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Background. KRAS was reported to affect some metabolic genes and promote metabolic reprogramming in solid tumors.
However, there was no comprehensive analysis to explore KRAS-associated metabolic signature or risk model for pancreatic
cancer (PC). Methods. In the current study, multiple bioinformatics analyses were used to identify differentially expressed
metabolic genes based on KRAS mutation status in PC. Then, we developed and validated a prognostic risk model based on
the selected KRAS-associated metabolic genes. Besides, we explored the association between the risk model and the metabolic
characteristics as well as gemcitabine-associated chemoresistance in PC. Results. 6 KRAS-associated metabolic genes (i.e.,
CYP2S1, GPX3, FTCD, ENPP2, UGT1A10, and XDH) were selected and enrolled to establish a prognostic risk model. The
prognostic model had a high C-index of 0.733 for overall survival (OS) in TCGA pancreatic cancer database. The area under
the curve (AUC) values of 1- and 3-year survival were both greater than 0.70. Then, the risk model was validated in two GEO
datasets and also presented a satisfactory discrimination and calibration performance. Further, we found that the expression of
some KRAS-driven glycolysis-associated genes (PKM, GLUT1, HK2, and LDHA) and gemcitabine-associated chemoresistance
genes (i.e., CDA and RMM2) was significantly upregulated in high-risk PC patients evaluated by the risk model. Conclusions.
We constructed a risk model based on 6 KRAS-associated metabolic genes, which predicted patients’ survival with high
accuracy and reflected tumor metabolic characteristics and gemcitabine-associated chemoresistance in PC.

1. Introduction

Pancreatic cancer (PC) is one of the most malignant cancers,
which leads to 4.5% of all cancer-related deaths globally [1].

The vital causes for the poor prognosis are the highly aggres-
sive phenotype and early cancer recurrence and metastasis
following surgical treatment [2]. Despite some advances in
the management of PC in recent years, very few major
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breakthroughs for effective biomarkers nor treatment strate-
gies have emerged.

Almost all PC patients carry at least one of the four
frequently mutated driver genes, which include oncogene
KRAS and the tumor suppressors TP53, SMAD4, and
CDKN2A [3]. KRAS, the most frequently mutated onco-
gene in cancer especially in PC, was reported to rewire
metabolism to support tumor growth [4]. Several studies
showed that KRAS promoted metabolic reprogramming
through the enhancement of glucose metabolism, differen-
tial channeling of glucose intermediates, reprogramming
glutamine metabolism, and increasing autophagy and
macropinocytosis [5, 6]. The metabolic reprogramming
and fibrotic stroma of PC had been considered as a barrier
for cytotoxic drug delivery to cancer cells, therefore con-
tributing to chemoresistance and treatment failure [7, 8].
Although some KRAS-associated genes were found to reg-
ulate cancer cell metabolism, the mechanism still remained
to be clarified and there was no comprehensive analysis to
explore KRAS-associated metabolic signature or risk model
for PC.

In the current study, multiple bioinformatics analyses
were used to identify differentially expressed metabolic
genes based on KRAS mutation status in PC. Then, a
prognostic model was constructed based on the selected
KRAS-associated metabolic genes. Moreover, we explored
the association between the risk model and the metabolic
characteristics and gemcitabine-associated chemoresistance
in PC.

2. Materials and Methods

2.1. Datasets and Data Acquisition. The gene expression data
were recorded based on fragments per kilobase per million
(FPKM), and clinical information for 178 PC samples was
obtained from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/repository) database up to September
2020. The KRAS mutation data of TCGA PC cohort were
downloaded from cBioPortal (http://www.cbioportal.org/)
[9]. Among 178 PC samples, 167 PC samples with
RNA-sequencing data and KRAS mutation information
were subjected to subsequent analysis. The GSE57495
dataset based on GPL9115 (including 63 PC samples)
and the GSE79668 dataset based on GPL11154 (including
51 PC samples) were downloaded from the Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database for validation. Besides, two other GEO datasets,
the GSE140077 dataset based on GPL20795 (including 1
PC cell line and 6 samples) and the GSE106336 dataset
based on GPL18573 (including 1 PC cell line and 6 sam-
ples), were used for further study in gemcitabine resis-
tance of PC. A total of 1724 metabolic genes were
obtained from the metabolic pathway-related gene lists
of “c2.cp.kegg.v7.1.symbols.gmt” in gene set enrichment
analysis (GSEA, https://www.gsea-msigdb.org/gsea/index
.jsp) [10]. Datasets mentioned above for PC were publicly
obtainable, and ethics approval was not needed. One flow
chart is displayed in Figure 1 to summarize the process of
this study.

