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Background. Type 2 diabetes is a major health concern worldwide. The present study is aimed at discovering effective biomarkers
for an efficient diagnosis of type 2 diabetes. Methods. Differentially expressed genes (DEGs) between type 2 diabetes patients and
normal controls were identified by analyses of integrated microarray data obtained from the Gene Expression Omnibus database
using the Limma package. Functional analysis of genes was performed using the R software package clusterProfiler. Analyses of
protein-protein interaction (PPI) performed using Cytoscape with the CytoHubba plugin were used to determine the most
sensitive diagnostic gene biomarkers for type 2 diabetes in our study. The support vector machine (SVM) classification model
was used to validate the gene biomarkers used for the diagnosis of type 2 diabetes. Results. GSE164416 dataset analysis revealed
499 genes that were differentially expressed between type 2 diabetes patients and normal controls, and these DEGs were found
to be enriched in the regulation of the immune effector pathway, type 1 diabetes mellitus, and fatty acid degradation. PPI
analysis data showed that five MCODE clusters could be considered as clinically significant modules and that 10 genes (IL1B,
ITGB2, ITGAX, COL1A1, CSF1, CXCL12, SPP1, FN1, C3, and MMP2) were identified as “real” hub genes in the PPI network
using algorithms such as Degree, MNC, and Closeness. The sensitivity and specificity of the SVM model for identifying
patients with type 2 diabetes were 100%, with an area under the curve of 1 in the training as well as the validation dataset.
Conclusion. Our results indicate that the SVM-based model developed by us can facilitate accurate diagnosis of type 2 diabetes.

1. Introduction

Diabetes mellitus (DM) is one of the top three major chronic
noncommunicable diseases [1]. Over 90% of DM cases are
those of type 2 diabetes. In recent years, the incidence of type
2 diabetes has been increasing significantly each year [2].
According to the latest survey released by the International
Diabetes Federation in 2019, diabetes has a prevalence of
9.3%, and it affects approximately 463 million adults
worldwide. It is expected that the number of affected indi-
viduals will reach 578 million (10.2%) by 2030 and 700
million (10.9%) by 2045 [3], making the prevention and
treatment of type 2 diabetes a serious challenge that faces
humanity.

The support vector machine (SVM) algorithm was first
proposed by Vapnik et al. [4] in 1995 as a supervised learn-
ing method in machine learning, and it gradually developed
and matured to have a wide range of applications in the mid-
1990s. Later on, a series of improved and extended algo-
rithms stemming from SVM were developed, such as multi-
class SVM classification, support vector regression, least-
squares SVM, support vector clustering, and semisupervised
SVM [5].

Machine learning tools are used to detect key features
from complex datasets. SVM is a machine learning tool that
is widely used in disease research to build predictive models,
and it is known to produce effective and predictable models
[6–9]. The following are a few examples of efficient
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predictive models built using SVM: a study showing the
application of an SVM-based approach to identify postmen-
opausal women with low bone density [10] and a gene signa-
ture associated with postmenopausal osteoporosis that was
detected and validated using SVM [11].

The Gene Expression Omnibus (GEO) [12], an online
public database made available by National Center for Bio-
technology Information in 2000, is currently one of the most
comprehensive gene expression databases. Based on data
from this database, we systematically analyzed the expres-

sion patterns of genes associated with type 2 diabetes sam-
ples at a transcriptional level.

Based on the literature study [13, 14], we hypothesize
that multigene panels may be more effective and compre-
hensive in predicting the prognosis of type 2 diabetes
patients. Therefore, we attempted to identify and verify a
robust prognostic feature that predicts survival rate by inte-
grating multiple datasets of type 2 diabetes patients. In this
study, we constructed a risk prediction model based on
SVM at the transcription level for type 2 diabetes patients;
this model may supplement traditional clinical prognostic
factors and further provide more effective therapeutic inter-
vention and personalized treatment for type 2 diabetes
patients.

