
Research Article
Automatic Liver Segmentation in CT Images with Enhanced GAN
and Mask Region-Based CNN Architectures

Xiaoqin Wei ,1 Xiaowen Chen ,1 Ce Lai ,1 Yuanzhong Zhu ,1 Hanfeng Yang ,1,2

and Yong Du 1,2

1School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, China
2Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China

Correspondence should be addressed to Yong Du; duyong@nsmc.edu.cn

Received 29 March 2021; Revised 22 September 2021; Accepted 26 November 2021; Published 16 December 2021

Academic Editor: Marco Aiello

Copyright © 2021 Xiaoqin Wei et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Liver image segmentation has been increasingly employed for key medical purposes, including liver functional assessment, disease
diagnosis, and treatment. In this work, we introduce a liver image segmentation method based on generative adversarial networks
(GANs) and mask region-based convolutional neural networks (Mask R-CNN). Firstly, since most resulting images have noisy
features, we further explored the combination of Mask R-CNN and GANs in order to enhance the pixel-wise classification.
Secondly, k-means clustering was used to lock the image aspect ratio, in order to get more essential anchors which can help
boost the segmentation performance. Finally, we proposed a GAN Mask R-CNN algorithm which achieved superior
performance in comparison with the conventional Mask R-CNN, Mask-CNN, and k-means algorithms in terms of the Dice
similarity coefficient (DSC) and the MICCAI metrics. The proposed algorithm also achieved superior performance in
comparison with ten state-of-the-art algorithms in terms of six Boolean indicators. We hope that our work can be effectively
used to optimize the segmentation and classification of liver anomalies.

1. Introduction

Segmentation of computed-tomography (CT) liver images is
currently a standard technique for computer-assisted diag-
nosis and therapy, which enjoys the advantages of high
accessibility, acceptable acquisition time, and good spatial
resolution [1, 2]. The correct estimation of the liver volume
(technically referred to as liver volumetry) is an essential
prelude and preparation for hepatic surgery that must pre-
cede any major hepatectomy or liver transplantation [3, 4].
Currently, there is a growing interest in performing liver
volumetry in order to cope with the recent increase in
extended hepatectomies, split-liver transplantations, and
liver transplantations from living donors [5]. Liver volume-
try has been partially or fully automated so as to improve
repeatability and accuracy as well as to reduce processing
times [6]. However, liver segmentation suffers from a variety
of problems and difficulties [7]. Firstly, the segmentation
performance is typically degraded by the influence of com-
plex surrounding blood vessels and organs [8]. Also, the liver

shape shows high variability across different sections in the
same set of CT images [9, 10]. In addition, the density of
the liver tissues is highly similar to the densities of many
other types of soft tissues in the abdominal cavity [11]. More-
over, medical CT imaging often produces images of low con-
trast and uneven grey scales, making it difficult to accurately
segment liver images [12]. In short, liver segmentation in CT
images has become a major challenge as it can hardly achieve
the desired or expected outcomes. Numerous deep-learning
liver segmentation methods have been proposed in order to
alleviate or partially solve the above problems [13, 14]. Such
methods can help the radiology staff to further improve liver
disease diagnosis, achieve timely detection and treatment,
and reduce the death risk due to liver cancer [15].

Although automated segmentation methods have been
frequently proposed, those methods have not necessarily
been implemented in routine clinical use [16]. The cause of
slow adaptation to automation by the medical community
is believed to arise from limitations in clinical validation,
rather than to stem from lack of technical ingenuity. Most
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CT images contain fuzzy or noisy features, which can lead to
a substantial reduction in segmentation accuracy [17, 18].
An effective automated segmentation method should be
equipped with a validation framework that encompasses
the following components: (a) employment of a valid refer-
ence standard; (b) validation datasets that reflect the actual
clinical practice; (c) clear metrics that assess and measure
the segmentation precision, accuracy, efficiency, and error;
and (d) a comparison of the aforementioned metrics via
agreed-upon effective statistical tools.

We further explored the combination of Mask R-CNN
and GANs to enhance the pixel-wise classification perfor-
mance. Also, k-means clustering was used to lock the image
aspect ratio in order to get more essential anchors which can
help boost the liver segmentation performance in computed
tomography (CT) images. Indeed, the segmentation process
is quite challenging and crucial due to the fuzziness of the
liver pixel boundaries, the highly similar intensity patterns
of the liver and its neighbouring organs, the high noise
levels, and the large variations in tumor shape and appear-
ance. Therefore, liver segmentation in CT images should
be effectively performed before other tasks of target mea-
surement, detection, and recognition. A GAN [19, 20] is also
integrated in the mask region-based convolutional neural
network (Mask R-CNN) architecture in order to create a
new GAN-Mask R-CNN framework that boosts the liver
segmentation performance in CT images [21]. In our frame-
work, we make four key contributions:

(1) We explored pixel-wise classification enhancements
through the combination of Mask R-CNN and
GANs, augmentation of the Mask R-CNN training
data, and exploitation of the generated synthetic data

(2) We used k-means clustering to lock the image aspect
ratio in order to get more key anchors which can
help get better segmentation results

(3) The performance of the proposed framework was
compared against that of the conventional Mask R-
CNN algorithm, in terms of the Dice similarity coef-
ficient (DSC), volume overlap error (VOE), relative
volume difference (RVD), the average symmetric
surface distance (ASSD), root-mean-square symmet-
ric surface distance (RMSD), and maximum sym-
metric surface distance (MSSD)

(4) Additionally, our proposed GAN Mask R-CNN
achieved superior performance in comparison with
ten state-of-the-art algorithms. The comparison is
based on the other six indicators including the over-
all accuracy, sensitivity, specificity, precision, false
discovery rate (FDR), and false omission rate (FOR)