1724
Metabolic genes

54
DEGs

21
PAGs

GO analysis
KEGG pathway analysis

A 6-PAGs based KRAS-associated
metabolic risk model

Validation in TCGA, GSE57495 and
GSE79668 (ROC and C-index)

Association with patients’ survival and
clinicopathological characteristics

Association with metabolic characteristics
(PKM, GLUT1, HK2, LDHA and VDR)

Association with Gemcitabine chemoresistance
(CDA and RMM2)

Figure 1: The flow chart summarizing the process of this study.
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2.2. Differential Expression Analysis. We compared 58 PC
samples without KRAS mutations (KRAS WT) and 109 PC
samples with KRAS mutations (KRAS MUT) in TCGA
PC cohort to identify differentially expressed metabolic
genes (DEGs) using the R package limma. The thresholds
were ∣log 2 − fold change ðFCÞ ∣ >1:5 and FDR < 0:05.

2.3. Establishment and Validation of the KRAS-Associated
Metabolic Risk Score System. With the help of R packages
“survival,” “survminer,” and “parallel,” the univariate Cox
proportional regression was performed to evaluate the

association between expression of DEGs and patients’ over-
all survival (OS) in TCGA cohort. DEGs with p value <0.01
were considered as statistically significant prognosis-
associated DEGs (PAGs). Then, a multivariate Cox propor-
tional regression model was established through cycle
computation to determine the model with the highest dis-
criminated ability for OS of PC. The KRAS-associated met-
abolic risk model was established based on a linear
combination of the expression values of the PAGs, and the
multivariate Cox regression coefficients were used as the
weight. For the external validation cohort for the risk score

10

5

0

Flip
A–> (C/G)
C–>A

Cp(A/C/T)–T
CpG–>T

Male
Female

Mulation

Mulations per Mb

100

50

0
Age

KRAS
TP53

MAMLD1
MAGEC1
CDKN2A

SMAD4
IRS1

FAMA7C
MAML3

PRG4
ATRX

FOXP2
TMC4

ZNF347
CD99L2

IPP
OTUD4
SORBS2

EDC4
RUNX2

OTOF
DIDO1
FCGBP

C19orf55
CACNAID

No mutation
Syn
In-frame INDEL
Other Non synMissense
Splice site
Frameshift
Nonsense

Gender
Vital status

Deceased
Alive

31 to 45
46 to 60
61 to 75
75 or older

100 50 0

–log (c)

(a)

0 10,000 20,000 30,000 40,000 50,000

Rank in ordere dataset Rank in ordere dataset Rank in ordere dataset Rank in ordere dataset

–0.75
–0.50
–0.25
–0.00

0.25
0.50

Ra
nk

ed
 li

st 
m

et
ric

(S
in

ga
l2

no
ise

)

0.0
0.1
0.2
0.3
0.4
0.5

En
ric

hm
en

t s
co

re
(E

Si
)

Enrichment plot:
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM

Enrichment profile

Hits

Ranking metric scores

Zero cross at 27358

‘H’ (negatively correlated)

‘L’ (Positively correlated)

–0.75
–0.50
–0.25
–0.00

0.25
0.50

Ra
nk

ed
 li

st 
m

et
ric

(S
in

ga
l2

no
ise

)

–0.75
–0.50
–0.25
–0.00

0.25
0.50

Ra
nk

ed
 li

st 
m

et
ric

(S
in

ga
l2

no
ise

)

–0.75
–0.50
–0.25
–0.00

0.25
0.50

Ra
nk

ed
 li

st 
m

et
ric

(S
in

ga
l2

no
ise

)

0 10,000 20,000 30,000 40,000 50,000

0.0

0.1

0.2

0.3

0.4

0.5

En
ric

hm
en

t s
co

re
(E

Si
)

Enrichment plot: KEGG_TRYPTOPHAN_METABOLISM

Zero cross at 27358

‘H’ (negatively correlated)