2. Materials and Methods

2.1. Data Acquisition.MINiML formatted family files of type
2 diabetes-related microarray datasets, GSE164416 [15],
GSE156993 [16], GSE161355 [17], GSE163980, GSE76895
[18], GSE9006 [19], and GSE78721 [20], were downloaded
from GEO. Those datasets we use are the processed data
from the GEO database, which has been background proc-
essed and normalized.

Type 2 diabetes samples and control samples were
retrieved from the GEO dataset, and the probe IDs were
converted to gene symbols. Any single probe corresponding
to multiple genes was removed, and for genes corresponding
to multiple gene symbols, the median gene expression was
considered.

The RNA-Seq dataset (GSE164416) was processed using
the following steps.

Type 2 diabetes samples and control samples from the
dataset were retrieved, and the expression spectrum was
counted in terms of transcripts per million. ENSG IDs were
converted into gene symbols, and the median value was con-
sidered for expression of genes corresponding to multiple
gene symbols.

Clinical statistics of the processed samples are shown in
Table 1. Clinical information of datasets is shown in Table 2.

2.2. Identification of Differentially Expressed Genes (DEGs).
The “Limma” package [21] in the latest R language (version
4.2.2) was used to screen DEGs between the type 2 diabetes
samples and the normal control samples, and the criteria for
statistical significance were ∣log2FC ∣ >1 and FDR < 0:05.

2.3. Functional Enrichment Analysis. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis and Gene
Ontology (GO) functional enrichment analysis based on cel-
lular components (CCs), biological processes (BPs), and
molecular functions (MFs) were performed on the DEGs
using the R software package clusterProfiler [22]. P < 0:05
was used as the significance threshold for enrichment.

2.4. Protein-Protein Interaction (PPI) Networks. PPI net-
works facilitate the study of the molecular mechanisms of
a disease from a system perspective, for example, in the dis-
covery of new drug targets. We constructed a PPI network
using resources from the STRING database [23], a database

Table 1: Clinical sample information of datasets.

Datasets Expression Platforms

GSE164416

Healthy 18
GPL16791

T2D 39

GSE156993

Healthy 6
GPL570

T2D 12

GSE161355

Healthy 15
GPL570

T2D 18

GSE163980

Healthy 5
GPL20115

T2D 5

GSE76895

Healthy 32
GPL570

T2D 36

GSE9006

Healthy 24
GPL96

T2D 12

GSE78721

Healthy 62
GPL15207

T2D 68

Table 2: Clinical feature information of GEO datasets.

b GSE163980 GSE76895 GSE9006 GSE78721

Age

0-10 8

10-20 26

20-30 2 2

30-40 3 2

40-50 8 1 6

50-60 7 8 18

60-70 1 14

70-80 22

80-90 4

Gender

Male 7 6 39 16 56

Female 11 4 29 20 74

2 BioMed Research International



of known and predicted protein-protein interactions. The
PPI network of the modular gene was obtained by importing
the module genes into the STRING database and processing
them with the resources available on the database website.
Generally, the importance of a network node is positively
correlated with the node having more connections to the
genes in the network, thus implying the node to have a
greater connectivity across the network. Each point in the
PPI network for screening the modular pivot genes was cal-
culated using the Cytoscape (version 3.7.2) [24] software
with the plugin CytoHubba [25] and using the following

four algorithms: Degree, MCC (Maximal Clique Centrality),
Closeness, and Betweenness.

2.5. Construction of a Support Vector Machine (SVM)
Classifier. SVM is a supervised machine learning classifica-
tion algorithm that distinguishes sample types by estimating
the chance of a sample belonging to a certain class. For the
training set, the SVM classifier was constructed using the
SVM method based on the optimal mRNA set in the R pack-
age e1071 (version 1.6-8, http://cran.r-project.org/web/
packages/e1071).

GSE164416 dataset

Volcano

GSE156993 dataset
GSE161355 dataset
GSE163980 dataset

Diagnostic model

Functional analysis

STRING analysis

MCODE

cytoHubba

Hub genes

Limma analysisHeatmap

Figure 1: Workflow chart.
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Figure 2: Identification of differentially expressed genes. (a) The volcano map of differentially expressed genes in the GSE164416 dataset. (b)
The heat map of differentially expressed genes in the GSE164416 dataset. P < 0:01 and ∣log2FC ∣ >1:5.
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Figure 3: Continued.