2. Related Work

Accurate diagnosis is highly required for liver therapy plan-
ning, liver size evaluation, and optimal clinical decision-
making. Medical CT imaging provides accurate anatomical
information for the human abdominal organs, especially

liver segmentation and disease diagnosis [22]. Also, liver
anatomy visualization and segmentation from CT scans
provide significant guidance for liver surgery planning. For
CT-based clinical diagnosis of liver diseases, reliable and
accurate liver segmentation and identification of surround-
ing anatomical structures are crucial for subsequent treat-
ment planning and computer-assisted surgery. However, in
the current clinical practice, radiologists still manually delin-
eate the liver on each CT slice in order to achieve the most
accurate segmentation results, but this manual process is
quite time consuming, tedious, and laborious and also leads
to significant intraobserver differences. In addition, liver
segmentation is a challenging task due to the boundary blur-
ring, low contrast, and uneven strength in liver CT images.
Therefore, over the past decade, numerous studies have dem-
onstrated effective, robust, and accurate algorithms (with
varying degrees of success) for liver image segmentation in
clinical practice. Depending on whether user interaction is
required for liver segmentation, these methods can be
broadly divided into two categories: automatic and semiauto-
matic methods [23].

Moreover, the use of automatic segmentation in clinical
applications requires evaluating and comparing the accura-
cies of different segmentation models. Recently, deep learn-
ing approaches have been employed to automatically obtain
the most suitable segmentation model from given training
data. Also, remarkable performance outcomes were achieved
by these approaches through creating multiple levels of
abstraction and descriptive embedding in a hierarchy of
increasingly complex features [24]. For example, a semisu-
pervised CNN was designed by Liu et al. to significantly
decrease the requirement for labelled training data [25]. Mul-
tiple sparse regression models (such as deep ensemble sparse
regression networks) were employed by Suk and Shen for
clinical decision-making tasks [26]. A parameter-efficient
CNN was designed by Spasov et al. for performing 3D sepa-
rable convolution, combining specific layers and dual learn-
ing, and hence predicting the transition from mild cognitive
impairment (MCI) to Alzheimer’s disease within 3 years
[27]. A semisupervised graph convolutional network was
trained by Parisot et al. on node subsets labelled with diag-
nostic outcomes for representing and processing sparse
clinical data [28]. For five organ structures, Lustberg et al.
compared automated atlas-based contour generation results
obtained using a commercial deep learning module [29]. In
addition, Ahn et al. used a fusion-based U-Net model for
medical image segmentation. This model was employed to
evaluate the clinical feasibility of an open-source deep-
learning framework trained on the data of 70 patients with
liver cancer and also compare the performance of this frame-
work with that of another commercially available atlas-based
automatic segmentation framework [30].

In our work, we further explore the combination of Mask
R-CNN and GANs to enhance the pixel-wise classification
performance. Similar approaches have been proposed in ear-
lier studies. For example, Frid-Adar et al. [31] generated syn-
thetic medical images using generative adversarial networks
(GANs) and used the generated images to improve the
CNN-based classification performance for medical images.
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In order to boost the lung nodule detection sensitivity in CT
images, Han et al. [32] naturally placed realistic diverse lung
nodules in CT images using a 3D multiconditional GAN
(MCGAN). The 3D CNN-based detection outcomes were
of higher sensitivity under any nodule size or attenuation at
a fixed FPR. Indeed, the medical data scarcity was overcome
by the MCGAN-generated lung nodules.

Furthermore, unsupervised learning is also widely used
in image segmentation. For example, an intelligent frame-
work was proposed by Rundo et al. [33], where robust tools
for validating radiomics biomarkers were provided for seam-
less integration into clinical research environments. In
particular, this framework optimized the segmentation for
each individual image while also taking into account prior
domain knowledge for the typical densities of candidate sub-
regions. The automation of this approach allows for easy
deployment in clinical research environments, without the
need for any training data. Anter and Hassenian [34] pro-
posed an improved approach for liver segmentation in CT
images based on a fast fuzzy c-means clustering algorithm
(FFCM), neutrosophic sets (NS), and a watershed algorithm.
In order to increase the CT image contrast and remove high
frequencies, histogram equalization and median filtering
were used. An unsupervised medical anomaly detection
GAN (MAD-GAN) method was proposed by Han et al.
[35]. In this novel two-step method, the GANs are used to
reconstruct multiple adjacent magnetic resonance imaging
(MRI) slices of the brain, and then, brain diseases are diag-
nosed and staged based on multisequence structural MRI
data. Also, Nakao [36] proposed an unsupervised anomaly
detection method based on variational autoencoders (VAE-
GAN) and demonstrated its ability to detect various lesions
using a large chest radiograph dataset. Unlike the widely
used supervised methods for computer-aided diagnosis or
detection in chest radiographs, the VAE-GAN-based unsu-
pervised method can detect lesions of any type and does
not require any abnormal image samples or lesion labels
for training.

3. Materials and Methods

3.1. The Original Mask R-CNN. The Mask R-CNN architec-
ture is an enhanced variant of the R-CNN, Fast R-CNN [37],
and Faster R-CNN [38] architectures. In particular, the
Mask R-CNN was immediately preceded by the Faster R-
CNN. The Mask R-CNN represents a general conceptually
simple and flexible framework for object detection and seg-
mentation, where high-quality segmentation masks are
simultaneously generated for image instances. While the
Faster R-CNN has two branches for classification and
bounding box regression, the Mask R-CNN has an addi-
tional third branch for segmentation mask prediction on
each region of interest (RoI). This mask branch is just a
small fully convolutional network (FCN) which acts upon
each RoI to perform pixel-wise segmentation mask predic-
tion. The Mask R-CNN can be easily trained and incurs a
small computational overhead in comparison to the Faster
R-CNN.

