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Background. Colon cancer has high morbidity and mortality rates among cancers. Existing clinical staging systems cannot
accurately assess the prognostic risk of colon cancer patients. This study was aimed at improving the prognostic performance of
the colon cancer clinical staging system through knowledge-based clinical-molecular integrated analysis. Methods. 374 samples
from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset were used as the discovery set. 98 samples
from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset were used as the validation set. After converting
gene expression data into pathway dysregulation scores (PDSs), the random survival forest and Cox model were used to identify
the best prognostic supplementary factors. The corresponding clinical-molecular integrated prognostic model was built, and the
improvement of prognostic performance was assessed by comparing with the clinical prognostic model. Results. The PDS of 14
pathways played important roles in prognostic prediction together with clinical prognostic factors through the random survival
forest. Further screening with the Cox model revealed that the PDS of the pathway hsa00532 was the best clinical prognostic
supplementary factor. The integrated prognostic model constructed with clinical factors and the identified molecular factor was
superior to the clinical prognostic model in discriminative performance. Kaplan-Meier (KM) curves of patients grouped by PDS
suggested that patients with a higher PDS had a poorer prognosis, and stage II patients could be distinctly distinguished.
Conclusions. Based on the knowledge-based clinical-molecular integrated analysis, a clinical-molecular integrated prognostic
model and corresponding nomogram for colon cancer overall survival prognosis was built, which showed better prognostic
performance than the clinical prognostic model. The PDS of the pathway hsa00532 is a considerable clinical prognostic
supplementary factor for colon cancer and may represent a potential prognostic marker for stage II colon cancer. The PDS
calculation involves only 16 genes, which supports its potential for clinical application.

1. Introduction

Colon cancer is one of the top cancers in terms of incidence
and mortality in both China and America [1, 2]. Recent
global surveillance of cancer trends revealed that further
research on colon cancer is needed, as the age-standardized
5-year net survival of colon cancer ranges from approxi-
mately 15% to 75% in different countries [3].

Currently, the tumor, node, and metastasis (TNM) stage
system proposed by the American Joint Committee on Can-
cer (AJCC) is the most commonly used clinical staging tool
for colon cancer. However, the accuracy of the 7th TNM
staging system for assessing the prognostic risk of colorectal
cancer patients still needs to be improved, especially for stage
II and stage IIIA patients [4]. The 8th edition of the TNM
staging system was aimed at building an important bridge
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from a “population-based” to a more “personalized”
approach to cancer stage [5]. The 8th edition of the TNM
staging system for breast cancer did so by including the
HER2 and ER statuses in its prognostic staging [6]. Several
studies claimed that modifications of the TNM staging sys-
tem for colorectal cancer showed improved prognostic per-
formance [4, 7, 8]. However, no structural changes were
made in the 8th edition of the TNM staging system for colon
cancer [9]. Therefore, to achieve a more personalized prog-
nosis for colon cancer patients, incorporating more prognos-
tic factors in addition to current clinical prognostic factors
would be a considerable choice.

Incorporating molecular factors, such as gene expression
data, would be a considerable option for improving the per-
formance of colon cancer prognosis. However, in gene
expression-based analyses of heterogeneous diseases, a single
gene often provides weak information [10]. However, the
gene set obtained directly by analyzing a large number of
genes is not stable and will change with changes in the train-
ing samples [11]. Several studies about the prognosis of colon
cancer tried to select hypoxia-related genes or tumor
microenvironment-related genes through literature reviews,
but further screenings of these selected genes were still
required in subsequent prognostic analyses [12, 13]. There-
fore, the introduction of representative functional units, such
as gene sets or pathways, may yield a more stable perfor-
mance and may simultaneously provide certain biological
annotations to improve the interpretability of the results
[14–17]. In addition, converting the gene expression profile
into personalized pathway activities showed a better predic-
tion performance than using the origin gene expression pro-
file in previous studies [18, 19].

In recent years, machine learning methods have been
widely used for cancer prognostic analysis. When performing
prognostic analyses through machine learning methods, the
introduction of prior knowledge, such as pathway informa-
tion, can further improve the performance of the model
[20]. In most associated studies, molecular prognostic fea-
tures were obtained by considering only the molecular fea-
tures; therefore, new molecular features obtained through
analysis may not be effectively combined with clinical fea-
tures [21].

In this study, we conducted a knowledge-based clinical-
molecular integrated analysis through a machine learning
method, identified new pathway-based molecular prognostic
factors to supplement the clinical TNM staging system for
colon cancer overall survival prognosis prediction, and veri-
fied the improved performance of the clinical-molecular inte-
grated prognostic models compared to the clinical prognostic
model.

