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Systemic juvenile idiopathic arthritis (sJIA) is a severe autoinflammatory disorder with a still not clearly defined molecular
mechanism. To better understand the disease, we used scattered datasets from public domains and performed a weighted gene
coexpression network analysis (WGCNA) to identify key modules and hub genes underlying sJIA pathogenesis. Two gene
expression datasets, GSE7753 and GSE13501, were used to construct the WGCNA. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to the genes and hub genes in the sJIA
modules. Cytoscape was used to screen and visualize the hub genes. We further compared the hub genes with the genome-wide
association study (GWAS) genes and used a consensus WGCNA to verify that our conclusions were conservative and
reproducible across multiple independent datasets. A total of 5,414 genes were obtained for WGCNA, from which highly
correlated genes were divided into 17 modules. The red module demonstrated the highest correlation with the sJIA module
(r = 0:8, p = 3e−29), whereas the green-yellow module was found to be closely related to the non-sJIA module (r = 0:62, p = 1e−14
). Functional enrichment analysis demonstrated that the red module was mostly enriched in the activation of immune
responses, infection, nucleosomes, and erythrocytes, and the green-yellow module was mostly enriched in immune responses
and inflammation. Additionally, the hub genes in the red module were highly enriched in erythrocyte differentiation, including
ALAS2, AHSP, TRIM10, TRIM58, and KLF1. The hub genes from the green-yellow module were mainly associated with
immune responses, as exemplified by the genes KLRB1, KLRF1, CD160, and KIRs. We identified sJIA-related modules and
several hub genes that might be associated with the development of sJIA. Particularly, the modules may help understand the
mechanisms of sJIA, and the hub genes may become biomarkers and therapeutic targets of sJIA in the future.

1. Introduction

Systemic juvenile idiopathic arthritis (sJIA) is a serious
immune inflammatory pediatric disorder that is markedly
different from other JIA subtypes in many aspects. Symp-

toms for patients with sJIA range from fever, rash, serositis,
lymphadenectasis, liver and/or spleen enlargement [1], and
the potentially life-threatening macrophage activation syn-
drome (MAS). It is estimated that about 10% of patients with
sJIA will develop overt MAS, and more than 50% of the
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patients may have subclinical MAS [2, 3]. sJIA shares many
characteristics with classic autoinflammatory diseases, most
notably the response to IL-1 inhibition [4]. It is associated
with other inflammatory cytokines, such as IL-6 and IL-18
and the S100 alarm protein [5]. Besides, NK cell dysfunction
has been suggested as a common pathway in patients with
sJIA, MAS, and HLH (hemophagocytic lymphohistiocytosis,
closely resembling MAS [6, 7]). However, the molecular basis
of sJIA immune dysfunction and the etiology of sJIA and
MAS remain poorly understood [8], as many genetic and
genomic investigations on sJIA are limited due to the small
sample size.

Weighted gene coexpression network analysis
(WGCNA) is a network-based approach that focuses on sets
of genes instead of individual genes from gene expression
data. By transforming the data of the gene expression into
coexpression modules, WGCNA provides insights into key
genes and signaling networks that could play critical roles
in the progression of diseases [9–11]. This approach has been
extensively used in biological research, such as that involving
cancer [12], chronic obstructive pulmonary disease (COPD)
[13], and neuropsychiatric disorders [14]. WGCNA is a pow-
erful tool for screening candidate biomarkers or therapeutic
targets. In this study, based on the integrated microarray
datasets, we used the WGCNA method to identify sJIA-
related and non-sJIA coexpression modules and analyzed
the hub genes in the modules. The biological functions and
pathways of the two modules were also identified and ana-
lyzed. To the best of our knowledge, this is the first study to
apply the WGCNA method to multiple datasets to under-
stand the molecular mechanism of sJIA.