Figure 1 outlines the conventional Mask R-CNN frame-
work for image segmentation. While the Mask R-CNN and
Faster R-CNN have similar workflows, they still have some
key differences. On the one hand, the Faster R-CNN suffers
from spatial information loss and hence exhibits less accu-
rate feature extraction and RoI detection. On the other hand,
the Mask R-CNN uses a region proposal network (RPN) for
feature extraction, as well as bounding box tight localization
and classification. Also, the Mask R-CNN employs the
RolPool method in feature extraction, RoI quantification,
and handling of multiscale RoI features through maximum
convergence. Moreover, the Mask R-CNN replaces the Rol-
Pool layer of the Faster R-CNN with an RoI alignment
(RoIAlign) layer for the mask-labelled object area.

The Mask R-CNN can be employed for multitask learn-
ing, with the following loss function formulation:

L = Lcls + Lbbox + Lmask, ð1Þ

where Lcls is the target classification loss, Lbbox is the regres-
sion loss for the target bounding box, and Lmask is the target
segmentation loss, which is defined based on the target seg-
mentation requirements in comparison with the traditional
detection network.

3.2. Improved Mask R-CNN. With additional training itera-
tions, the Mask R-CNN learns the global features of liver
images, while the prediction box parameters are iteratively
adjusted until they are really close to the true box parameters.
In this paper, we strive to accelerate the convergence and
improve the localization precision for liver detection and seg-
mentation. We achieve these goals by analyzing the distribu-
tion of the aspect ratios of the liver images via k-means
clustering. In the network training stage, as more training
iterations are performed, the network learns the global liver
characteristics in the CT images; the prediction box parame-
ters are progressively adjusted; and finally, the ground-truth
boxes are approached. In order to accelerate the convergence
speed and improve the liver localization accuracy, the liver
height and width characteristics are analyzed in the CT
images, and hence, k-means clustering is applied to the
height and width data using the Euclidean distance. This
clustering algorithm measures the distance between patterns
using the Euclidean distance and identifies the cluster centers
through a given bounding box of anchors, where the output
box is chosen as the closest one to an anchor. This process
is repeated until the anchors reach a prespecified number.
Figure 2 shows the framework of RoIAlign with k-means
clustering.

3.3. Generative Adversarial Networks. The generative adver-
sarial networks (GANs) were initially proposed by Good-
fellow et al. in 2014. A generative model G captures the
distribution of data, while a discriminative model D esti-
mates the probability that a data sample came from the
training samples rather than from G. The discriminative
model D is trained to maximize the probability that both
the training samples and the samples obtained from G
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are correctly labelled. Figure 3 shows the proposed GAN
Mask R-CNN architecture for liver image segmentation.

When the noise z is sampled from the latent space and
fed into the generative model G, a sample x =G ðzÞ is gener-
ated. For neural networks, the probability distribution PG ðxÞ
of the generated samples might be significantly more com-
plicated. The generative model G is trained to make the
probability distributions PG ðxÞ and Pdata ðxÞ as close to each
other as possible. The generative model G seeks to generate
fake data to confuse the discriminative model (D), while
the discriminator D seeks to differentiate between the real
and fake data samples. This adversarial learning enforces
the distribution generated by G to gradually approach the
real data distribution.

The adversarial learning scheme can be formulated as
the following optimization problem:

G = arg minGDiv PG xð Þ, PData xð Þð Þ, ð2Þ

where Div denotes the divergence or dissimilarity between
PDataðxÞ and PGðxÞ. The function of the discriminator D
can be mathematically defined as

D = arg maxDV G,Dð Þ, ð3Þ

where the two models D and G interact through a two-
player minimax competitive game with the objective func-
tion V ðG,DÞ:
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V G,Dð Þ = Ex~Pdata log D xð Þ½ � + Ex~P Gð Þ log 1 −D G zð Þð Þð Þ½ �
ð4Þ

Thus, the GAN parameter optimization problem can be
formulated as

G = arg minG maxDV G,Dð Þ: ð5Þ

The two models G andD are updated through alternating
optimization. As the adversarial learning process evolves, the
model G will generate data that gradually resembles the real
data.

The training algorithm workflow is shown in Box 1.
Use the momentum learning rule (or any other standard

rule) for the gradient-based updates.

4. Experimental Evaluation

We describe here the experiments we performed for evaluat-
ing the performance of our proposed GAN Mask R-CNN
method. Also, we report and analyse the results of compar-
ing our method against several state-of-the-art methods:
FCN-8s [39], U-Net [40], 2D-FCN2 [41], 2D-FCN1 [42],
2D-dense-FCN [43], 3D-FCN [44], H-DenseUNet [45], 3D
U-Net [46], IU-Net, and GIU-Net [47]. The comparisons
were carried out in terms of standard evaluation metrics.

4.1. Experimental Setup and Data Collection. In our experi-
ments, we used a CentOS7 system with an Intel Core i7
CPU with 128GB memory and an NVIDIA RTX8000
48GB GPU. We used Python 3.6 to implement the corre-
sponding algorithms. Experiments were performed on the
Codalab dataset (https://competitions.codalab.org/) [48,
49]. We employed 378 CT images for model training and
the remaining sequences for testing. Codalab has liver CT
images with three-phase ground-truth data. We used the
enhanced CT format with a 512 × 512 image resolution.

4.2. Performance Evaluation with DSC and MICCAI Metrics.
We use the DSC to assess the performance of the compared
methods of liver image segmentation [50]. The DSCmetric rep-
resents the spatial coincidence degree between the output and
ground-truth segmentation results. Also, we consider five other
segmentation metrics provided by the Society of Medical Image
Computing and Computer-Assisted Intervention (MICCAI)
[51, 52], namely, volume overlap error (VOE), average symmet-
ric surface distance (ASSD), root-mean-square symmetric sur-
face distance (RMSD), maximum symmetric surface distance
(MSSD), and relative volume difference (RVD). The aforemen-
tioned segmentation metrics are mathematically defined as
follows.

