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Objective. Image texture information was extracted from enhanced magnetic resonance imaging (MRI) and pathological
hematoxylin and eosin- (HE-) stained images of female breast cancer patients. We established models individually, and then,
we combine the two kinds of data to establish model. Through this method, we verified whether sufficient information could
be obtained from enhanced MRI and pathological slides to assist in the determination of epidermal growth factor receptor
(EGFR) mutation status in patients. Methods. We obtained enhanced MRI data from patients with breast cancer before
treatment and selected diffusion-weighted imaging (DWI), T1 fast-spin echo (T1 FSE), and T2 fast-spin echo (T2 FSE) as the
data sources for extracting texture information. Imaging physicians manually outlined the 3D regions of interest (ROIs) and
extracted texture features according to the gray level cooccurrence matrix (GLCM) of the images. For the HE staining images
of the patients, we adopted a specific normalization algorithm to simulate the images dyed with only hematoxylin or eosin and
extracted textures. We extracted texture features to predict the expression of EGFR. After evaluating the predictive power of
each model, the models from the two data sources were combined for remodeling. Results. For enhanced MRI data, the
modeling of texture information of T1 FSE had a good predictive effect for EGFR mutation status. For pathological images,
eosin-stained images can achieve a better prediction effect. We selected these two classifiers as the weak classifiers of the final
model and obtained good results (training group: AUC, 0.983; 95% CI, 0.95-1.00; accuracy, 0.962; specificity, 0.936; and
sensitivity, 0.979; test group: AUC, 0.983; 95% CI, 0.94-1.00; accuracy, 0.943; specificity, 1.00; and sensitivity, 0.905).
Conclusion. The EGFR mutation status of patients with breast cancer can be well predicted based on enhanced MRI data and
pathological data. This helps hospitals that do not test the EGFR mutation status of patients with breast cancer. The
technology gives clinicians more information about breast cancer, which helps them make accurate diagnoses and select
suitable treatments.

1. Introduction

Breast cancer is the most common cancer in women in both
developed and developing countries. In 2020, there were
2.26 million new cases of breast cancer worldwide, account-
ing for 11.7% of all cases, and 685,000 deaths, accounting for
6.9% of all cases [1]. Many endogenous and exogenous fac-
tors have been identified as being associated with breast can-
cer etiology. Age is the strongest risk factor for the disease.
More than two-thirds of new cases occur after the age of
55, with a higher risk of 4.0 for women older than 65 com-

pared to those younger than 65. Several other risk factors
have also been identified in relation to breast cancer. Some
risk factors are constant, such as age and mutations in the
BRCA1 and BRCA2 genes, which are estimated to account
for 20% to 40% of inherited breast cancers with harmful
mutations in BRCA1 and BRCA2 [2]. Family and reproduc-
tive history are also important risk factors. Other factors are
dynamic, such as high endogenous estrogen, hormone ther-
apy, obesity, and alcohol consumption [3, 4]. Among all
kinds of diagnostic techniques, imaging techniques are the
main diagnostic method used and can provide valuable data
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for breast cancer patients. It has been shown that various
imaging techniques can be used to diagnose and monitor
patients with different stages of breast cancer [5]. In addi-
tion, there are a number of biochemical biomarkers available
as new diagnostic and therapeutic tools for breast cancer
patients [6]. Among them, epidermal growth factor receptor
(EGFR) can be used as a new biomarker for monitoring the
diagnosis and treatment of breast cancer patients [7].