‘L’ (Positively correlated)

0.0
–0.1
–0.2

0.1
0.2
0.3
0.4
0.5

En
ric

hm
en

t s
co

re
(E

Si
)

0 10,000 20,000 30,000 40,000 50,000

Enrichment plot: KEGG_TYPE_II_DIABETES_MELLITUS

Zero cross at 27358

‘H’ (negatively correlated)

‘L’ (Positively correlated)

0.0

0.1

0.2

0.3

0.4

0.5

En
ric

hm
en

t s
co

re
(E

Si
)

0 10,000 20,000 30,000 40,000 50,000

Enrichment plot:
KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS

Zero cross at 27358

‘H’ (negatively correlated)

‘L’ (Positively correlated)

Zero cross at 27358

‘H’ (negatively correlated)

‘L’ (Positively correlated)

Zero cross aZero cross aZ ss aZ t 27358 Zero cross at 27358

‘H’ ( ti l l t d)

‘‘L’ (Positively correlated)

Zero cross at 27358

‘L’ (Positively correlated)

(b)

Figure 2: Gene set enrichment analysis (GSEA) of KRAS in TCGA pancreatic cancer (PC) cohort. (a) Genomic landscape and the
mutational signatures of PC in TCGA cohort (FireBrowse platform). (b) Significant enrichment of the metabolic-related phenotype in
KRAS WT PC patients compared with KRAS MUT PC patients.
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Figure 3: Continued.
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system, the GSE57495 and GSE79668 datasets were ana-
lyzed. Patients in separate datasets were divided into a
high-risk group and a low-risk group using the median cut-
off of the risk score. To evaluate the performance of model,
the R package “pROC” was used to evaluate the discrimina-
tion of the risk model in TCGA and GEO datasets through
area under the curve (AUC) of the receiver operating
characteristic (ROC) curve of 1- and 3-year survival. With
the help of R package “rms,” Harrell’s concordance index
(C-index) of the risk score system was calculated by a
bootstrap approach with 1000 resamples. The calibration
curves were used to assess the consistency between model-
predicted and observed survival. Then, the log-rank tests
and Kaplan-Meier (KM) analyses were performed using
the survival R package between the high-risk and low-risk
groups to assess the predictive ability of the prognostic
model. We calculated the risk scores in different

groups based on clinicopathological parameters (such
as American Joint Committee on Cancer (AJCC) stage,
histologic grade, and diabetes status) in TCGA PC cohort by
using Wilcoxon’s test to evaluate whether the risk model
reflects PC progression.

2.4. Functional Enrichment Analysis. Gene set enrichment
analysis (GSEA, Version3.0, http://software.broadinstitude
.org/gsea/) was performed to determine how the metabolic
pathways and relevant metabolic pathway-related genes
differed between PC samples of KRAS WT and KRAS
MUT in TCGA cohort. An annotated gene set file
(c2.cp.kegg.v7.1.symbols.gmt) was used as the reference gene
set, and a gene set was considered as an enriched group when
the nominal p value <0.05. DEGs and coexpressed genes of
PAGs screened from the cBioPortal database were integrated
to DAVID 6.7 (https://david-d.ncifcrf.gov/) separately to
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Figure 3: Identification and enrichment analysis of differentially expressed metabolic genes (DEGs) based on KRAS mutation status. (a)
Heatmap and (b) volcano plot of 54 DEGs. (c) Gene Ontology (GO) enrichment analysis of DEGs. (d) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis of DEGs.
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Figure 4: Continued.

7BioMed Research International



perform Gene Ontology (GO) analysis and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analysis [11].
Results were visualized using R package “ggplot2.”

2.5. Association between the Risk Model and Metabolic
Characteristics of PC. Several KRAS-driven metabolic targets
which took part in metabolic reprogramming of PC were
selected to explore relationships between the risk model
and metabolic characteristics of PC [12]. The mRNA expres-
sions levels of these promising KRAS-driven metabolic
genes were compared in high-risk and low-risk groups by
using Student’s t-test.