2. Materials and Methods

2.1. Data Acquisition and Processing. Gene mRNA expres-
sion data from primary tumors and related clinical data of
452 patients in The Cancer Genome Atlas Colon Adenocar-
cinoma (TCGA-COAD) project were obtained from cBio-
Portal as the discovery set, and gene expression data from
normal adjacent tissues of 41 patients in the TCGA-COAD

were obtained from the UCSC Xena as the reference set
[22]. The mRNA sequence data of the discovery set and ref-
erence set used in this study were generated with the Illumina
HiSeq 2000 platform and processed by the RNAseqV2 pipe-
line, which uses RNA-Seq by expectation maximization
upper quartile (RSEM-UQ) for quantification. To validate
the prognostic performance of the identified pathway-based
factors, one independent dataset that offered identical clinical
data and gene mRNA expression from primary tumors gen-
erated with a similar pipeline of 106 colon cancer patients
was obtained from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) from the LinkedOmics as the valida-
tion set [23]. The mRNA sequence data of the validation set
used in this study were generated with the Illumina HiSeq
4000 platform and processed by the RNAseqV2 pipeline with
RSEM-UQ for quantification. Both datasets can be used for
an integrated analysis of clinical data and omics data.

Patients with primary tumors with both clinical data and
gene expression data in the discovery set and validation set
were included in this study. All data were cleaned and
checked after data acquisition. The clinical data included T,
N, and M stages and overall survival information. Other clin-
ical prognostic factors, such as age and location, were not
included because this study is focused on supplementing
the clinical TNM staging system. The T stage was categorized
into T1, T2, T3, and T4 stages (1=T1, 2=T2, 3=T3, and
4=T4 in subsequent analyses); the N stage was categorized
into N0, N1, and N2 stages (0 =N0, 1=N1, and 2=N2 in
subsequent analyses); and the M stage was categorized into
M0 and M1 stages (0 =M0 and 1=M1 in subsequent analy-
ses). All gene expression data values were further log-
transformed (Log2 ðvalue + 1Þ) for subsequent analysis.

The following exclusion criteria were applied to the sam-
ples: containing Tis, N1c, or MX; lack of clear T, N, and M
stages; and invalid survival information. In gene expression
data, genes that could not be targeted with accurate HUGO
Gene Nomenclature Committee (HGNC) symbols in the dis-
covery set, validation set, and reference set were removed.
Besides, genes with missing expression values or zero values
were removed as well.

2.2. Study Design. First, we converted the gene expression
data into pathway dysregulation scores (PDSs) based on
prior knowledge from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) human pathway database. Then, we
conducted a clinical-molecular integrated analysis by com-
bining machine learning methods and survival analysis to
identify the best molecular prognostic factors among the
converted pathway-based factors. Finally, a clinical-
molecular integrated prognostic model was constructed
using clinical factors and the identified molecular factors
for overall survival prediction and compared with the corre-
sponding clinical prognostic model. The overall pipeline of
this study is shown in Figure 1.

2.3. PDS Calculation. Among the pathway-based approaches,
two methods, PARADIGM and Pathifier, are widely used to
estimate the pathway dysregulation information in a particu-
lar sample [24, 25]. However, PARADIGM requires pathway
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mechanisms and is inappropriate for complex or incomplete
pathways. Pathifier requires only the expression data of genes
involved in each pathway and is more suitable for this study.
In addition, previous studies confirmed that the PDS calcu-
lated by this method can effectively characterize pathway
abnormalities [17, 19, 24, 26]. The PDS quantifies the biolog-
ical difference of a specific pathway between a diseased sample
and normal samples with a numeric value range from 0 to 1,
and it is transformed from the gene expression data by the R
package Pathifier [24]. The PDS in each sample indicates the
distance of deviation between the projection of a specific path-
way and the projection of normal samples on the principle
component curve. The pathway information was obtained
from KEGG with the R package KEGGREST (version 1.26.1).

In this study, the PDSs of 327 human pathways obtained
from KEGG were calculated based on this method.

2.4. Identification of Molecular Prognostic Factors. In this
study, the random survival forest was used to screen prog-
nostic factors that could supplement clinical prognosis, and
then the multicovariate Cox model was used to identify prog-

nostic factors that could be the best supplementary factors for
clinical prognostic factors.