First of all, the DSC metric can be defined as

DSC U1,U2ð Þ = 2 ∣U1 ∩U2 ∣
U1j j + U2j j , ð6Þ

where U1 and U2 denote corresponding output and ground-
truth segmentation results, respectively. A higher DSC value
indicates better segmentation performance. The DSC value

ranges between zero (indicating a total dissimilarity between
the output and ground-truth segmentation results) and one
(indicating ideal total agreement between the output and
ground-truth segmentation results).

The other five MICCAI metrics are defined as follows.
Once more, the symbols U1 and U2 denote corresponding
output and ground-truth segmentation results, respectively.
Also, SðU1Þ and SðU2Þ denote the outlines of the seg-
mented liver region and the associated ground-truth
region, respectively. In addition, d ðv, S ðU1ÞÞ denotes the
shortest distance between any image pixel v and SðU1Þ. That
is, dðv, SðU1ÞÞ =minSU1∈SðU1Þ kv − SU1

k, where k•k is the
Euclidean distance operator. Apart from the DSC, lower
values of four MICCAI metrics (VOE, ASSD, RMSD, and
MSSD) indicate better matching between the output and
ground-truth segmentation results. The RVD absolute value
should be used in segmentation performance evaluation,
since this metric might take negative values in the case of
undersegmentation. The smaller the RVD absolute value is,
the better the segmentation performance is. In general, the
five MICCAI metrics are 0 when the segmentation is perfect.

VOE U1,U2ð Þ = 100 × 1 −
U1

T
U2j j

U1
S

U2j j
� �

,

RVD U1,U2ð Þ = 100 ×
U1j j−∣U2 ∣
∣U2 ∣

� �

,

ASSD U1,U2ð Þ = 1
S U1ð Þj j + S U2ð Þj j

� 〠
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,
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=max maxSU1 ϵ S U1ð Þd SU1

, S U2ð Þ� �
, maxSU2∈S U2ð Þ d SU2
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4.3. Performance Evaluation with Binary Classification
Metrics. Several other metrics were exploited as well for eval-
uating the performance of liver segmentation algorithms,
where image segmentation was cast as a binary classification
problem with positive and negative classes corresponding to
the liver and nonliver image pixels, respectively [35]. The
term TP (true positives) stands for the number of pixels that
are claimed by the segmentation method to be positive, while
they are really positive according to the ground-truth label-
ling. The term FP (false positives) depicts the number of
pixels that are suggested to be positive by the segmentation
method but are actually negative according to the ground-
truth labelling. The term TN (true negatives) expresses the
number of pixels claimed to be negative by the segmentation
method, while they are actually negative according to the
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ground-truth labels. The term FN (false negatives) denotes
the number of pixels claimed negative by the segmentation
method but are actually positive according to the ground
truth. Based on these terms, key evaluation indicators are
defined as follows:

(1) Overall accuracy: the ratio of the correctly labelled
pixels to the total pixel count

Accuracy =
TN + TP

TN + TP + FN + FP
ð8Þ

(2) Sensitivity: the ratio of the correctly detected liver
pixels to all true liver pixels is called the sensitivity
or the recall

Original mask R-CNN

Mask R-CNN
plus K-means

GAN mask R-CNN 

Figure 4: A comparison of the segmentation results between the improved and conventional Mask R-CNN algorithms.

Table 1: Comparison of segmentation algorithms before and after enhancements.

Algorithm type Accuracy (%) Recall (%) Specificity (%) Precision (%) FOR (%) FDR (%)

Original Mask R-CNN 85.2 88.3 89.0 87.4 20.1 12.6

Mask R − CNN + k −means 86.4 88.2 89.1 87.5 19.2 12.5

GAN Mask R-CNN 91.3 92.2 92.4 92.3 13.1 7.7

Table 2: Comparison of segmentation algorithms before and after enhancements.

Algorithm type DSC (%) VOE (%) RVD (%) ASSD (mm) RMSD (mm) MSSD (mm)

Original Mask R-CNN 92.4 9.32 0.53 3.32 5.42 20.67

Mask R − CNN + k −means 93.3 9.11 0.54 2.23 3.32 21.32

Improved Mask R-CNN 95.3 9.34 0.44 2.23 2.32 21.58

A learning hyperparameter is the number of discriminator steps, i.
for the number of Mask R-CNN training iterations do

Apply k-means clustering to lock the image aspect ratio, and reduce anchors.
for i steps do
• Pick a minibatch of m noise samples (z (1) , . . . , z (m)) following the noise prior pg(z).
• Pick a minibatch of m examples (x (1) , . . . , x (m)) following the data distribution pdata(x).
• Use the stochastic gradient ascent to update the discriminator:
end for
• Pick a minibatch of m noise samples (z (1), . . . , z (m)) following the noise prior pg(z).
• Use the stochastic gradient descent to update the generator:

end for

Box 1: GAN training with the minibatch stochastic gradient descent.
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Sensitivity =
TP

TP + FN
ð9Þ

(3) Specificity: the ratio of the correctly detected back-
ground pixels to all true nonliver background pixels
is called the specificity

Specificity =
TN

TN + FP
ð10Þ

(4) Precision: the ratio of the correctly detected liver
pixels relative to the total number of pixels labelled
as liver pixels

Precision =
TP

TP + FP
ð11Þ

(5) The false omission rate (FOR) of the liver pixels is
defined as

FOR =
FN

TN + FN
ð12Þ

(6) Based on the precision P, the false detection rate
(FDR) can be defined as

FDR = 1 − precision = FP
TP + FP

ð13Þ

5. Analysis of the Experimental Results

Experiments were conducted to compare the performance of
three schemes: the conventional Mask R-CNN, the Mask R-
CNN with k-means clustering (for optimization of the fully
connected layer parameters) [36], and the GAN Mask R-
CNN which boosts the segmentation performance with
adversarial learning capabilities. Eight slices of liver images
(with normal and pathological cases) were collected and
used to investigate the influence of the k-means clustering
and GAN modules on the Mask R-CNN segmentation out-
puts. Figure 4 gives a comparison of the results which are
shown in red contours.