4 BioMed Research International



The performance of the SVM classifier was evaluated in
the training and validation sets by the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve
as an evaluation metric.

3. Results

3.1. Identification and Functional Annotation of DEGs. The
analysis flowchart describing the methodology of this study
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Figure 3: Functional enrichment analysis of differentially expressed upregulated genes. (a) The biological process annotation map of
differentially expressed upregulated genes. (b) The cellular component annotation map of differentially expressed upregulated genes. (c)
The molecular function annotation map of differentially expressed upregulated genes. (d) The Kyoto Encyclopedia of Genes and
Genomes annotation map of differentially expressed upregulated genes.
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Figure 4: Continued.
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is shown in Figure 1. A total of 499 DEGs were obtained, of
which, 320 were upregulated and 179 were downregulated in
the type 2 diabetes samples (Figures 2(a) and 2(b)). Further-

more, KEGG pathway analysis and GO functional enrich-
ment analysis were performed on the 499 DEGs using the
R software package clusterProfiler. For the 320 upregulated
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Figure 4: Functional enrichment analysis of differentially expressed downregulated genes. (a) The biological process annotation map of
differentially expressed downregulated genes. (b) The cellular component annotation map of differentially expressed downregulated
genes. (c) The molecular function annotation map of differentially expressed downregulated genes. (d) The Kyoto Encyclopedia of Genes
and Genomes annotation map of differentially expressed downregulated genes.

7BioMed Research International



HLA-DRB1

HLA-F HLA-DQA2

HLA-B

HLA-DMA

HLA-DMB

HLA-DOA
HLA-DPB1

HLA-A
IFITM3

IFI27IFITM2

BST2

IFITM1

HLA-DQB2 HLA-DPA1

IRF8

CD3E

HLA-DRA

C1QA

FCER1G

CCR1

CYBB

C1QC

AIF1

CD3D
C1QB

LAPTM5

TYROBP

ITGB2

Mcode1

(a)

Mcode2

PCSK9

IGFBP7

VCAN

ENAM

VWA1

CSF1

DNAJC3

FN1
IRF1

LGALS1

SPP1

IGFBP4

NOTUM

LAMB2

MXRA8

C3

TRIM22

GBP2

IRF7

(b)

Figure 5: Continued.
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Figure 5: Gene protein-protein interaction maps of the functional modules mined by MCODE.
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genes, the top 10 significantly enriched BPs, MFs, and CCs are
shown in Figures 3(a)–3(c). Based on the KEGG annotation,
63 pathways were obtained, which included pathways associ-
ated with Epstein-Barr virus infection, type I diabetes mellitus,
and Staphylococcus aureus infection (Figure 3(d)). For the 179
downregulated genes, the top 10 significantly enriched BPs,
MFs, and CCs are shown in Figures 4(a)–4(c). Based on the
KEGG annotation, three pathways were obtained, which
included fatty acid degradation, carbohydrate digestion and
absorption, and the citric acid cycle (Figure 4(d)).

3.2. Protein-Protein Interaction Networks. The PPI network
of the 499 DEGs was constructed using the STRING data-
base. Cytoscape (version 3.7.2) was used to filter the network
modules, and the MCODE algorithm plugin found five clin-
ically significant modules (Figure 5).

3.3. Identification of Hub Genes. Calculations were per-
formed on the PPI network developed with the 499 DEGs
using the three algorithms, Degree, MNC, and Closeness,
available in CytoHubba, a plugin of the Cytoscape (version
3.7.2) software, to select the top 15 genes as the key genes
(Figures 6(a)–6(c)). The intersection of the hub genes
obtained by the three algorithms was considered to contain
the ten “real” hub genes (IL1B, ITGB2, ITGAX, COL1A1,
CSF1, CXCL12, SPP1, FN1, C3, and MMP2) (Figure 6(d)).