2. Materials and Methods

2.1. Data Collection.Gene profiles were downloaded from the
Gene Expression Omnibus (GEO) database (https://www
.ncbi.nlm.nih.gov/geo/). The inclusion criteria keywords
were as follows: (1) systemic juvenile idiopathic arthritis,
(2) Homo sapiens, and (3) peripheral blood tissue. Datasets
with drug stimulation or transfection were excluded. Finally,
we selected GSE7753 [15] and GSE13501 [16] as these were
the only two datasets meeting the criteria; this step was per-
formed using the same platforms (Affymetrix Human
Genome U133 Plus 2.0 Array GPL570). GSE7753 contained
17 sJIA samples and 30 normal samples; GSE13501 included
21 sJIA samples and 59 normal samples. The raw data of
GSE7753 [15] and GSE13501 [16] were downloaded from
the GEO database. Altogether, 127 samples (38 sJIA and 89
healthy controls) were used in the analysis. The overall search
process is illustrated in Figure 1.

The affy package (R environment, version 3.6.1) was used
to normalize (RMA normalization) and preprocess the raw
data [17]. The parameters were set as RMA (for background
correction) and impute (for supplemental missing values).
The expression profiles were log2 transformed, and batch
normalization was performed using “sva” and “combat”
functions in SVA R package [18], in order to avoid a possible
bias of the two separate microarray datasets. Probes with
more than one gene were eliminated, and the maximum

value was selected from these probes after probe annotation.
A series matrix file was preprocessed to identify differentially
expressed genes based on variance analysis, and the top 25%
[19] (5,414 genes) was obtained for subsequent analysis.

2.2. Construction of the Weighted Coexpression Network. The
“WGCNA” package in R software was used for the network
construction [11]. The expression values of the 5,414 genes
were imported into WGCNA to construct coexpression
modules using automatic network construction. The pick-
SoftThreshold function was used to calculate the scale-free
topology fit index for 1 to 20 powers, and a soft threshold
power of six was chosen as the most appropriate one for net-
work construction. Then, automatic block-wise module
detection was performed using the function blockwiseMo-
dules. The function first preclustered the nodes into large
clusters. Then, hierarchical clustering is applied to each
block, and the modules are defined as branches of the result-
ing dendrogram. An automatic module merging step is per-
formed to merge modules whose eigengenes were highly
correlated (maxBlockSize = 6000, TOMType = “unsigned,”
minModuleSize = 40, mergeCutHeight = 0:25). Thus, genes
with similar expression profiles were separated into the same
module.

2.3. Construction of the Consensus-Weighted Coexpression
Network. The consensus WGCNA method was applied to
verify the reliability and stability of the previous results and
the module, and GSE7753 and GSE13501 were named as
sJIA1 and sJIA2 datasets, respectively, for subsequent analy-
sis. It was also important to choose the soft-thresholding
power β to construct a consensus-weighted gene network.
An approximate scale-free topology was attained around
the soft-thresholding power of 6 for both sets. The parame-
ters were set as follows: the soft-thresholding power 6, mini-
mum module size 40, and cut height for merging of modules
0.25, implying that modules whose eigengenes are correlated
above 1 − 0:25 = 0:75 will be merged, and 17 distinct gene
coexpression modules were constructed and shown in differ-
ent colors. Consensus modules were also related to external
microarray sample information, sJIA patients, and healthy
individuals. In addition, the correspondences were compared
among individual dataset modules, merged dataset modules,
and consensus modules.

2.4. Identification of Coexpression Modules Related to sJIA
and Non-sJIA Samples. The associations between the module
and trait were estimated with the correlation between the
module eigengene and the clinical traits, namely, sJIA and
non-sJIA. Here, gene significance (GS) is defined as the abso-
lute value of the correlation between the gene and the trait,
and module membership (MM) represents the correlation
of the genes with each module eigengene and clinical feature.
Furthermore, module importance (MS) is defined as the cor-
relation between the module eigengene and gene expression
profile. Among all coexpression modules, the module with
the absolute MS ranking first was regarded as a module
related to clinical traits (sJIA module and non-sJIA module).
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The gene modules with the highest correlation to non-sJIA
and sJIA were selected for subsequent studies.