2.4.1. Identification with Random Survival Forest. The ran-
dom survival forest is an ensemble tree-based method used
to analyze right-censored survival data [27]. The nonpara-
metric random survival forest model can assess the nonlinear
effects of variables and explore the complex interactions
between variables. In addition, variables in the random sur-
vival forest model that do not have prognostic ability can
be filtered by variable importance. The variable selection pro-
cedure through the random survival forest in this study con-
sists of the following three steps:

(A) Construct a random survival forest model with can-
didate variables. The numbers of trees that offer the
lowest error rate were chosen

(B) In the constructed random survival forest model,
variables with importance greater than 0 are selected
and recorded
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Figure 1: The overall pipeline of the study. Step 1: calculation of PDS; step 2: identification of molecular prognostic factors; step 3:
construction of clinical-molecular integrative prognostic model; step 4: assessment of the integrative prognostic model.
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(C) Considering the existence of random processes, steps
A and B would be repeated 100 times to generate a
matrix of variables with a variable importance value

greater than 0. The prognostic factors that were
recorded as important prognostic factors multiple
times were regarded as important prognostic factors

Table 1: Detailed information of the data used for analysis.

Characteristic
Discovery set Validation set Reference set
TCGA-COAD CPTAC Normal samples

Patients, n 374 98 41

Survival status, n (%)

Alive 293 (78.3) 90 (91.8) 29 (70.7)

Dead 81 (21.7) 8 (8.2) 12 (29.3)

Agea in years, mean (SD, range) 66.75 (12.73, 31-90) 65.43 (11.56, 35-93) 70.34 (13.23, 40-90)

Gender, n (%)

Male 199 (53.2) 41 (41.8) 20 (48.8)

Female 175 (46.8) 57 (58.2) 21 (51.2)

Overall survival time in months, mean (median, range) 30.24 (24.27, 0.47-150.07) 27.96 (30, 1-44) 27.66 (24.37, 0-101.40)

T stage, n (%)

Not available

T1 9 (2.4) 0 (0)

T2 65 (17.4) 12 (12.2)

T3 258 (69.0) 73 (74.5)

T4 42 (11.2) 13 (13.3)

N stage, n (%)

Not available
N0 226 (60.4) 52 (53.1)

N1 84 (22.5) 31 (31.6)

N2 64 (17.1) 15 (15.3)

M stage, n (%)

Not availableM0 315 (84.2) 91 (92.9)

M1 59 (15.8) 7 (7.1)

Number of genes, n 10877 10877 10877
aThe characteristic “Age” refers to the age at initial diagnosis in the discovery set and reference set but refers to the age at procurement in the validation set. SD:
standard deviation.

Table 2: Description of the pathways identified by the random survival forest.

KEGG
pathway ID

Pathway name
Number of genes involved in the pathway

in this study

hsa00450 Selenocompound metabolism—Homo sapiens (human) 13

hsa00532
Glycosaminoglycan biosynthesis—chondroitin sulfate/dermatan

sulfate—Homo sapiens (human)
16

hsa02010 ABC transporters—Homo sapiens (human) 24

hsa04380 Osteoclast differentiation—Homo sapiens (human) 105

hsa04614 Renin-angiotensin system—Homo sapiens (human) 14

hsa04750 Inflammatory mediator regulation of TRP channels—Homo sapiens (human) 65

hsa04911 Insulin secretion—Homo sapiens (human) 41

hsa04971 Gastric acid secretion—Homo sapiens (human) 40

hsa04975 Fat digestion and absorption—Homo sapiens (human) 13

hsa05032 Morphine addiction—Homo sapiens (human) 38

hsa05133 Pertussis—Homo sapiens (human) 56

hsa05152 Tuberculosis—Homo sapiens (human) 128

hsa05167 Kaposi sarcoma-associated herpesvirus infection—Homo sapiens (human) 148

hsa05321 Inflammatory bowel disease (IBD)—Homo sapiens (human) 34
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In this study, identification of molecular prognostic fac-
tors through the random survival forest was implemented
with the following procedures. First, we performed a rough
screening on all molecular factors. The clinical prognostic
factors and all molecular factors were used as variables in
the random survival forest. Variables that showed positive
prognostic power more than 90 times according to the vari-
able selection procedure were identified as the potential
important prognostic factors. Then, we tried to identify
robust molecular prognostic factors that could supplement
the clinical prognostic factors. The potential important prog-
nostic factors identified by the rough screening were screened
again. Here, the identified potential important molecular fac-
tors and the clinical prognostic factors were used as variables
of the random survival forest. The variable selection proce-
dure was repeated 10 times to ensure the robustness. In each
repetition, variables that showed positive prognostic power
over 95 times were recorded as important prognostic factors.