2.6. Association between the Risk Model and Gemcitabine
Chemoresistance of PC. In order to evaluate whether the risk
model reflects gemcitabine metabolism-associated chemore-
sistance of PC, metabolic risk scores were calculated in 2
parental and GEM-resistant cell lines (CFPAC-1 and HPAFII)
in GSE140077 and GSE106336 datasets. Then, several gemci-
tabine metabolism-associated chemoresistance genes of PC
were selected to explore relationships between the risk model
and gemcitabine chemoresistance of PC [13]. The mRNA
expressions levels of these promising KRAS-driven metabolic
genes were compared in high-risk and low-risk groups using
Wilcoxon’s test.

2.7. Statistical Analyses. All statistical analyses were
performed using R software Version 4.0.1 (https://www.r-
project.org/) and SPSS software Version 24.0 (SPSS, Inc.,
Chicago, IL, USA). X-tile (New Haven, CT, United States)
was used to define the best cutoff values for outcome-based
optimization. A p value <0.05 was considered statistically
significant unless otherwise specified.

3. Results

3.1. Association between Metabolic Phenotype and KRAS
Mutations in PC. It is shown in the FireBrowse Database
(http://www.firebrowse.org/) that KRAS mutation was the
most common type of mutation in PC, followed by mutation
frequency of TP53, MAMLD1, MAGEC1, CDKN2A, and
SMAD4 (Figure 2(a)). Next, we utilized mRNA expression
data and corresponding clinical information of PC samples
in TCGA and cBioPortal to investigate metabolic processes
linked to KRAS mutation status. GSEA was conducted to
determine the difference of metabolic pathways between 58
PC samples of KRAS WT and 109 PC samples of KRAS
MUT. The results showed that 4 metabolic biological pro-
cesses were significantly enriched in the KRAS MUT group,
which were glycine serine and threonine metabolism
(NES = 1:63, size = 31, and p value <0.05), tryptophan
metabolism (NES = 1:48, size = 40, and p value <0.05), type
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Figure 4: Construction of the KRAS-associated metabolic risk model for pancreatic cancer (PC). (a) Univariable and (b) multivariable Cox
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II diabetes mellitus (NES = 1:41, size = 47, and p value <0.05),
and primary bile acid biosynthesis (NES = 1:67, size = 16, and
p value <0.05) (Figure 2(b)).

3.2. Identification and Enrichment Analysis of Differentially
Expressed Metabolic Genes Based on KRAS Mutation
Status. We performed differential expression analyses
between 58 PC samples of KRAS WT and 109 PC samples
of KRAS MUT in TCGA PC cohort. Among 1724 metabolic
genes, 54 genes were significant differentially expressed and
considered as DEGs (∣log 2 − fold change ðFCÞ ∣ >1:5 and
FDR < 0:05) (Figures 3(a) and 3(b)). Then, these 54 DEGs
were integrated to DAVID 6.7 to perform GO analysis and
KEGG pathway analysis. GO analysis showed that the top
10 highly enriched functions in the metabolic process were
“oxidation reduction, carboxylic acid catabolic process,
hormone metabolic process, alcohol catabolic process,
glucose metabolic process, lipid catabolic process, cellular
amino acid catabolic process, vitamin metabolic process,
steroid metabolic process, and glutamine family amino
acid metabolic process” (Figure 3(c)). In KEGG analysis
(Figure 3(d)), DEGs were found to be mainly enriched
in “adipocytokine signaling pathway, retinol metabolism,
metabolism of xenobiotics by cytochrome P450, type II
diabetes mellitus, drug metabolism, endocytosis, and fatty
acid metabolism.”

3.3. Construction and Validation of a KRAS-Associated
Metabolic Risk Model. We performed univariate Cox propor-
tional regression and found that 21 out of 54 DEGs were signifi-
cantly related to OS and considered as prognosis-associated
DEGs (PAGs) (Figure 4(a)). Further,with the help of theRpack-
age “survival,” amultivariateCox regression analysis for these 21
PAGs was performed and it revealed that 6 of them were
independently associated with OS (Figure 4(b)). Therefore, a 6-
PAG-based KRAS-associated metabolic risk model was devel-
oped by weighting the normalized expression of these 6 PAGs
multiplied by corresponding coefficients derived from themulti-
variate Cox regression analysis: risk score = ð−0:29328 ∗
normalized expression of CYP2S1Þ + ð−0:45614 ∗ normalized
expression of GPX3Þ + ð−0:57665 ∗ normalized expression of
FTCDÞ + ð0:54899 ∗ normalized expression of ENPP2Þ + ð
0:19472 ∗ normalized expression of UGT1A10Þ + ð0:34727 ∗
normalized expression of XDHÞ (Table 1). Patients were
divided into high-risk and low-risk groups by using the
median cutoff value of the risk score (Figure 3(c)). The clinico-
pathological characteristics of patients in different risk groups
were shown in Table 2.