2.5. Function Enrichment Analysis. Functional enrichment
analysis was performed on the genes in the sJIA and non-
sJIA modules. Information on the module genes was submit-
ted to Database for Annotation, Visualization, and Integrated
Discovery (DAVID) online tool (https://david.ncifcrf.gov/)
[20] to perform functional annotation based on Gene Ontol-
ogy (GO) [21] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses. The packages anRich-
ment and anRichmentMethods were used to perform GO
enrichment analysis in all modules (https://horvath.genetics
.ucla.edu/html/CoexpressionNetwork/GeneAnnotation/
Tutorials/). The packages were developed by the inventor of
WGCNA, which helped evaluate the enrichment of the gene
modules in the collection of GO terms (threshold = 1e − 4,
thresholdType = “Bonferroni”), and selected the top GO
results in each module to draw a bar graph (Supplementary
1 Figure S4).

2.6. Identification of Hub Genes. Hub genes are considered
functionally significant because of their high connectivity
with other genes within a module. In this study, the 30 top
ranked genes with the highest levels of intramodular connec-
tivity in the two modules were selected as candidates for fur-
ther analysis using DAVID and visualized using Cytoscape.
Subsequently, the genome-wide association study (GWAS)
catalog (https://www.ebi.ac.uk/gwas/studies/GCST004025)
was used to obtain the disease-susceptibility genes identified
by a previously published GWAS [22]. The protein-protein
interaction (PPI) network of the module hub genes and
GWA genes was analyzed using the STRING (https://
string-db.org/) database (confidence score≥0.4) and visual-
ized using Cytoscape. Comparative analyses of the func-
tional enrichment among the module hub genes and
GWA genes were performed using the online bioinfor-

matic database Metascape (http://metascape.org/gp/index
.html#/main/step1) [23].

3. Results

3.1. Construction of the Weighted Coexpression Network.
After data preprocessing, a total of 5,414 genes were selected
for WGCNA. First, an appropriate soft-thresholding power
of 6 was selected (Supplementary 1 Figure S1–S2 and
Supplementary 1 Table S1) and used to construct the
coexpression module. Seventeen distinct gene coexpression
modules were constructed shown in different colors in
Figure 2(a). The number of genes in the 17 modules is
shown in Supplementary 1 Table S2. Figure 2(b) shows the
topological overlap matrix (TOM) of the 5,414 genes,
indicating that each module and gene expression in each
module was relatively independent. Furthermore, we
plotted the clustering dendrogram; according to the module
correlation and the heat map according to adjacencies
(Figure 2(c)), indicating that these modules were largely
divided into two clusters.

3.2. Construction of the Consensus Weighted Coexpression
Network. As the overall connectivity index generally drops
sharply with an increase in the soft-thresholding power, it
is advantageous to select the lowest power that meets the
approximate scale-free topology standard. As shown in Sup-
plementary 1 Figure S2–S3, an approximate scale-free
topology was obtained around the soft-thresholding power
of 6 for both sets.

Seventeen different gene coexpression modules were con-
structed, shown in different colors in Figure 2(a) and related
to external microarray sample information, patients with
sJIA, and healthy individuals. In each of the two sets, consen-
sus module eigengenes were related to the traits. To summa-
rize the two sets into one measure of module-trait
relationships, we selected the correlation that had the lowest
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Figure 1: Flow chart of the whole procedures in this study.