Finally, molecular factors that were recorded as important
prognostic factors in all 10 repetitions were regarded as the
final important prognostic factors identified by the random
survival forest.

2.4.2. Identification with Multicovariate Cox Model.Multico-
variate Cox models were constructed to identify the best
molecular factors for clinical prognostic supplementation.
These models were constructed with clinical prognostic fac-
tors and different combinations of molecular prognostic fac-
tors identified in Section 2.4.1. The models in which
molecular factors showed no statistical significance of prog-
nostic importance (with a P value of the covariate larger than
0.05) were excluded. The discrimination performance of the
remaining models was measured by the bias-corrected con-
cordance index (C-index). Molecular prognostic factors in
the model with the best discrimination performance were
regarded as the best molecular prognostic factors. If multiple

Table 3: Bias-corrected C-indexes of 27 different clinical-molecular integrated models.

Covariates used in the model Bias-corrected Harrell’s C-index (±95% CI)

T, N, M, hsa00532, hsa04911, hsa05133, hsa05152 0:775 ± 0:0038

T, N, M, hsa00532 0:773 ± 0:0038

T, N, M, hsa00532, hsa04911, hsa05133 0:773 ± 0:0038

T, N, M, hsa02010, hsa05152, hsa05321 0:773 ± 0:0038

T, N, M, hsa02010, hsa05167, hsa05321 0:772 ± 0:0037

T, N, M, hsa00532, hsa04380, hsa04911, hsa05133 0:772 ± 0:0039

T, N, M, hsa00532, hsa05133, hsa05152 0:772 ± 0:0040

T, N, M, hsa00532, hsa04380, hsa04971, hsa05133 0:771 ± 0:0039

T, N, M, hsa00532, hsa05133, hsa05167 0:771 ± 0:0040

T, N, M, hsa00532, hsa04975, hsa05133 0:770 ± 0:0041

T, N, M, hsa02010, hsa04911, hsa05133, hsa05152 0:768 ± 0:0040

T, N, M, hsa02010, hsa05133, hsa05152 0:768 ± 0:0040

T, N, M, hsa00532, hsa04971, hsa05133 0:767 ± 0:0038

T, N, M, hsa00532, hsa04380, hsa05133 0:766 ± 0:0041

T, N, M, hsa02010, hsa04911, hsa05133 0:764 ± 0:0038

T, N, M, hsa02010, hsa05133, hsa05167 0:764 ± 0:0040

T, N, M, hsa00532, hsa04750, hsa05133 0:764 ± 0:0041

T, N, M, hsa02010, hsa04911 0:763 ± 0:0037

T, N, M, hsa02010, hsa04380, hsa04911, hsa05133 0:763 ± 0:0040

T, N, M, hsa05133, hsa05152 0:761 ± 0:0042

T, N, M, hsa02010, hsa04750, hsa05133 0:759 ± 0:0040

T, N, M, hsa00450, hsa04911 0:758 ± 0:0036

T, N, M, hsa04380, hsa05133 0:758 ± 0:0043

T, N, M, hsa04911, hsa05133 0:756 ± 0:0039

T, N, M, hsa00450, hsa04911, hsa05133, hsa05152 0:756 ± 0:0040
T, N, M, hsa04380, hsa04911, hsa05133 0.754± 0.0041
T, N, M, hsa05133, hsa05167 0.754± 0.0042
T, N, M 0.746± 0.0040
CI: confidence interval.
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Figure 2: Observation of the PDS of the pathway hsa00532 in the discovery set. (a) Density distribution of the PDS of the pathway hsa00532
in the discovery set. (b) KM curve plotted based on two groups of patients in the discovery set divided by the PDS with a threshold of 0.6779.
(c) KM curve plotted based on three groups of patients in the discovery set divided by the PDS with thresholds of 0.5 and 0.6779. (d) KM curve
plotted based on two groups of stage II patients in the discovery set divided by the PDS with a threshold of 0.6779.
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models showed similar discrimination performance, the
molecular factors that used the least number of genes were
regarded as the best molecular prognostic factors.