As shown in Figure 4, the conventional Mask R-CNN
method obviously missed areas of marginal liver regions dur-
ing liver slice processing and hence resulted in segmentation
errors. The Mask R-CNN with k -means clustering managed
to correct these segmentation errors by incorporating the
aspect ratio information of the liver image sequence. How-
ever, there are still visible segmentation errors in marginal

liver regions. Our proposed GAN Mask R-CNN improved,
to a certain extent, the segmentation accuracy and robustness
for each slice in the sequence. This is an obvious advantage of
our proposed scheme over the two other Mask R-CNN
variants.

As shown in Table 1, the experimental results of the
GAN Mask R-CNN were evaluated in terms of the following
indicators: the overall accuracy, sensitivity, specificity, preci-
sion, FOR, and FDR. Our proposed GAN-based algorithm
has a relatively high evaluation accuracy, as well as very
low omission rate. This performance can be ascribed to the
training adequacy and the relative robustness of the output
boundary, though missegmentation or oversegmentation
errors still exist.

Table 2 shows that the GAN Mask R-CNN performs
significantly better (95.3%) than the other two algorithms.
Two exceptions are the VOE result of the conventional Mask
R-CNN (21.58%) and the MSSD result of the Mask R-CNN
with k-means clustering (21.32%). In addition, it is clear that
the GAN module significantly enhances the segmentation
performance according to the other indicators.

Further experiments were made to assess the impact of
the GANs and k-means clustering modules on improving
the segmentation outcomes in comparison to the FCN-8s,
U-Net, 2D-FCN2, 2D-FCN1, 2D-dense-FCN, 3D-FCN, H-
DenseUNet, 3D U-Net, IU-Net, and GIU-Net algorithms.

1

2

3

4

5

6

7

8

9

10

11

Figure 5: A comparison of the liver segmentation results between
three algorithms: (1) FCN-8s, (2) U-Net, (3) 2D-FCN2, (4) 2D-
FCN1, (5) 2D-dense-FCN, (6) 3D-FCN, (7) H-DenseUNet, (8)
3D U-Net, (9) IU-Net, (10) GIU-Net, and (11) GANMask R-CNN.
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The performance was evaluated using the metrics of accu-
racy, recall, specificity, precision, FOR, and FDR. A compar-
ison of the segmentation results of the ten algorithms is
shown in Figure 5. The test data for this comparison
includes slices with large, medium, and small liver regions.

The results in Figure 5 show that for the six liver slices
considered, some undersegmentation or oversegmentation
errors are made by the FCN-8s, U-Net, 2D-FCN2, 2D-
FCN1, 2D-dense-FCN, 3D-FCN, H-DenseUNet, 3D U-
Net, IU-Net, and GIU-Net algorithms. Also, some of the
segmented liver slices do not exhibit complete boundaries,
while others have extraneous parts that do not belong to
the original liver slices. However, our GAN Mask R-CNN
method can produce more solid boundaries and return seg-
mented liver slices with no extra holes.

Table 3 indicates that the GAN Mask R-CNN method
significantly outperforms the other algorithms, except for
the GIU-Net method which shows a better specificity, as well
as the IU-Net method which shows a better precision com-
pared to our method. Anyway, our algorithm clearly outper-
forms the IU-Net and GIU-Net algorithms according to all
other indicators. In addition, our algorithm shows superior
performance on all six indicators in comparison to the
FCN-8s, U-Net, 2D-FCN2, 2D-FCN1, 2D-dense-FCN, 3D-
FCN, H-DenseUNet, and 3D U-Net algorithms.

6. Conclusions

This paper introduces a new method for liver image segmen-
tation in CT sequences where the GANs and the Mask R-
CNN methods are combined. However, we found that most
images exhibited noisy features in one way or another in the
liver segmentation process [52, 53]. Under the influence of
complex surrounding blood vessels and organs, the liver
shape varies between different sections in the same set of
CT images, and there are many soft tissues in the abdominal
cavity with a density similar to that of the liver soft tissue
[39]. Also, medical CT imaging often presents problems of
low contrast and uneven grey-scale intensities, making it
difficult to segment liver images accurately in the area of
interest [18, 54–56].

In this work, we proposed a new CT-based liver image
segmentation framework. Firstly, we sought to get more
important anchors (and hence improve the segmentation
results) through a k-means clustering algorithm which was
used to lock the image aspect ratio and reduce redundant
and useless anchors. Secondly, we addressed the problem
of the presence of noisy features in liver images, with no
image enhancement typically applied, rendering a large
number of images unusable and reducing the segmentation
accuracy. Specifically, we employed a GAN architecture into
our segmentation framework and demonstrated good per-
formance in terms of six indicators: DSC, VOE, RVD, ASSD,
RMSD, and MSSD. Thirdly, we compared our framework
with that of FCN-8s, U-Net, 2D-FCN2, 2D-FCN1, 2D-
dense-FCN, 3D-FCN, H-DenseUNet, 3D U-Net, IU-Net,
and GIU-Net. This comparison was based on six indicators:
overall accuracy, sensitivity, specificity, precision, FOR, and
FDR. Our improved GAN Mask R-CNN architecture dem-
onstrated the best overall performance. We hope that our
work can help radiology practitioners to further improve
the diagnosis, timely detection, and treatment of liver dis-
eases and also reduce the risk of death due to liver cancer.