The predictive accuracy of the risk model was further
assessed through the ROC and C-index analysis. The results
showed the AUC of the risk model for OS in TCGA cohort
was 0.773 at 1 year and 0.704 at 3 years (Figure 5(a)).
Besides, C-index of the risk model in TCGA cohort was
0.733 (95% CI, 0.675-0.761). The calibration curves of the
risk model matched well, which indicated that it could accu-
rately predict the 1- and 3-year OS in TCGA cohort
(Figure 5(b)). GSE57495 and GSE79668 datasets were used
for the external validation for the risk model. The AUC for
1- and 3-year OS in GSE57495 datasets was 0.627 and
0.698 (Figure 5(a)), while the AUC for 1- and 3-year OS is
0.727 and 0.617 in GSE79668 datasets (Figure 5(e)). The
C-index of the risk model in GSE57495 and GSE79668 data-
sets was 0.683 (95% CI, 0.655-0.723) and 0.625 (95% CI,

Table 2: The clinicopathological characteristics of patients in
different risk groups.

Clinicopathological
variables

Patients
(n = 164)

Risk group
p value

High (82) Low (82)

Alcohol history 0.15

Present 96 53 43

Absent 68 29 39

Diabetes 0.026

Present 48 31 17

Absent 116 51 65

Tumor size (cm) 0.43

<4 86 40 46

≧4 78 42 36

Lymphnode
metastasis

0.38

Present 118 62 56

Absent 46 20 26

Distant metastasis 1

Present 92 46 46

Absent 72 36 36

TNM stage 0.00046

Advanced (IIA,
III, & IV)

119 70 49

Early (I & IIA) 45 12 33

Differentiation 0.00055

Poor 47 34 13

Well 117 48 69

Table 1: 6 KRAS-associated metabolic genes to establish the risk model.

Genes coef HR HR.95L HR.95H p value

CYP2S1 -0.29328 0.74582 0.60422 0.92060 0.00633

GPX3 -0.45614 0.63372 0.47754 0.84098 0.00158

FTCD -0.57665 0.56178 0.44136 0.71504 2.80E-06

ENPP2 0.54899 1.73150 1.2754 2.3506 0.000432

UGT1A10 0.19472 1.21498 1.0496 1.4064 0.00911

XDH 0.34727 1.41520 1.1314 1.7702 0.00236
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Figure 5: Prognostic abilities of the risk model. (a) Receiver operating characteristic (ROC) of the risk model for overall survival (OS) in
TCGA cohort. Area under the curve (AUC) at the 1- and 3-year survival times was 0.773 and 0.704. (b) Calibration curves of the risk
model for 1- and 3-year survival in TCGA cohort. (c) ROC of the risk model for OS in the GSE57495 dataset. AUC at the 1- and 3-year
survival times was 0.627 and 0.698. (d) Calibration curves of the risk model for 1- and 3-year survival in the GSE79668 dataset. (e) ROC
of the risk model for OS in the GSE57495 dataset. AUC at the 1- and 3-year survival times was 0.727 and 0.617. (f) Calibration curves
of the risk model for 1- and 3-year survival in the GSE79668 dataset.
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0.598-0.675). And the corresponding 1-year and 3-year
calibration curves are, respectively, shown in Figures 5(d)
and 5(f).

3.4. Association between the Risk Model and Patients’
Survival and Clinicopathological Characteristics in PC. To
further evaluate the prognostic power of the risk model,
Kaplan-Meier analyses were performed and we found that
all patients in the high-risk group had a shorter OS (p value
= 4.234e-07) and disease-free survival (DFS) (p value = 1.83e
-06) than those in the low-risk group in TCGA cohort
(Figures 6(a) and 6(b)). Besides, similar results for Kaplan-
Meier analyses of OS were observed in the GSE57495 dataset
(p value = 8.637e-04) and GSE79668 dataset (p value =
1.833e-02) (Figures 6(c) and 6(d)). Further, we calculated
the risk scores in different groups based on clinicopatholog-
ical characteristics in TCGA PC cohort, and the results
showed that patients who had advanced stage, higher
histologic grade, or diabetes history had higher risk scores
(p value <0.05) (Figure 6(e)). The data in Figures 4 and 5
suggested the KRAS-associated metabolic risk model had
effective value in predicting patients’ survival and was asso-
ciated with advanced tumor characteristics.