2.5. Construction of the Clinical-Molecular Integrated
Prognostic Model. The clinical prognostic factor T, N, and
M stages and the identified best molecular prognostic factors
were used to construct the clinical-molecular integrated
prognostic model. Therefore, a multicovariate Cox model
was built, with the formula as follows:

h tð Þ = h 0ð Þ exp α1 T stageð Þ + α2 N stageð Þ + α3 M stageð Þ+〠βnMn

� �
,

ð1Þ

where hðtÞ is the risk of death at time t, hð0Þ is the baseline
risk, α is the regression coefficient of clinical prognostic fac-
tors, β is the regression coefficient of molecular prognostic
factors, and M is the identified molecular prognostic factor.
In addition, identical clinical prognostic factors and molecu-
lar prognostic factors were used to construct the correspond-
ing clinical prognostic model and molecular prognostic
model. Comparisons of these models were performed to eval-
uate the improvement of prognostic performance between
the clinical-molecular integrated prognostic model and the
clinical prognostic model. Finally, a nomogram was con-
structed based on the clinical-molecular integrated prognos-
tic model to predict the 3-year colon cancer overall survival.

2.6. Assessment of the Clinical-Molecular Integrated
Prognostic Model. First, according to the distribution of the
PDS of the corresponding molecular factors identified,
patients in the discovery set were divided into different
groups. The grouping was based on the highest degree of dif-
ferentiation of survival curves. These findings could provide a
direct observation of the relevance of the identified molecular
prognostic factors and survival.

Second, based on the clinical prognostic factors and iden-
tified molecular prognostic factors, one clinical prognostic
model, one molecular prognostic model, and one clinical-
molecular integrated prognostic model were constructed on
the discovery set. Internal validation through bootstrapping
with 200 iterations was used to assess the discrimination per-
formance of these models on the discovery set. External val-
idation through stratified bootstrapping with 200 iterations
was used to assess the discrimination performance of these
models on the validation set. As the mean survival time of
patients with metastasis was shorter than that of patients
without metastasis, the performance of the prognostic model
might have been affected. Therefore, models for nonmeta-
static patients were built with the same prognostic factors
and compared with the same assessment.

Finally, to compare the prognostic performance of
directly using gene expression data and using converted
PDS in this study, genes involved in the pathways were com-
bined with clinical prognostic factors in the clinical-
molecular integrated prognostic model. Comparisons
between the gene-based integrated prognostic model and
pathway-based integrated prognostic model were conducted.

The constructed integrated prognostic model had a
potential problem of overfitting as it contains multiple covar-
iates. The bias-corrected Harrell’s C-index which overcomes
the problem of overfitting was chosen to evaluate the overall
discriminative performance of the models in internal valida-
tion [28]. The origin Harrell’s C-index was used in external
validation of the overall discriminative performance. Uno’s
C-index, which is free of censoring, was chosen to evaluate
the discriminative performance of the models at the 3-year
time point [29]. A two-sided Wilcoxon signed-rank test was
used to compare the 200 C-indexes generated from the 200
iterations of the bootstrapping procedure to quantify the dis-
criminative difference of the C-index between different
models.

2.7. Statistical Analysis. All statistical analyses were per-
formed using R statistical software (version 3.5.3). Construc-
tion of Cox models and the nomogram and internal
validation of Harrell’s C-index and calibration plot were per-
formed with the rms R package. External validation of Har-
rell’s C-index was performed with the Hmisc R package.
Uno’s C-index was calculated with the survC1 R package.
The Wilcoxon signed-rank test was performed with the stats
R package. The random survival forest was performed with
the randomForestSRC R package.

3. Results

3.1. Results of Data Processing. After data acquisition and
processing, this study included 374 cases in the TCGA-
COAD data as the discovery set, 98 colon cancer cases in
the CPTAC as the validation set, and 41 colon cancer normal
adjacent tissue data from the TCGA as the reference set. Both
the discovery set and the validation set included the T, N, and
M stages with identical categories and overall survival infor-
mation including overall survival time and overall survival
status. The detailed information of the final dataset used for
analysis is shown in Table 1.

Table 4: Regression coefficients of the knowledge-based clinical-
molecular integrated prognostic model.