3BioMed Research International

https://david.ncifcrf.gov/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/GeneAnnotation/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/GeneAnnotation/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/GeneAnnotation/Tutorials/
https://www.ebi.ac.uk/gwas/studies/GCST004025
https://string-db.org/
https://string-db.org/
http://metascape.org/gp/index.html#/main/step1
http://metascape.org/gp/index.html#/main/step1


absolute value in the two sets if the two correlations had the
same sign and zero relationship if the two correlations had
opposite signs (Figure 3(a)). We checked these genes in the
modules related to clinical features and observed results con-
sistent with our previous results.

We then compared the correspondence among individ-
ual dataset modules, merged dataset modules, and consensus
modules. Figure 3B1–B6 show that the two datasets are
indeed very similar. The preservation heat map and bar plots
indicate that most relationships were very highly preserved,
and the overall preservation of the two eigengene networks
was 0.89. Figure 3B7 shows that the number of genes overlap-
ping between the merged dataset modules (our previous
method) and consensus modules was extremely high, and

the hub genes obtained in the previous WGCNA modules
were all overlapping genes.

3.3. Identification of Coexpression Modules Related to Non-
sJIA or sJIA Samples. The module-trait correlation coeffi-
cients showed that the red module and green-yellow module
were highly correlated with disease status (Figure 2(d)). The
red module was positively correlated with the sJIA-related
module (r = 0:8, p = 3e−29), whereas the green-yellow module
was negatively correlated to the sJIA (r = 0:62, p = 1e−14). The
scatterplots in Figures 4(a) and 4(b) show that the gene sig-
nificance (GS) and module membership (MM) values were
highly correlated in the red module (cor = 0:85, p = 8:8e−86)
and the green-yellow module (cor = −0:59, p = 5:3e−16),
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Figure 2: Division and validation of coexpression modules. (a) Dendrogram of all genes divided into 17 modules, with dissimilarity based on
topological overlap, together with assigned module colors. The number of genes in each module was listed in Supplementary 1 Table S2. (b)
The heat map depicts the topological overlap matrix (TOM) among all genes in the analysis. The depth of the red color indicates the
correlation between all pair-wise genes. (c) The upper part shows hierarchical clustering of the whole modules. Another is a heat map plot
of the adjacencies in the hub gene network. (d) Heat map of the correlation between module eigengenes and the clinical modules.
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suggesting that the genes in these two modules were probably
related to the disease status. Thus, the red module was
defined as the sJIA-related module, and the green-yellow
module was defined as the non-sJIA module, which was suit-
able for further analyses and mining of the hub gene.

3.4. Function Enrichment Analysis. Functional enrichment
analysis conducted using DAVID was performed on the
genes in the two constructed modules. There was a signifi-
cant difference in the biological processes of genes in the sJIA
and non-sJIA modules. The detailed information is displayed
in Figures 4(g) and 4(h) and Supplementary 1 Table S3-S4.

For the red module, GO biological process (BP) annota-
tion showed that the gene products were mainly enriched
in activation of immune response, infection, nucleosome,
and erythrocyte. Regarding GO molecular function (MF)
annotation, protein heterodimerization and oxygen trans-
porter were the most enriched terms. Enriched GO-CC terms
were mainly involved in extracellular exosome, nucleosome,
hemoglobin complex, and extracellular space. The results of
KEGG enrichment analysis showed that the module was sim-
ilar to that of systemic lupus erythematosus (SLE)
(gene count = 11, p = 3:1e−5). For the green-yellow module,
GO-BP annotation was mainly enriched in the immune

response and inflammation. Receptor activity was the top
enriched GO-MF terms, with the plasma membrane
enriched in GO-CC terms. Similarly, the KEGG terms were
mainly related to “antigen processing and presentation”
and “natural killer cell-mediated cytotoxicity” (Figure 4(c)).