EGFR is one of the four members of the HER family
receptors, which are composed of EGFR, HER2, HER3,
and HER4. EGFR signaling cascades are key regulators of
cell proliferation, differentiation, division, survival, and can-
cer development. It is expressed in a variety of cancers,
including breast, brain, lung, and prostate cancer. In breast
cancer, EGFR is overexpressed in approximately half of
triple-negative breast cancer (TNBC) and inflammatory
breast cancer (IBC) patients [8]. EGFR is one of the first
important targets identified for novel antitumor agents.
High EGFR expression was identified as an independent
predictor of poor outcome in TNBC [9]. This may be
because the abnormal expression of the EGFR kinase
domain may have an important impact on therapeutic resis-
tance. Recent studies have shown that targeting EGFR
enhances the chemical sensitivity of TNBC cells by recon-
necting apoptotic signaling networks in TNBC. Some drugs
that target EGFR also enhance the effectiveness of other
therapies [10]. A study suggests that anti-EGFR-directed
radioimmunotherapy combined with radiosensitizing che-
motherapy and PARP inhibitor is more effective in treating
triple-negative breast cancer [11]. These studies suggest that
EGFR-targeted therapy may play a positive role in TNBC
and IBC.

Hematoxylin and eosin (HE) staining has stood the test
of time as a standard stain for the histological examination
of human tissues [12]. In most hospitals, this technology is
used as the primary source of pathological diagnosis. This
simple dye combination can highlight the fine structure of
cells and tissues. Most organelles and the extracellular
matrix are eosinophilic, while the nucleus, rough endoplas-
mic reticulum, and ribosomes are basophilic. Much research
has been done on this technology. Many different studies
have improved the technique for different diseases. Different
from traditional manual recognition, with the development
of digital image processing technology, more research has
focused on the digitalization and information extraction of
pathological images. A study showed that the normalization
of HE staining histological images by cycle-consistent gener-
ative adversarial networks could effectively enhance the
training effect of the network [13]. Some experiments have
also shown that HE staining images can be used to deter-
mine the Ki-67 score of breast cancer [14]. In this study, a
normalization method was adopted to separate the staining
effects of the two dyes, which allowed us to focus more on
the medical information reflected by a particular dye [15].

Immunohistochemistry (IHC) is an inexpensive and
effective technique that is easily available to most patholo-
gists. It has been considerably used in several tumors. Immu-
nohistochemical detection of EGFR is a well-established
technique in non-small-cell lung cancer. IHC has good spec-

ificity and fairly good sensitivity to mutation-specific anti-
bodies for common EGFR mutations. Moreover, IHC tests
can accurately predict responses to EGFR-tyrosine kinase
inhibitors (TKIs) [16]. This has been proven in both biopsies
and cell blocks [17]. In breast cancer, this method is also
widely used. Advances in clinical IHC have greatly improved
the ability of clinicians to access information in terms of cost
and efficiency. In oncology, these new techniques are highly
reproducible, providing a useful alternative to and adjunct to
molecular detection. IHC has become a valuable tool in
modern cancer treatment.

Enhanced magnetic resonance imaging (MRI) is a highly
sensitive breast imaging detection method. Compared with
molybdenum target and ultrasound, enhanced MRI has
higher resolution and can observe the tissue perfusion status.
Different functional MRI sequences can be used to measure
spatial differences in cell density, tissue structure, perfusion,
and metabolism. With the improvement of medical treat-
ment, enhanced MRI has become widely used as a routine
examination for patients highly suspected of having breast
cancer. Studies on MRI have shown that the texture features
of MRI images can reflect a series of clinical information,
such as molecular typing, prognosis, and gene mutations of
the tumor itself. MRI-based radiomics analysis has been
used to predict mutations in thoracic spinal metastases
tumors in lung adenocarcinoma patients [18]. In gliomas,
MRI imaging data and radiometric analysis based on these
data were also used to analyze the EGFR mutation status
of tumors [19, 20]. Another study showed that enhanced
MRI data provided a better predictive model for head and
neck squamous cell tumors [21]. The above research indi-
cates that it is feasible to construct a prediction model for
the texture analysis of image data by using enhanced MRI
as the data source. In this experiment, diffusion-weighted
imaging (DWI), T1 fast-spin echo (T1 FSE), and T2 fast-
spin echo (T2 FSE) were selected to explore their prediction
ability for EGFR status. DWI is the only noninvasive method
to detect the diffusion of water molecules in living tissues. T1
and T2 sequences ensure that the image data can cover most
of the tumor information.