Covariate Coefficient ± SE HR 95% CI P value

T stage

T2 −1:62 ± 1:42 0.20 0.012-3.18 .25

T3 0:38 ± 1:02 1.47 0.20-10.79 .71

T4 1:22 ± 1:05 3.38 0.43-26.37 .25

N stage

N1 −0:01 ± 0:31 0.99 0.54-1.80 .96

N2 0:67 ± 0:30 1.95 1.07-3.54 .03

M stage

M1 1:02 ± 0:28 2.78 1.60-4.82 <.001
hsa00532∗ 2:86 ± 1:42 17.53 1.08-283.24 .04

SE: standard error; HR: hazard ratio; CI: confidence interval. ∗Covariate
hsa00532 used in the model is the PDS of pathway has00532.
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3.2. Identification of Molecular Prognostic Factors. Through
the random survival forest, a total of 14 pathways were
screened as potential molecular prognostic factors as shown
in Table 2. After further screening through the multicovariate
Cox model, 27 combinations of different pathways were
found to have significant prognostic effects in the integrated
models. Based on the bias-corrected C-indexes of these 27
different clinical-molecular integrated models shown in
Table 3, and the numbers of genes used in the analysis of each
pathway shown in Table 2, we concluded that the PDS of the
pathway has00532 should be the best molecular prognostic
factor to supplement clinical prognosis among these 14 path-
ways. In this study, 16 genes were included in the analysis:
XYLT1, XYLT2, B4GALT7, B3GALT6, B3GAT3, CSGAL-
NACT1, CSGALNACT2, CHSY1, CHPF, CHPF2, DSE,
CHST11, CHST12, CHST3, CHST15, and CHST14. The
other 4 genes, CHSY3, CHST13, CHST7, and UST, were
removed during data processing as these four genes were
not matched in the validation set. These 16 genes were used
for gene-based model construction in subsequent analyses.

Observation of the distribution of the PDS of the pathway
hsa00532 in the discovery set suggested that it approximately
obeyed a normal distribution as shown in Figure 2(a). There-
fore, patients in the discovery set were divided into a high-PDS
group and a low-PDS group. Based on the difference in
Kaplan-Meier (KM) curves between different patient groups,
a threshold of 0.6779 was considered to most clearly separate
these two groups, with the corresponding KM curves shown
in Figure 2(b). In addition, several peaks at approximately less
than 0.5 of the density distribution led us to separate the
patients into three groups according to thresholds of 0.5 and
0.6779, with the corresponding KM curves shown in
Figure 2(c). The high-PDS and low-PDS groups divided by
0.6779 showed significant survival differences in stage II colon
cancer patients, as shown in Figure 2(d).

3.3. Constructed Knowledge-Based Clinical-Molecular
Integrated Prognostic Model. With the identified
knowledge-based prognostic factor, the PDS of the pathway
hsa00532, and clinical prognostic factor T, N, and M stages,
our knowledge-based clinical-molecular integrated prognos-
tic model was built. To assess the improvement of our model
compared with the clinical prognostic model, the corre-
sponding clinical prognostic model based on T, N and M
stages and the molecular prognostic model based on the
PDS of pathway has00532 were constructed. The multico-
variate Cox model was used to determine the regression coef-
ficients of the models, with the coefficients of the knowledge-
based clinical-molecular integrated prognostic model sum-
marized in Table 4 and regression coefficients of the other
models summarized in Table S1, Table S2, and Table S3. A
corresponding nomogram that predicts the 3-year overall
survival was constructed and is shown in Figure 3.

3.4. Assessment of the Prognostic Models for all Colon Cancer
Patients. The discriminative performance of different models
was measured with both Harrell’s C-index for overall perfor-
mance and 3-year Uno’s C-index for performance at specific
time points and is shown in Figure 4. In the internal valida-
tion, our model outperformed in terms of overall prognostic
performance compared to the clinical prognostic model
(0.773 vs 0.746, P < :001) and the molecular prognostic
model (0.773 vs 0.619, P < :001) as shown in Figure 4(a). In
the external validation, our model again outperformed in
terms of overall prognostic performance compared to the
clinical prognostic model (0.893 vs 0.808, P < :001) and the
molecular prognostic model (0.893 vs 0.810, P < :001) as
shown in Figure 4(b).

The prognostic performance of our model at the 3-year
time point was assessed by Uno’s C-index and calibration
plot. The 3-year Uno’s C-index in the discovery set suggested
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Figure 3: Nomogram for predicting the 3-year overall survival of colon cancer patients. To use the nomogram, first, the position of each
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be drawn upwards to determine the number of points of each variable. Then, the points from all the variables should be added. Finally, a
line from the total point axis should be drawn downward to determine the likelihood of 3-year survival probabilities at the lower line of
the nomogram.
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that our model has the best discriminative performance com-
pared to the clinical model (0.793 vs. 0.762, P < :001) and the
molecular model (0.793 vs. 0.619, P < :001) as shown in
Figure 4(a), whereas in the validation set, the comparison
results were 0.899 vs. 0.816 (P < :001) compared to the clini-
cal model and 0.899 vs. 0.816 (P < :001) compared to the
molecular model as shown in Figure 4(b). The calibration
plot of these models also showed that our model has a supe-
rior calibration performance compared with the clinical
model at a 3-year time point as shown in Figure 5.