3.5. Association between the Risk Model and Metabolic
Characteristics of PC. We next explored the activities of 6
PAGs (i.e., CYP2S1, GPX3, FTCD, ENPP2, UGT1A10, and
XDH) by analyzing its potential metabolic pathways in PC.
The coexpression analyses for 6 PAGswere performed by using
the cBioPortal dataset (Spearman’s correlated coefficient > 0:6
or <−0.6, p value <0.05). We found 131 coexpression genes
for CYP2S1, 163 coexpression genes for ENPP2, 387 coexpres-
sion genes for FTCD, 521 coexpression genes for GPX3, 189
coexpression genes for UGT1A10, and 213 coexpression genes

for XDH, all of which were enrolled into DAVID 6.7 and sub-
jected to functional and pathway enrichment analyses.

The potential metabolic pathways involved are shown in
Figure 7(a). CYP2S1 and its neighboring genes were mainly
enriched in “oxidation-reduction process, lipid metabolic
process, protein glycosylation, lysophospholipase activity,
steroid metabolic process, regulation of glucuronidation,
and response to insulin stimulus.” GPX3 may act a vital role
in “lipid metabolic process, glutamate receptor activity, and
regulation of insulin secretion.” FTCD may play an impor-
tant role in “glucose metabolic process and regulation of
insulin secretion.” ENPP2 may be involved in “L-amino acid
transport, glutamate receptor activity, regulation of insulin
secretion, and response to insulin stimulus.” UGT1A10 was
mainly associated with “lipid metabolic process, steroid meta-
bolic process, regulation of glucuronidation, CoA succinyl
transferase activity, and endocytosis,” and XDH was involved
in “protein glycosylation, phagocytosis, and endocytosis.”

To further explore the potentialmetabolic targets influenced
by our risk model, we compared the expression levels of several
KRAS-driven metabolic genes between high-risk and low-risk
groups in TCGA cohort. We found higher mRNA expressions
of PKM (p = 1:86e − 05), GLUT1 (p = 3:168e − 05), HK2
(p = 3:056e − 04), LDHA (p = 2:989e − 06), and VDR
(p = 0:012) in the high-risk group (Figure 7(b)).

3.6. Association between the Risk Model and Gemcitabine
Chemoresistance in PC. We found that 5 of 6 PAGs were
enriched in “drug metabolism or response to drug” in func-
tional and pathway enrichment analyses (Figure 8(a)). In
order to explore their relationship with gemcitabine-
associated chemoresistance in PC, we calculated metabolic
risk scores in 2 parental gemcitabine-resistant cell lines
(CFPAC-1 and HPAFII) in GSE140077 and GSE106336
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Figure 6: Association between the risk model and patients’ survival and clinicopathological characteristics in pancreatic cancer (PC). (a, b)
Kaplan-Meier (KM) analysis of TCGA pancreatic cancer patients was stratified by median risk. (a) Overall survival (OS) was significantly
higher in the low-risk group than in the high-risk group. (b) Disease-free survival (DFS) was significantly higher in the low-risk group
than in the high-risk group. (c) KM analysis of OS in the GSE57495 dataset. (d) KM analysis of OS in the GSE79668 dataset. (e) Patients
with advanced stage (p value = 4.592e-06), higher histologic grade (p value = 0.002), or diabetes history (p value = 0.043) had
higher risk scores.
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datasets (Figure 8(b)). The results revealed that the
gemcitabine-resistant group had significantly higher meta-
bolic risk scores than the parental group (p value<0.001).

To investigate how the risk model leads to gemcitabine
resistance, we compared the expression of previous reported
genes regulating gemcitabine drug metabolism and efficacy
(i.e., CDA, DCK, hENT1, hCNT1, RMM1, and RMM2)
between high-risk and low-risk groups in TCGA cohort. The
results showed that the mRNA levels of CDA (p value =
0.001) and RMM2 (p value = 2.517e-12) were significantly
upregulated in the high-risk group (Figure 8(c)).