We also used the packages anRichment and anRichment-
Methods to perform GO enrichment analysis in the whole
module and select the top GO term in each module to draw
a bar graph (Figures 5(a) and 5(f)). We further analyzed
the functional enrichment of genes in several other relatively
important modules: yellow, salmon, purple, and cyan. As
shown in Figures 5(b) – 5(e), the cyan module was mainly
related to the response to external stimuli; the purple module
was mostly related to the function of platelet alpha granules,
involving pathways such as wound healing, coagulation, and
hemostasis; the salmon module may play an important role
in the cell cycle process, and the yellow module was associ-
ated with transcriptional regulation.

3.5. Identification of Hub Genes. The 30 top ranked hub genes
in the two modules are shown in Cytoscape (Figures 4(d) and
4(e) and Supplementary 1 Table S5-S6). As shown in
Figure 4(f), the hub genes from the red module were largely
related to erythrocyte differentiation (ALAS2, AHSP, KLF1,
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Figure 3: Correspondence among individual dataset modules, merged dataset modules, and consensus modules. (a) Heat map of the
correlation between module eigengenes and the clinical modules. Missing (NA) entries indicate that the correlations in the sJIA1 and
sJIA2 datasets have opposite signs, and no consensus can be formed. (b, B1–B6): Correspondence of the sJIA1 dataset modules and sJIA2
modules. The Preservation heat map shows the preservation network, defined as one minus the absolute difference of the eigengene
networks in the two datasets. The bar plot shows the mean preservation of adjacency for each of the eigengenes to all other eigengenes. (b,
B7): Correspondence of the merged dataset modules and consensus modules. Each row of the table corresponds to one sJIA2 set-specific
module, and each column corresponds to one consensus module. Numbers in the table indicate gene counts in the intersection of the
corresponding modules.
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TRIM10, and TRIM58), and the hub genes from the green-
yellow module were largely involved to immune responses,
exemplified by genes such as KLRB1, KLRF1, CD160,
KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, SH2D1B, GZMA,
and TGFBR3 (Supplementary 1 Table S7).

Only one GWAS study was previously conducted on sJIA
[22], and we obtained the disease-susceptibility genes from
this manuscript and the GWAS catalog. To further compare
the hub genes with the GWA genes, we performed PPI net-
work analysis and functional enrichment. As shown in
Figure 6(a), the sJIA-susceptible genes (HLA-DRA, TRIM58,
LDB2, and TAPT1) may be related to the hub genes from the
red module, with TRIM58 being a hub gene of the red mod-
ule, and LGMN and JPH3 may be related to the hub genes
from the green-yellow module. Figures 6(b) – 6(d) show
the comparative analyses of the functional enrichment, such
as tissue morphogenesis related to GWA genes and the hub
genes of the red module, endothelial cell migration associated
with GWA genes, and the hub genes of the green-yellow
module (Supplementary 1 Figure S5A-S5C).

4. Discussion

Bioinformatic analysis of the public gene expression data
could provide further knowledge on the pathogenesis of sJIA.
This is the first study to integrate multiple datasets and con-
struct WGCNA to identify hub genes that may play an
important role in sJIA. Among the 17 coexpression modules,
the red module was positively related to sJIA, and the green-
yellow module was negatively related to sJIA. Moreover, we
identified several hub genes related to the pathogenesis of
sJIA. As the genes in the same module were considered to
have similar functions, the analysis of biologically relevant
modules and hub genes may provide new insights into the
molecular mechanism of sJIA development.

The red module was critical in biological processes and
pathways such as antibacterial humoral response, innate
immune response in mucosa, nucleosome assembly, defense
response to gram-positive bacteria, and erythrocyte differen-
tiation. However, the functional enrichment of the top 30

hub genes in the red module was largely related to erythro-
cyte differentiation (ALAS2, AHSP, TRIM10, TRIM58, and
KLF1). In accordance with the present results, previous stud-
ies [24] have demonstrated that there is a strong relationship
between the erythroid differentiation signature (EDS) and
sJIA associated with the expansion of CD34+ cells. The pres-
ence of EDS was also observed in familial hemophagocytic
lymphohistiocytosis (fHLH), infection, and pulmonary arte-
rial hypertension (PAH), suggesting that the increased
recruitment of red blood cells might be a part of the systemic
response to severe chronic local hypoxia [24, 25].