3.5. Assessment of the Prognostic Models for Nonmetastatic
Colon Cancer Patients. Because the mean survival time of
metastatic patients is shorter than that of nonmetastatic

patients, the prognostic performance of the prognostic
models may be affected. Therefore, the clinical prognostic
model, molecular prognostic model, and clinical-molecular
integrated prognostic model were constructed with the same
prognostic factors used for nonmetastatic patients. The same
assessments were performed on these models for nonmeta-
static patients, with nonmetastatic patients in the discovery
set and the validation set. In the internal validation, the inte-
grated model outperformed in terms of overall prognostic
performance compared to the clinical prognostic model
(0.712 vs. 0.665, P < :001 for bias-corrected Harrell’s C-index,
0.763 vs. 0.709, P < :001 for the 3-year Uno’s C-index) and the
molecular prognostic model (0.712 vs. 0.655, P < :001 for bias-
corrected Harrell’s C-index, 0.763 vs. 0.659, P < :001 for the 3-
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Figure 4: C-index of our pathway-based integrated model and other models for patients in the discovery set (a) and validation set (b).
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year Uno’s C-index) as shown in Figure 6(a). In the external
validation, the integrated model again outperformed in terms
of overall prognostic performance compared to the clinical
prognostic model (0.824 vs. 0.720, P < :001 for Harrell’s C-
index, 0.829 vs. 0.743, P < :001 for the 3-year Uno’s C-index)
and the molecular prognostic model (0.824 vs. 0.791, P <
:001 for Harrell’s C-index, 0.829 vs. 0.799, P < :001 for the 3-
year Uno’s C-index) as shown in Figure 6(b).

3.6. Pathway-Based Model Is Superior to the Gene-Based
Model. Previous studies have claimed that the introduction
of representative functional units should improve gene
expression-based studies [10, 14–16, 30]. Therefore, genes
involved in the pathway hsa00532 were used to construct a
gene-based clinical-molecular integrated prognostic model.
The regression coefficients of the gene-based model sug-
gested that only two genes (CSGALNACT1 and DSE) were
prognostically related when combined with clinical factors,

and they are summarized in Table S3. Compared with our
knowledge-based integrated model, the C-indexes of the
gene-based integrated model in the discovery set were
lower, with 0.721 vs. 0.773 (P < :001) for the bias-corrected
C-index, 0.783 vs. 0.793 (P < :001) for the 3-year Uno’s C-
index in the discovery set, 0.825 vs. 0.893 (P < :001) for
Harrell’s C-index, and 0.826 vs. 0.899 (P < :001) for the 3-
year Uno’s C-index in the validation set as shown in
Figure 4. These results suggest that the pathway-based
integrated model is superior to the gene-based integrated
model in discriminative performance because the gene-
based integrated model might include too many redundant
prognostic factors.

4. Discussion

4.1. Principal Results. Through knowledge-based clinical-
molecular integrated analysis by the random survival forest
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Figure 5: Calibration plot of our pathway-based integrated model (a) and clinical model (b) at the 3-year time point.
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and multicovariate Cox model, this study successfully identi-
fied the PDS of the pathway hsa00532 as the best molecular
prognostic factor for supplementing the prognostic perfor-
mance of the T, N, and M stages in overall survival predic-
tion. The results of internal validation and external
validation suggested that the knowledge-based clinical-

molecular integrated prognostic model had the best discrim-
inative performance and improved calibration performance
than the clinical prognostic model. The regression coeffi-
cients of the covariate in different models in Table 4,
Table S1, and Table S2 indicated that tiny changes were
observed for the clinical prognostic factors, while the
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Figure 6: C-index of our pathway-based integrated model and other models for nonmetastatic patients in the discovery set (a) and the
validation set (b).
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molecular prognostic factor keeps as an independent
prognostic factor in the final clinical-molecular integrated
prognostic model. These further indicated that our final
clinical-molecular integrated prognostic model does satisfy
the aim of our study. In addition, the pathway-based
models were superior to the gene-based model, which
indicates that the incorporation of pathway information
can make more use of the expression information of genes
involved in a pathway rather than directly using the
expression information of genes.

The observation of the KM curves based on patient
groups divided by thresholds of 0.5 and 0.6779 suggested that
patients with higher PDSs had worse survival. In addition,
the KM curves of stage II patients divided into high-PDS
and low-PDS groups could be distinctly distinguished, indi-
cating that the PDS of the pathway hsa00532 might be a
potential biomarker for separating high-risk stage II colon
cancer patients.

