0:02) could be used as potential molecular
markers for phylogenetic studies of Sonchus species.

3.5. Phylogenetic Analysis. On the basis of the phylogenetic
analysis of the cp genome relationships of 42 representative
Compositae plants, the taxonomic status and evolutionary
relationships of S. brachyotus were determined (Figure 6).
The evolutionary tree revealed clear phylogenetic relation-
ships for 43 species in 14 genera of Compositae, which were
clustered into 3 branches. The first branch consists of 18
species in 4 genera, Lactuca, Mulgedium, Taraxacum, and
Sonchus, all belonging to Lactuceae. The second branch con-
sists of 11 species from 4 genera, Atractylodes, Cirsium,
Carthamus, and Saussurea. The third branch consists of 14
species of 6 genera, Chrysanthemum, Artemisia, Leontopo-
dium, Aster, Anaphalis, and Helianthus. Chrysanthemum
and Artemisia belong to Anthemideae; Leontopodium and
Anaphalis belong to Inuleae; Aster belongs to Astereae; and
Helianthus belongs to the Heliantheae. These are all mem-
bers of Cynareae. Sonchus is located on the first branch of
the phylogenetic tree. In the Sonchus genus, S. brachyotus
is more closely related to the small clades formed by S.
arvensis and S. oleraceus, so it can be inferred that they have
the closest relationship.

4. Discussion

As the second largest family in the plant kingdom, Compo-
sitae consists of approximately 1,620 genera and more than
23,600 species [36, 37]. Nevertheless, few cp genomic
sequences for members of this family have been stored in
GenBank, with the first sequence being that of L. sativa

[38, 39]. Although the advancement of high-throughput
sequencing techniques has enabled several additional Com-
positae cp genomes to be sequenced [40–43], the cp genome
of S. brachyotus has remained unexplored. In this study, we
sequenced the complete cp genome of S. brachyotus by using
Illumina high-throughput sequencing technology.

The structure and genes of the cp genome of S. brachyo-
tus were found to be highly conserved through comparative
analysis with closely related species, and they exhibited the
same protein-coding genes, tRNAs, and rRNAs. Neverthe-
less, there was a difference in genome size (Table 1), indicat-
ing genetic differences. We found that this phenomenon
may be due to contractions and expansions of boundary
regions [44–48]. The length of the cp genome sequence is
related to the contraction and expansion of noncoding
regions. Recent studies have revealed that the IRb/SSC and
IRa/LSC regions are mainly responsible for length differ-
ences in cp genome sequences, and such regions have been
discovered in numerous angiosperm cp genome sequences
[49]. Cho et al. [1, 50] carried out a boundary analysis of
the LSC, SSC, and IR regions of the cp genomes of 5 Sonchus
plants and found some slight differences in the position or
length of the rps19, rpl2, trnH, ndhF, and ycf1 genes.
Although the whole genome structure, including both gene
number and order, was found to be nearly identical, the cp
genome of S. brachyotus and the 6 published cp genomes
of Sonchus (S. oleraceus, S. boulosii, S. canariensis, S. acaulis,
S. webbii, and S. arvensis) showed obvious deviations at the
IRb/SSC and IRa/LSC borders.

Microsatellites can be divided into mono-, di-, tri-, tetra-
, penta-, and hexanucleotide repeats. The locations of SSRs
have functional roles in the genome, including gene regula-
tion, advancement, and evolution. As shown in a genome-
wide analysis of polymorphisms related to height, microsat-
ellite markers can be powerful tools for measuring genetic
diversity in populations and addressing genetic issues, such
as gene origin, flow, and species group configuration, at the
level of both intraspecific and interspecific variations [51].
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Figure 5: Nucleotide diversity (Pi) values among the 7 Sonchus species.
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Population-specific cp SSR polymorphisms have also been
documented in other plant species, such as Pinus sylvestris
L. [52], Triticum spp. [53], Abies alba Mill. [54], and Cucu-

mis spp. [55]. Repeat motifs play a crucial role in phyloge-
nies, and they are valuable because of their applicability to
genome rearrangement analysis [56]. Cho et al. [1, 50]
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analyzed the SSRs of the cp genomes of 5 species of Sonchus
and found that the SSRs were mainly distributed in coding
regions and LSC regions. In our study, 175 repeat sequences
were found in S. brachyotus; additionally, we discovered that
they mostly existed in the LSC regions.