ALAS2 (erythroid-specific 5-aminolevulinate synthase) is
the first and rate-limiting enzyme in the erythroid heme bio-
synthetic pathway [26]. Mutations in ALAS2 may be related
to porphyria and X-linked sideroblastic anemia [27]. AHSP
(alpha hemoglobin–stabilizing protein) is also necessary for
the proper assembly of nascent alpha-globin into
hemoglobin-A [28]. The altered expression or function of
AHSP might be related to the severity of thalassemia [29].
A recent study by Lechauve et al. also predicted that AHSP
plays an important role in the physiological process of regu-
lating vascular NO concentration [30]. KLF1 (erythroid
Kruppel-like factor 1) is important in the function of ery-
throid cells, such as red cell membrane stability and heme
biosynthesis [31]. AHSP is also a known as the KLF1 target
gene, the expression of which is significantly upregulated
upon KLF1 activation [31]. The protein encoded by LDB2
(LIM domain binding 2) belongs to the LIM domain binding
family that also play critical roles in cell fate determination,
differentiation, and tissue development [32]. Further studies
are required to confirm and validate the function of these
EDS genes (ALAS2, AHSP, KLF1, and LDB2) in the occur-
rence and development of diseases.

TRIM family proteins play an essential and unique role in
several diseases, such as immunological diseases, cancers,
and developmental disorders, and may function as dual reg-
ulators of the immune response and carcinogenesis [33].
TRIM10 has been reported to participate in terminal red
blood cell differentiation and survival [34]. However, recent
research has shown that TRIM10 is involved in Parkinson’s
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Figure 4: Functional enrichment analyses of two trait-related modules. (a) Scatter plot of module eigengenes in the red module. (b) Scatter
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disease (PD) and other autoimmune diseases [35]. Silencing
of TRIM10 reduced apoptosis and reactive oxygen species
levels in a cellular model of PD, which suggests a potential
role of TRIM10 in PD and other autoimmune diseases. An
earlier study also revealed the role of TRIM58 in the regula-
tion of human erythrocyte traits [36]. Recent studies have
reported that TRIM58 regulates epithelial–mesenchymal
transition (EMT) via the Wnt/β-catenin pathway [37] and
may function as a tumor suppressor in some cancers, such
as colorectal cancer [37] and gastric cancer [38]. Another
study [39] showed that TRIM58 might protect against the
transduction of intestinal mucosal inflammation by inhibit-
ing abnormal TLR2 signaling and serve as a potential thera-

peutic target in autoimmune diseases, such as ulcerative
colitis. Furthermore, TRIM58 was identified as an sJIA sus-
ceptibility gene in a previous GWAS on sJIA [22].

For the green-yellow module, function enrichment anal-
ysis mainly identified the immune response and inflamma-
tion pathways, and the results of the hub genes were
similar. The hub genes from the green-yellow module were
largely related to immune responses, exemplified by genes
such as KLRB1, KLRF1, CD160, KIR2DL1, KIR2DL2,
KIR2DL3, KIR3DL1, SH2D1B, GZMA, and TGFBR3, which
was in line with previous studies showing that NK cell dys-
function may be a common pathway in sJIA, MAS, and
HLH [6, 7]. Moreover, inflammatory driver factors may be
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involved in the cytotoxic effects of NK cells in MAS and sJIA
[7].

KLRB1 (killer cell lectin-like receptor subfamily B mem-
ber 1), usually referred to as CD161, is a type II transmem-
brane C-type lectin glycoprotein that appears to play an
inhibitory role in IFN-γ secretion [40] and on human NK
cells [41], while its function on T cells remains elusive, with
reports suggesting both coactivating [40] and inhibitory
[42] effects. KLRB1 has been previously shown to be down-
regulated in rheumatoid arthritis [43] and SLE [44–46].