3.4. Construction and Validation of the Diagnostic Model.
The GSE164416 dataset was used as the training dataset, and
the datasets GSE156993, GSE161355, and GSE163980 were used

as validation datasets. The ten “real” hub genes served as features
in the training dataset, and their corresponding expression pro-
files were obtained, according to which the SVM classification
model was constructed (1000 iterations and 10-fold cross-valida-
tion). The classification accuracy of the GSE156993 dataset was
100%, as 57 out of 57 samples were correctly classified; the sensi-
tivity and specificity of the model were both 100%, with an AUC
of the ROC curve of 1 (Figure 7(a)). Furthermore, all samples in
the GSE156993, GSE161355, and GSE163980 datasets were cor-
rectly classified, showing the model to have a high classification
accuracy, with both the sensitivity and specificity being 100%
and the AUC of the ROC curve being 1 (Figures 7(b)–7(e)).
The three datasets (GSE76895, GSE9006, and GSE78721) were
further verified by our diagnostic model. The results showed that
in theGSE76895 dataset, 62 out of 68 sampleswere correctly clas-
sified, with a classification accuracy of 91.2%. The sensitivity is
88.9% and specificity is 93.8%, and the area under the ROC curve
was 0.914 (Figure 7(e)). In theGSE9006 dataset, 36 of the 36 sam-
ples were correctly classified with a classification accuracy of
100%. The sensitivity and specificity of the model were 100%,
and the area under the ROC curve was 1 (Figure 7(f)). In the
GSE78721 dataset, 128 of the 130 samples were correctly classi-
fied, with a classification accuracy of 98.5%. The sensitivity and
specificity of themodel were 100% and 96.8%, and the area under
the ROC curve was 0.988 (Figure 7(g)).

4. Discussion

The present study identified 499 DEGs between type 2 dia-
betes patients and normal controls from the GSE164416
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Figure 6: Identification of hub genes. (a) Protein-protein interaction network diagram of hub genes identified by the Closeness algorithm.
(b) Protein-protein interaction network diagram of hub genes identified by the Degree algorithm. (c) Protein-protein interaction network
diagram of hub genes identified by the MNC algorithm. (d) Venn diagram of genes obtained by the three algorithms.
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dataset. PPI analysis identified five modules as being clini-
cally significant, and subsequent analysis revealed 10 genes
(IL1B, ITGB2, ITGAX, COL1A1, CSF1, CXCL12, SPP1,
FN1, C3, and MMP2) to be the “real” hub genes. The
SVM-based classification involving the 10-gene signature
achieved a 100% prediction accuracy in distinguishing
patients with type 2 diabetes from normal controls with
100% sensitivity, 100% specificity, and an AUC of 1. The val-
idation results obtained using the other three datasets
(GSE156993, GSE161355, and GSE163980) further support
the validity of our model.

Tyler et al. developed an inference method based on a
general model of molecular, neuronal, and ecological oscilla-
tory systems that merges the advantages of both model-
based and model-free methods, namely, accuracy, broad
applicability, and usability [26]. SVM methods have been
widely used in classification and prediction owing to their
feasibility of extracting higher order statistics. Abbas et al.
discovered a type 2 diabetes prediction model based on the
features derived only from the plasma glucose concentra-
tions measured during an oral glucose tolerance test using
SVM [27]. Cui et al. indicated that the proposed SVM-
based method achieved an accuracy of 81.02%, a sensitivity
of 82.89%, and a specificity of 79.23%, and it outperformed
other popular algorithms in identifying diabetic patients
who may be readmitted [28]. An SVM algorithm was used
to classify osteoporosis in patients with type 2 diabetes by
relying on several serological items and personal informa-
tion with a diagnostic accuracy of 88% [29]. The present
study shows the application of SVM based on a 10-gene sig-

nature to identify patients with type 2 diabetes by distin-
guishing positive type 2 diabetes samples from normal
control samples with a high sensitivity.