4. Discussion

As the most frequently mutated oncogene in PC, KRAS and
its downstream pathways affect several cellular processes
including cell proliferation, migration, metabolism, and
autophagy in PC [14]. Small molecule drug (Sotorasib) that
specifically and irreversibly inhibits KRAS had passed phase
1 clinical trial, showing a promising therapeutic prospect
[15]. Studies have revealed oncogenic KRAS rewired metab-
olism to favor a more anabolic state and therefore promoted
tumorigenesis and progression of PC. However, the molecu-
lar mechanisms were still not clear, and it is of great signif-
icance to conduct a profound study on KRAS-associated
metabolic genes in PC.

Recent studies have offered ample insight into cancer
metabolic landscapes to define PC. Gao et al. identified prog-
nostic signatures and novel PC subtypes based on cancer
metabolism using weighted gene coexpression network anal-
ysis (WGCNA) [16]. They also found higher simple nucleo-
tide variant (SNV) frequencies of KRAS in the high-risk
group. In the current study, we found out 6 differentially
expressed metabolic genes based on KRAS mutation status,
including CYP2S1, GPX3, FTCD, ENPP2, UGT1A10, and
XDH. Then, we developed a significant KRAS-associated
metabolic risk model for prognostic prediction in PC. Fur-
ther, the risk model was validated in two external cohorts
(GSE57495 and GSE79668 datasets), which showed a stably
high prognostic value for PC. These results indicated our
model was accurate in predicting patients’ survival, which
may be helpful in designing personalized therapy targeting
metabolism reprogramming. In the risk model, high expres-
sion of CYP2S1, GPX3, and FTCD was correlated with bet-
ter prognoses, while high expressions of ENPP2, UGT1A10,
and XDH were correlated with poor prognoses in PC. As a
member of cytochrome P450 (CYPs), CYP2S1 was known
to biotransform some exogenous and endogenous com-
pounds including drugs, fatty acids, and cholesterols [17].
Study showed that expressions of 8 CYPs were changed in
CYP2S1-depleted cells, and all of them were involved in lipid
biotransformation. Indeed, CYP2S1 affected the metabolism
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Figure 7: Association between the risk model and metabolic characteristics of pancreatic cancer (PC). (a) Enrichment analysis of 6 PAGs
showed the potential metabolic pathways involved. (b) The expression levels of several KRAS-driven metabolic genes between high-risk and
low-risk groups in TCGA cohort. Higher expressions of PKM (p = 1:86e − 05), GLUT1 (p = 3:168e − 05), HK2 (p = 3:056e − 04), LDHA
(p = 2:989e − 06), and VDR (p = 0:012) were found in the high-risk group.
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of arachidonic acid (AA) and linoleic acid (LA) to modulate
BEAS-2B cell growth [18]. In consistent with their results,
our data also found CYP2S1 was enriched in lipid metabolic
process. It will be interesting to investigate the detailed
mechanism by which CYP2S1 regulates lipid metabolism
in PC in future study. As a member of glutathione peroxi-
dase family (GPX), GPX3 reduces glutathione to catalyze
the reduction of hydrogen peroxide, hydroperoxides, and
lipid hydroperoxides [19]. Low GPX activity was found asso-