The pathway hsa00532 is named glycosaminoglycan
biosynthesis-chondroitin sulfate/dermatan sulfate on the
KEGG website, and it is related to the biosynthesis of chon-
droitin sulfate and dermatan sulfate. Previous studies have
indicated that the dermatan sulfate chain is different between
colon cancer and normal colonic mucosa, and chondroitin
sulfate is associated with tumor metastasis [31–34]. However,
the PDS of the pathway hsa00532 showed no relevance to the
metastasis status, with a Pearson correlation coefficient of
0.04 for the discovery dataset. In addition, the pathway
hsa00532 showed considerable supplementary power in
the models for both all-stage and nonmetastatic colon can-
cer patients, while the metastasis status and the PDS of the
pathway hsa00532 were regarded as independent signifi-
cant prognostic factors in the constructed model. One pos-
sible explanation for this finding is that although the PDS
in this study is generated from gene expression data, a
series of regulatory and expression biology processes from
the transcriptome is still needed to generate the actual
pathway products. Two genes, CSGALNACT1 and DSE,
involved in the pathway hsa00532 might be potential
markers for colon cancer prognosis because only these
two genes showed a potential prognostic effect in the
gene-based integrated model based on the regression coef-
ficients of the gene-based model summarized in Table S3.
Further validation is required to validate the prognostic
effect of these two genes as currently published papers
have not mentioned them in conjunction with colon
cancer prognosis.

Recent studies on colon cancer prognosis mainly focused
on finding better molecular prognostic features, while our
study was aimed at supplementing the current clinical stag-
ing system with molecular features [12, 13, 35]. Compared
to a recent colon cancer prognosis study which incorporated
both clinical prognostic features and gene expression profiles,
our study integrated the clinical prognostic features and gene
expression profile in a conditional way rather than joining
the two types of features independently [12]. The conditional
modelling strategy is more suitable for our study as this study
was aimed at supplementing the prognosis performance of
the current TNM staging system.

4.2. Limitations. There are still limitations in this study. The
clinical prognostic factors in this study involved only the T,
N, and M stages, while in the actual clinical treatment of
colon cancer, there are many other factors that need to be
considered, such as the patient’s physical condition and the
chemotherapy or radiotherapy regimen. In addition, due to
the short follow-up time of the validation set, it was not pos-
sible to further validate the performance of our model on
long-term prognosis. The conditional modelling strategy for
clinical-molecular integration could satisfy the demand of
the current study, although it could not fully utilize the cor-
relation structure between clinical and molecular factors
[36]. Further studies about how to make better use of molec-
ular features should be considered. The current study used
only gene expression data from the transcriptome, and the
addition of other types of omics data, such as genome or epi-
genome data, may further improve the accuracy of molecular
features and better supplement the clinical prognosis. How-
ever, with the current technology, how to balance the
improvement in discriminative performance and the cost of
sequencing remains to be considered.

Through cooperation with local hospitals, we can collect
more real-world follow-up patients and sequence their tumor
samples to generate more molecular data. Therefore, further
validation of our model could be conducted. The involve-
ment of more clinical prognostic factors in clinical-
molecular analysis could make a more detailed and specific
supplement to clinical prognosis. New integrative models
based on a conditional strategy or even a joint modelling
strategy would be required to deal with new data. In addition,
considering that the PDS of the pathway hsa00532 can effec-
tively distinguish the risk of stage II patients, further research
and validation should be performed with more data. After
further validation with real data, further research related to
the PDS of the pathway has00532, such as immunohisto-
chemistry and other methods appropriate for clinical use,
should be conducted, with corresponding web-based tools
being developed.

5. Conclusions

In conclusion, this study identified that the PDS of the path-
way hsa00532 can be used as a supplementary prognostic fac-
tor for the three clinical prognostic factor T, N, and M stages.
The clinical-molecular integrated prognostic model con-
structed with these three clinical prognostic factors and the
identified molecular prognostic factor is superior to the clin-
ical prognostic model, molecular prognostic model, or gene-
based integrated prognostic model in prognostic perfor-
mance. A corresponding nomogram including the three clin-
ical prognostic factors and the identified molecular
prognostic factor was constructed for possible clinical use.
In addition, the PDS of the pathway hsa00532 showed a sig-
nificant ability to distinguish high risk stage II colon cancer
patients and is a potential prognostic marker. The PDS calcu-
lation of the pathway hsa00532 involves only 16 genes; there-
fore, it has good prospects for clinical use after further
validation with real data.
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