Previous studies show that multiple sequence align-
ments used for interspecies discrimination can reveal the
development of mutational hotspots [57, 58] and be
applied in phylogenetic or phylogeographic studies [59,
60]. At present, some studies have shown that markers
derived from chloroplast genomes can also be used in
phylogenetic studies [61]. In several studies, the LSC and
SSC regions were less conserved than the IR region
[61–63], as revealed in this study. Numerous variable sites
(e.g., ycf3, matK, rpl36, ndhF, and ycf1) were confirmed by
calculating and comparing the nucleotide diversity value
(Pi). Among them, ycf1 and ycf3 have been demonstrated
to be conducive markers for phylogenetic studies of
Sonchus [1, 50]. These markers were also found to be use-
ful for analyzing the intraspecific variation of S. brachyo-
tus. According to the results of the present study, 5
divergence hotspots screened on the basis of Pi > 0:02
show great potential for the development of a system of
highly informative markers for S. brachyotus.

The taxonomic position and evolutionary relationships
of S. brachyotus were revealed through comparisons with
42 Compositae plants, which were based on the correla-
tions of all cp genomes. The 43 Compositae plants were
divided into 3 groups. The phylogenetic relationships iden-
tified among Sonchus species were consistent with those
from previous studies [1, 50, 64]. James et al. [64] con-
structed a phylogeny of 13 species of Compositae plants
on the basis of the cp genome and revealed that S. olera-
ceus was closely related to L. sativa (AP007232). Cho
et al. [1] used cp genomes to analyze a phylogeny of 32
Compositae plants and revealed that S. acaulis, S. canar-
iensis, and S. webbii were closely related to S. oleraceus
(MG 878405). Cho et al. [50] utilized cp genomes to ana-
lyze a phylogeny of 30 Compositae plants and demon-
strated that 2 S. asper and 2 S. oleraceus plants were
closely related to S. oleraceus (MG 878405). Overall, S.
oleraceus was closely related to S. asper. In this study,
Sonchus was most closely related to Taraxacum, followed
by Lactuca. S. arvensis is the closest relative of S. brachyo-
tus, followed by S. oleraceus, within the Sonchus genus.
Therefore, we hypothesize that S. brachyotus and S. arven-
sis show similarity in physiology. Phylogenetic relation-
ships identified within Sonchus and its phylogenetic
relationships with other genera of the Compositae can
facilitate additional studies. The cp genome sequences pro-
vide useful genetic information for understanding the evo-
lution of Compositae plants.

5. Conclusions

In this study, we assembled, annotated, and analyzed the cp
genome of S. brachyotus, an important wild plant used for
food and medicine. The S. brachyotus cp genome
(151,977bp) was fully characterized and compared with

those of related species. We identified IR regions, as well
as SSC and LSC regions. The S. brachyotus cp genome
included 132 genes, of which there were 87 protein-
coding genes, 8 rRNA genes, and 37 tRNA genes. A total
of 175 microsatellites and 35 pairs of repeat sequences were
detected in the cp genome of S. brachyotus. The unique
inversion, insertion, and gene loss events detected here
may provide informative markers for phylogenetic resolu-
tion among different genera in Compositae. Several hot-
spots (e.g., ycf3, matK, rpl36, ndhF, and ycf1) of
intergeneric divergence were also identified. Both RAxML
and GTR analyses strongly support the topology in which
the clade including S. brachyotus is near that containing S.
arvensis. The cp genomic resources presented in this study
will be useful for further studies on the evolutionary pat-
terns of S. brachyotus and its closely related species.
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