In many studies, open-source deep learning tools may be
applied for automatic liver segmentation. The performance
outcomes of such tools could be compared with the out-
comes of conventional knowledge-based planning tools,
which typically yield acceptable accuracy levels as well as
good reproducibility for clinical use. Additionally, patient-
specific dose prediction improves the efficiency and quality
of radiation treatment planning. In particular, this predic-
tion can significantly reduce the treatment planning time.
In the future, we envisage that deep-learning-based auto-
matic segmentation will become clinically useful, especially
for dynamic daily treatment plans based on multimodality
imaging.

Data Availability

Data access is available on request through the Codalab
competition website (https://competitions.codalab.org/).
The contact person is Xiaoqin Wei, School of Medical

Table 3: A comparison of four liver segmentation algorithms based on six metrics.

No. Algorithm type Accuracy (%) Recall (%) Specificity (%) Precision (%) FOR (%) FDR (%)

1 FCN-8s 73.2 75.3 75.0 74.4 20.1 25.6

2 U-Net 71.3 73.2 74.1 75.5 19.2 24.5

3 2D-FCN2 75.4 77.2 78.4 76.3 13.1 23.7

4 2D-FCN1 72.3 73.4 73.6 74.5 14.5 25.5

5 2D-dense-FCN 75.3 76.7 75.6 77.8 12.9 22.2

6 3D-FCN 82.3 81.7 82.9 80.1 10.1 19.9

7 H-DenseUNet 83.3 83.4 83.0 80.9 10.0 19.1

8 3D U-Net 86.3 87.7 88.3 87.3 11.5 12.7

9 IU-Net 88.3 89.3 90.2 92.9 16.3 7.1

10 GIU-Net 90.2 91.6 92.8 90.7 9.8 9.3

11 GAN Mask R-CNN 91.3 92.2 92.4 92.3 13.1 7.7

8 BioMed Research International

https://competitions.codalab.org/


Imaging, North Sichuan Medical College, China, E-mail
address: xiaoqin_wei_nsmc@163.com.

Conflicts of Interest

There is no competing interest relevant to the publication of
this paper.

Authors’ Contributions

Xiaoqin Wei contributed to the study design and conducted
experimental procedures and analysis in addition to writing
the first draft of the manuscript. Yong Du supervised this
study and revised the manuscript. Yuanzhong Zhu and Han-
feng Yang contributed to the experimental procedures and
data analysis. Xiaowen Chen and Ce Lai designed the study
and oversaw the experimental work, data analysis, and writ-
ing. Xiaowen Chen and Ce Lai contributed equally to this
work. All authors contributed to the article and approved
the submitted version. Xiaoqin Wei, Xiaowen Chen, and
Ce Lai contributed equally to this work.

Acknowledgments

This research was supported by City-School Science and
Technology Strategic Cooperation Project in Nanchong city
(Grant nos. 19SXHZ0239, 19SXHZ0446, and 20YFZJ0094).

References

[1] L. Lenchik, L. Heacock, A. A. Weaver et al., “Automated seg-
mentation of tissues using CT and MRI: a systematic review,”
Academic Radiology, vol. 26, no. 12, pp. 1695–1706, 2019.

[2] C. JungWon, M.M. Farhangi, N. Dunlap, and A. Amini, “Vol-
umetric analysis of respiratory gated whole lung and liver CT
data with motion-constrained graph cuts segmentation,” in
2017 39th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC), pp. 3405–
3408, Jeju, Korea (South)., 2017.

[3] A. Gotra, L. Sivakumaran, G. Chartrand et al., “Liver segmen-
tation: indications, techniques and future directions,” Insights
Into Imaging, vol. 8, no. 4, pp. 377–392, 2017.

[4] X. Guo, L. H. Schwartz, and B. Zhao, “Automatic liver segmen-
tation by integrating fully convolutional networks into active
contour models,” Medical Physics, vol. 46, no. 10, pp. 4455–
4469, 2019.

[5] M. Salvi, L. Molinaro, J. Metovic et al., “Fully automated quan-
titative assessment of hepatic steatosis in liver transplants,”
Computers in Biology and Medicine, vol. 123, article 103836,
2020.

[6] A. Mansoor, U. Bagci, B. Foster et al., “Segmentation and
image analysis of abnormal lungs at CT: current Approaches,
Challenges, and Future Trends,” Challenges, and Future
Trends, Radiographics, vol. 35, no. 4, pp. 1056–1076, 2015.

[7] Z. Zheng, X. Zhang, H. Xu, W. Liang, S. Zheng, and Y. Shi, “A
unified level set framework combining hybrid algorithms for
liver and liver tumor segmentation in CT images,” BioMed
Research International, vol. 2018, Article ID 3815346, 26
pages, 2018.

[8] L. Huang, M. Weng, H. Shuai, Y. Huang, J. Sun, and F. Gao,
“Automatic liver segmentation from CT images using single-

block linear detection,” BioMed Research International,
vol. 2016, Article ID 9420148, 11 pages, 2016.

[9] D. Spinczyk and A. Krasoń, “Automatic liver segmentation in
computed tomography using general-purpose shape modeling
methods,” Biomedical Engineering Online, vol. 17, no. 1, p. 65,
2018.

[10] J. S. Baxter, J. Inoue, M. Drangova, and T. M. Peters, “Shape
complexes: the intersection of label orderings and star convex-
ity constraints in continuous max-flow medical image seg-
mentation,” Journal of Medical Imaging, vol. 3, no. 4, article
044005, 2016.

[11] P. Godoy, N. J. Hewitt, U. Albrecht et al., “Recent advances in
2D and 3D in vitro systems using primary hepatocytes, alter-
native hepatocyte sources and non-parenchymal liver cells
and their use in investigating mechanisms of hepatotoxicity,
cell signaling and ADME,” Archives of Toxicology, vol. 87,
no. 8, pp. 1315–1530, 2013.