Type 2 diabetes is a multifactorial, typical complex dis-
ease, which is associated with lifestyle and other environ-
mental factors [30, 31]. In this research, a set of ten “real”
hub genes, IL1B, ITGB2, ITGAX, COL1A1, CSF1, CXCL12,
SPP1, FN1, C3, and MMP2, was integrated into a model to
predict type 2 diabetes. Studies have shown these genes to
be involved in the development of type 2 diabetes, for exam-
ple, a study showing IL-1β-induced β cell dysfunction [32].
Glawe et al. showed that genetic deficiency of ITGB2
completely prevented the development of hyperglycemia
and frank diabetes in NOD mice [33]. Some experiments
have found that islet inflammation could promote beta cell
dysfunction in type 2 diabetes with increased expression of
ITGAX [34, 35]. COL1A1 was the most significant gene in
the extracellular matrix-receptor interaction pathway and
was linked to hypoglycemic activity for the first time. Thus,
COL1A1 is a novel potential therapeutic target for alleviating
type 2 diabetes. It is reported that CSF1 receptor dephos-
phorylation inhibits alveolar bone resorption in diabetic
periodontitis [36]. Genetic variations of the CXCL12 gene
might affect trafficking of inflammatory cells or defected
precursors and hence induce tendencies toward diabetic
complications. The SDF1-3′A genetic variation of CXCL12
influences the development of late vascular diabetic compli-
cations, and study reported that this genetic variation regu-
lates the expression of CXCL12 [37]. SPP1 encodes
osteopontin which has been shown to cause glomerular
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Figure 7: Construction and validation of diagnostic models. (a) Receiver operating characteristic curves of the classification results of the
diagnostic model on the samples of the GSE164416 dataset. (b) Receiver operating characteristic curves of the classification results of the
diagnostic model on the samples of the GSE161355 dataset. (c) Receiver operating characteristic curves of the classification results of the
diagnostic model on the samples of the GSE156993 dataset. (d) Receiver operating characteristic curves of the classification results of the
diagnostic model on the samples of the GSE163980 dataset. (e) Receiver operating characteristic curves of the classification results of the
diagnostic model on the samples of the GSE76895 dataset. (f) Receiver operating characteristic curves of the classification results of the
diagnostic model on the samples of the GSE9006 dataset. (g) Receiver operating characteristic curves of the classification results of the
diagnostic model on the samples of the GSE78721 dataset.
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damage and interstitial fibrosis in diabetic kidney disease
[38]. A study involving signaling pathway enrichment anal-
ysis reported that ECM-receptor interaction is one of the
main pathways in the diabetic nephropathy extracellular
matrix and that FN1 is involved in the ECM-receptor inter-
action pathway [39]. Human pancreatic islets highly express
C3 and are associated with the donor status of type 2 diabe-
tes. C3 may be upregulated as a cytoprotective factor during
type 2 diabetes to combat β cell dysfunction caused by
impaired autophagy [40]. Type 2 diabetes increases the
activity of matrix metalloproteinases (MMPs) [41]. Clinical
correlation studies suggest that high circulating MMP-2
levels may correlate with the severity of periodontitis in type
2 diabetes [42]. Further research is required to explore the
roles of the 10 “real” hub genes identified in our study in
type 2 diabetes.

In summary, the present study used PPI analysis to iden-
tify 10 hub genes associated with type 2 diabetes. In addition,
the components of the combination of these 10 genes may
serve as potential biomarkers for type 2 diabetes. However,
the lack of a detailed biological investigation and the lack
of validation with a larger sample size were considered as
limitations of this study. Further studies are therefore
needed before clinical application to verify the diagnostic
ability of this 10-gene signature for type 2 diabetes.

5. Conclusion

In this study, we analyzed transcriptional level gene expres-
sion data using SVM to construct a risk prediction model for
type 2 diabetes patients, which may supplement traditional
clinical prognostic factors, enabling clinicians to provide
more effective therapeutic intervention and personalized
treatment for type 2 diabetes patients.
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The analyzed datasets generated during the study are avail-
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