ciated with enhanced lipid peroxidation in metastatic
cancers, indicating that loss of GPX3 may promote systemic
oxidative stress [20]. Studies had reported that low
expression of GPX3 was associated with poor prognosis
and chemoresistance in several tumor types [19]. Our results
also proved that it is associated with a good outcome and
may involve in “lipid metabolic process and glutamate
receptor activity” in PC. ENPP2, which encodes an ecto-
lysophospholipase D called autotaxin (ATX), was found
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Figure 8: Association between the risk model and gemcitabine chemoresistance in pancreatic cancer (PC). (a) Enrichment analysis showed
5 of 6 prognosis-associated differentially expressed metabolic genes (PAGs) were involved in “drug metabolism or response to drug.” (b)
Gemcitabine-resistant pancreatic cancer cell lines (CFPAC-1 and HPAFII) had higher risk scores than the parental group (p value <0.001).
(c) The expression levels of several gemcitabine metabolism-associated chemoresistance genes between high-risk and low-risk groups in
TCGA cohort. Higher expressions of CDA (p value = 0.001) and RMM2 (p value = 2.517e-12) were found in the high-risk group.
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significantly increased in several types of cancer including
PC [21–23]. Overwhelming evidences revealed that the ATX/-
lysophosphatidate (LPA) signaling axis served key roles in
energy metabolism regulation and obesity control, dysregula-
tion of which could cause inflammation and tumorigenesis
[24, 25]. Studies have indicated that ATX/LPA axis promoted
DNA synthesis, proliferation, and invasion in pancreatic can-
cer cells via ERK1/2 and Rho pathways [26, 27]. Overexpres-
sion of ATX was also proven to lead elevated tumorigenesis
and invasiveness compared with control groups in RAS-
mutated NIH3T3 murine fibroblasts [28]. Further studies are
needed to explore the relationship and underlying regulation
mechanism of KRAS mutation and ENPP2/ATX in PC
tumorigenesis and metabolism reprogramming.

UGT1A10 was a extrahepatic phase II metabolizing
enzyme that expressed highly in numerous target areas for
tobacco-induced cancers, including the upper aerodigestive
tract [29]. UGT1A10 was elevated in a CPT-11/SN-38-resistant
cell line and responsible for SN-38 glucuronidation, which was
one of the mechanisms associated with irinotecan hydrochlo-
ride/7-ethyl-10-hydroaxycamptothecin (CPT-11/SN-38) resis-
tance in lung cancer [30]. FTCD was found significantly
downregulated in hepatocellular carcinoma (HCC) and served
as a diagnostic biomarker for HCC [31]. Recently, FTCD was
found to be associated with the sensitivity of chemotherapeutic
drug methotrexate by using a CRISPR-Cas9-based screen [32].
XDH, a rate-limiting enzyme to catalyze the final steps of
purine metabolism, was found significantly decreased and
served as a useful predictor of poor prognoses in several cancer
types [33]. Uric acid, which was transformed by XDH, was
found to modulate tumor cell sensitivity to the antimetabolite
5-FU, one of the most commonly used anticancer drugs in
the clinic [34]. Our study consistently suggested that
UGT1A10, FTCD, and XDH were involved in “drug metabo-
lism or response to drug” in PC, but their specific roles in met-
abolic reprogramming and chemoresistance in PC still remain
to be studied.

Gemcitabine-based chemotherapy is a major treatment
for PC patients with or without surgical resection. It has
been reported gemcitabine drug metabolism was affected
by some genes or metabolites, which included drug trans-
porters (i.e., hEN1 and hCNT1), activating and inactivating
enzymes (i.e., CDA and DCK), and competitive substrates
to active metabolites (i.e., RRM1 and RRM2) [13]. Cytidine
deaminase (CDA) induced the deamination of dFdC to
dFdU, leading to inactivation of gemcitabine [35]. It had
been confirmed that CDA expression was correlated with
OS in PC, and several in vitro studies revealed that overex-
pression of CDA led to gemcitabine resistance, while loss
of CDA recovered gemcitabine sensitivity [36, 37]. RRM2
was involved in the activity of Ribonucleotide Reductase
(RR), which was a rate-limiting enzyme of DNA synthesis.
It has been demonstrated that upregulation of RRM2 led
to gemcitabine chemoresistance in PC cells and human PC
xenografts in mice [38]. Besides, expression level of RRM2
was correlated inversely with OS in gemcitabine-treated PC
patients in clinical study [39]. In the current study, CDA
and RRM2 were upregulated in the high-risk group evalu-
ated by the risk model. Taken these together, the risk model

may reflect the possibility of gemcitabine resistance, which
would help oncologist choose appropriate chemotherapy
regimen for PC.

There are a few limitations of our study. First, our study
is mainly based on bioinformatics analysis, and more exper-
imental studies are needed to investigate how KRAS may
regulate cancer cell metabolism in PC. Second, the estab-
lished model needs to be further validated in prospective
clinical studies.

In conclusion, we constructed and validated a prognostic
model based on the KRAS-associated metabolic genes in PC.
The prognostic model reflects tumor metabolic characteris-
tics and gemcitabine-associated chemoresistance, which
may have important value in aiding personalized therapy.
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