[12] H. Jiang, S. Li, and S. Li, “Registration-based organ positioning
and joint segmentation method for liver and tumor segmenta-
tion,” BioMed Research International, vol. 2018, Article ID
8536854, 11 pages, 2018.

[13] J. Yi, H. K. Kang, J. H. Kwon et al., “Technology trends and
applications of deep learning in ultrasonography: image qual-
ity enhancement, diagnostic support, and improving work-
flow efficiency,” Ultrasonography, vol. 40, no. 1, pp. 7–22,
2021.

[14] C. Chen, C. Qin, H. Qiu et al., “Deep learning for cardiac image
segmentation: a review,” Frontiers in Cardiovascular Medicine,
vol. 7, p. 25, 2020.

[15] G. Wang, S. Zhang, F. Li, and L. Gu, “A new segmentation
framework based on sparse shape composition in liver surgery
planning system,” Medical Physics, vol. 40, no. 5, article
051913, 2013.

[16] Y. Hao, T. Wang, X. Zhang et al., “Local label learning (LLL)
for subcortical structure segmentation: application to hippo-
campus segmentation,” Human Brain Mapping, vol. 35,
no. 6, pp. 2674–2697, 2014.

[17] B. Li, K. Chen, L. Tian, Y. Yeboah, and S. Ou, “Detection of
pulmonary nodules in CT images based on fuzzy integrated
active contour model and hybrid parametric mixture model,”
Computational and Mathematical Methods in Medicine,
vol. 2013, Article ID 515386, 15 pages, 2013.

[18] R. Zhang, Z. Zhou, W. Wu, C. C. Lin, P. H. Tsui, and S. Wu,
“An improved fuzzy connectedness method for automatic
three-dimensional liver vessel segmentation in CT images,”
Journal of Healthcare Engineering, vol. 2018, Article ID
2376317, 18 pages, 2018.

[19] B. Yelmen, A. Decelle, L. Ongaro et al., “Creating artificial
human genomes using generative neural networks,” PLoS
Genetics, vol. 17, no. 2, article e1009303, 2021.

[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative
adversarial networks,” Advances in Neural Information Pro-
cessing Systems, vol. 3, pp. 2672–2680, 2014.

[21] Q. Hu, L. F. Souza, G. B. Holanda et al., “An effective approach
for CT lung segmentation using mask region-based convolu-
tional neural networks,” Artificial Intelligence in Medicine,
vol. 103, 2020.

[22] A. Krishan and D. Mittal, “Ensembled liver cancer detection
and classification using CT images,” Proceedings of the Institu-
tion of Mechanical Engineers. Part H, vol. 235, no. 2, pp. 232–
244, 2021.

9BioMed Research International



[23] B. Qian, D. Kyuno, M. Schäfer, W. Gross, A. Mehrabi, and
E. Ryschich, “Liver segment imaging using monocyte seques-
tration: a potential tool for fluorescence-guided liver surgery,”
Theranostics, vol. 8, no. 22, pp. 6101–6110, 2018.

[24] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[25] S. Liu, S. Liu, W. Cai, S. Pujol, and D. Feng, “Early diagnosis of
Alzheimer's disease with deep learning,” in 2014 IEEE 11th
International Symposium on Biomedical Imaging (ISBI), Bei-
jing, China, 2014.

[26] H. I. Suk and D. Shen, Deep Ensemble Sparse Regression Net-
work for Alzheimer's Disease Diagnosis, Springer International
Publishing, 2016.

[27] S. Simeon, P. Luca, D. Andrea, L. Pietro, and T. Nicola,
Eds., “A Parameter-efficient deep learning approach to pre-
dict conversion from mild cognitive impairment to Alzhei-
mer's disease,” NeuroImage, vol. 189, pp. 276–287, 2019.

[28] S. Parisot, S. I. Ktena, E. Ferrante et al., “Disease prediction
using graph convolutional networks: application to autism
spectrum disorder and Alzheimer's disease,” Medical Image
Analysis, vol. 48, pp. 117–130, 2018.

[29] T. Lustberg, J. van Soest, A. Jochems et al., “Big data in
radiation therapy: challenges and opportunities,” The British
Journal of Radiology, vol. 90, no. 1069, article 20160689,
2017.

[30] S. H. Ahn, A. U. Yeo, K. H. Kim et al., “Comparative clinical
evaluation of atlas and deep-learning-based auto-segmentation
of organ structures in liver cancer,” Radiation Oncology,
vol. 14, no. 1, 2019.

[31] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger,
and H. Greenspan, “GAN-based synthetic medical image aug-
mentation for increased CNN performance in liver lesion clas-
sification,” Neurocomputing, vol. 321, pp. 321–331, 2018.

[32] C. Han, Y. Kitamura, A. Kudo et al., “Synthesizing diverse lung
nodules wherever massively: 3D multi-conditional GAN-
based CT image augmentation for object detection,” in 2019
International Conference on 3D Vision (3DV), Quebec City,
QC, Canada, 2019.

[33] L. Rundo, L. Beer, S. Ursprung et al., “Tissue-specific and
interpretable sub-segmentation of whole tumour burden on
CT images by unsupervised fuzzy clustering,” Computers in
Biology and Medicine, vol. 120, 2020.

[34] A. M. Anter and A. E. Hassenian, “CT liver tumor segmenta-
tion hybrid approach using neutrosophic sets, fast fuzzy c-
means and adaptive watershed algorithm,” Artificial Intelli-
gence in Medicine, vol. 97, pp. 105–117, 2019.

[35] C. Han, L. Rundo, K. Murao et al., “MADGAN: unsupervised
medical anomaly detection GAN using multiple adjacent brain
MRI slice reconstruction,” BMC Bioinformatics, vol. 22, Sup-
plement 2, 2021.