KLRF1 (killer cell lectin-like receptor F1) is an activated
homodimeric C-type lectin-like receptor (CTLR) expressed
on most NK cells, marking a critical step in human NK cell

development [47] and stimulates cytotoxicity and cytokine
release by the NK cells [48]. CD160 (a 27-kDa glycoprotein)
tightly binds to peripheral blood NK cells and CD8+ T lym-
phocytes and has a cytolytic effect [49]. The killer cell
immunoglobulin-like receptor (KIR) family of inhibitory
receptors, which includes KIR2DL1, KIR2DL2, KIR2DL3,
and KIR3DL1, plays the most important role in NK cell acti-
vation [50]. A previous study [51] showed that sJIA, com-
pared with poly and pauciarticular JIA, was related to the
decreased NK cell function, with more IFN-γ, less TNF-α
secretion by NK cells, and lower KIR2DS4 levels. Further
and larger studies on the KIR gene family are necessary.
Moreover, another hub gene, SH2D1B (SH2 domain
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containing 1 B), also plays a key role in the regulation of
effector functions of NK cells by controlling signal transduc-
tion through CD244/2B4 [52].

The protein encoded by GZMA (granzyme A), which
belongs to the granzyme family [53], lyses target cells
through cytotoxic T lymphocytes and NK cells. Multiple
studies have reported that the cytotoxicity of NK cells in
the peripheral blood mononuclear cells (PBMCs) of patients
with sJIA is reduced. A previous study [51] showed that
patients with sJIA have lower granzyme B expression levels
(p < 0:05), whereas patients with poly- and pauciarticular
JIA have higher perforin and granzyme B expression levels
(p < 0:05). Another study [54] also found decreased expres-
sion of granzyme K in CD56bright NK cells at the protein
and transcriptional levels. However, the intrinsic cytotoxic
defect in sJIA remains undetermined [7], and the action of
GZMA is not clearly understood.

Our study has several merits, the most obvious being
that it is the first study to integrate multiple datasets and
apply the WGCNA method to understand the molecular
mechanisms of sJIA. Due to the rarity of the disease, we
were unable to obtain a larger number of samples; never-
theless, we tried our best to obtain all available data. We
not only merged multiple datasets but also used a consen-
sus WGCNA to prove that our conclusions are conserva-
tive and reliable in multiple datasets. Previous research
on the disease mainly focused on blood leukocytes, such
as the immensely innovative and pioneering study by
Cepika et al. [55], which integrated the blood leukocyte
responses to innate stimuli from multiple omics, and
determined the gene set related to specific cytokine envi-
ronment and activated leukocyte subsets in sJIA. However,
our study found a relatively novel mechanism of sJIA in
red blood cell differentiation [24] and NK cell disorder
[6, 7]. Furthermore, by linking the susceptibility genes
with the module-associated hub genes, we improved our
understanding on the biological processes in sJIA and
identified TRIM58 both as an sJIA susceptibility gene
and as a hub gene of the red module. There is still a large
gap in the knowledge regarding the occurrence and devel-
opment of sJIA. Therefore, we consider that our study
may help to investigate the progress of sJIA, and that
hub genes may become biomarkers and therapeutic targets
of sJIA in the future.

5. Conclusion

In conclusion, we identified sJIA-associated key genes,
such as ALAS2, AHSP, TRIM10, TRIM58, andKLF1, which
are largely related to erythrocyte differentiation. These
genes may be related to anemia or MAS in sJIA. KLRB1,
KLRF1, CD160, and KIRs might be related to NK cell dys-
function, which has been studied extensively but remains
poorly understood in the context of sJIA pathogenesis.
Our study holds implications in understanding the pro-
gression and development of sJIA, and the identified hub
genes may serve as biomarkers and therapeutic targets of
sJIA in the future.
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