[36] T. Nakao, S. Hanaoka, Y. Nomura et al., “Unsupervised deep
anomaly detection in chest radiographs,” Journal of Digital
Imaging, vol. 34, no. 2, pp. 418–427, 2021.

[37] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Confer-
ence on Computer Vision (ICCV), Santiago, Chile, 2015.

[38] J. Shichao, S. Yanjun, G. Shang et al., “Deep learning: individ-
ual maize segmentation from terrestrial Lidar data using faster
R-CNN and regional growth algorithms,” Frontiers in Plant
Science, vol. 9, 2018.

[39] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 640–
651, 2017.

[40] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolu-
tional networks for biomedical image segmentation,” in Inter-
national Conference on Medical Image Computing and
Computer-Assisted Intervention, Cham, 2015Springer.

[41] A. Ben-Cohen, I. Diamant, E. Klang, M. Amitai, and
H. Greenspan, Fully Convolutional Network for Liver Segmen-
tation and Lesions Detection, Springer International Publish-
ing, 2016.

[42] P. F. Christ, F. Ettlinger, F. Grün et al., “Automatic liver and
tumor segmentation of CT and MRI volumes using cascaded
fully convolutional neural networks,” 2017, http://arxiv.org/
abs/1702.05970.

[43] K. C. Kaluva, M. Khened, A. Kori, and G. Krishnamurthi, “2D-
densely connected convolution neural networks for automatic
liver and tumor segmentation,” 2018, https://arxiv.org/abs/
1802.02182.

[44] F. Lu, F. Wu, P. Hu, Z. Peng, and D. Kong, “Automatic 3D liver
location and segmentation via convolutional neural network
and graph cut,” International Journal of Computer Assisted
Radiology and Surgery, vol. 12, no. 2, pp. 171–182, 2017.

[45] X. Li, H. Chen, X. Qi, Q. Dou, C. W. Fu, and P. A. Heng,
“H-DenseUNet: hybrid densely connected UNet for liver
and tumor segmentation from CT volumes,” IEEE Transac-
tions on Medical Imaging, vol. 37, no. 12, pp. 2663–2674,
2018.

[46] S. Rafiei, E. Nasr-Esfahani, K. Najarian, N. Karimi, and S. M. R.
Soroushmehr, “Liver segmentation in CT images using three
dimensional to two dimensional fully convolutional network,”
in 2018 25th IEEE International Conference on Image Process-
ing (ICIP), Athens, Greece, 2018.

[47] Z. Liu, Y. Q. Song, V. S. Sheng et al., “Liver CT sequence seg-
mentation based with improved U-Net and graph cut,” Expert
Systems with Application, vol. 126, pp. 54–63, 2019.

[48] Z. Deng, Q. Guo, and Z. Zhu, “Dynamic regulation of level set
parameters using 3D convolutional neural network for liver
tumor segmentation,” Journal of Healthcare Engineering,
vol. 2019, Article ID 4321645, 2019.

[49] O. I. Alirr, “Deep learning and level set approach for liver and
tumor segmentation from CT scans,” Journal of Applied Clin-
ical Medical Physics, vol. 21, no. 10, pp. 200–209, 2020.

[50] W. Qin, W. Jia, H. Fei, Y. Yuan, and X. Lei, “Superpixel-based
and boundary-sensitive convolutional neural network for
automated liver segmentation,” Physics in Medicine and Biol-
ogy, vol. 63, no. 9, p. 095017, 2018.

[51] “Liver segmentation from abdominal CT volumes based on
graph cuts and border marching,” Journal of Electronics &
Information Technology, vol. 38, no. 6, 2016.

[52] T. Heimann, B. V. Ginneken, M. A. Styner, Y. Arzhaeva, and
I. Wolf, “Comparison and evaluation of methods for liver seg-
mentation from CT datasets,” IEEE Transactions on Medical
Imaging, vol. 28, no. 8, pp. 1251–1265, 2009.

[53] R. A. Rushdi and A. M. Rushdi, “Karnaugh-Map Utility in
Medical Studies: The case of fetal malnutrition,” International
Journal of Mathematical, Engineering and Management Sci-
ences (IJMEMS), vol. 3, no. 3, pp. 220–244, 2018.

[54] X. Guo, S. Huang, X. Fu, B. Wang, and X. Huang, “Vascular
segmentation in hepatic CT images using adaptive threshold
fuzzy connectedness method,” Biomedical Engineering Online,
vol. 14, no. 1, pp. 1–11, 2015.

10 BioMed Research International

http://arxiv.org/abs/1702.05970
http://arxiv.org/abs/1702.05970
https://arxiv.org/abs/1802.02182
https://arxiv.org/abs/1802.02182


[55] T. Okada, M. G. Linguraru, M. Hori, R. M. Summers,
N. Tomiyama, and Y. Sato, “Abdominal multi-organ segmen-
tation from CT images using conditional shape- location and
unsupervised intensity priors,” Medical Image Analysis,
vol. 26, no. 1, pp. 1–18, 2015.

[56] P. Bharti, D. Mittal, and R. Ananthasivan, “Characterization
of chronic liver disease based on ultrasound images using
the variants of grey-level difference matrix,” Proceedings of
the Institution of Mechanical Engineers Part H Journal of
Engineering in Medicine, vol. 232, no. 9, pp. 884–900, 2018.

11BioMed Research International


	Automatic Liver Segmentation in CT Images with Enhanced GAN and Mask Region-Based CNN Architectures
	1. Introduction
	2. Related Work
	3. Materials and Methods
	3.1. The Original Mask R-CNN
	3.2. Improved Mask R-CNN
	3.3. Generative Adversarial Networks

	4. Experimental Evaluation
	4.1. Experimental Setup and Data Collection
	4.2. Performance Evaluation with DSC and MICCAI Metrics
	4.3. Performance Evaluation with Binary Classification Metrics

	5. Analysis of the Experimental Results
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