Texture analysis can quantify complex medical image
information. With the development of technology, many
computer-aided diagnosis methods represented by texture
analysis, radiomics, and deep learning play an important
role in medical research [22–24]. Specifically, regional het-
erogeneity can be represented by texture features calculated
using a variety of mathematical methods to assess the gray
intensity of pixels, with 2D or higher texture features provid-
ing more complex information for tumor characterization
than simple first-order histogram analysis. Such differences
in features can quantify the heterogeneity of the tumor itself
and can be used to predict the clinical information of the
tumor. The texture analysis of the tumor can classify the
tumor itself [25]. Compared with the widely used neural net-
work in medical image field, texture analysis can directly
reflect the correlation between parameters and labels. But
this also means that this method is not suitable for the clas-
sification of complex parameters [26]. The technique could
also be used to predict certain genetic mutations in tumors
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and patient outcomes [27, 28]. This means that texture anal-
ysis can provide supplementary information and guidance
throughout patient care. Among many texture information
extraction methods, using gray level cooccurrence matrix is
the most common method. This method has been applied
in many tumor images [29]. In this study, we used texture
analysis to model information images from multiple sources
individually or jointly and explored methods that could pre-
dict tumor EGFR mutation status by comparing the models.

2. Materials and Methods

2.1. Study Participants. The radiology database of the Second
Affiliated Hospital of Dalian Medical University was
reviewed. We identified 187 patients who underwent MRI
from March 2018 to June 2021. Fifty-one patients were
excluded owing to incomplete image sequences. Moreover,
22 patients were excluded because of the absence of distinct
EGFR results. Therefore, a total of 114 patients were
included in this study. The inclusion criteria were as follows:
(i) no breast diseases before imaging examination and (ii)
did not receive treatment for breast cancer or may have arti-
ficially changed breast imaging. The patients underwent
MRI examinations before surgery and were diagnosed as
grades 3, 4, or 5 according to the Breast Imaging Reporting
and Data System. Surgery or biopsy was performed within
1 week to confirm the primary breast cancer diagnosis and
EGFR status. We excluded specific breast malignancies, such
as IBC, Paget’s disease, and breast cancer due to metastasis.
Moreover, men and pregnant women were excluded. There
was no specific information about the patients in the study,
so the study did not involve ethical issues.

2.2. Enhanced MRI. We used the American GE 1.5 T Signa
HDxt MRI scanner, and the receiving coil was a special
one for the surface of the breast. In the prone position, the
bilateral breasts naturally hung in the concave hole of the
coil. The scan sequence and parameters were as follows:
DWI, b − value = 800 s/mm, repetition time ðTRÞ = 5,600
ms, echo time ðTEÞ = 74:4ms, matrix = 130 × 128, field of
view ðFOVÞ = 33 cm × 33 cm, and layer thickness = 5mm.
All patients underwent dynamic contrast-enhanced MRI fol-
lowing DWI sequence scanning. Gadolinium diamine was
used as the contrast agent. The injection volume was
0.2mmol/kg, and the flow rate was 2ml/s to 3ml/s. Follow-
ing injection, 20ml of normal saline was used to flush the
tube. We performed continuous nonstop scanning. T1-
weighted image plain scanning was initially performed. Fol-
lowing gadolinium injection, we continuously scanned nine
phases, with 47 s for each phase. A total of 10 phases were
scanned. The scanning time was 7 minutes 6 s, and the turn-
ing angle was 15°. Other scanning parameters were as fol-
lows: TR = 5:1ms, TE = 2:5ms to 12ms, matrix = 320 × 384
, FOV = 30:2 cm × 30:2 cm, and layer thickness = 5mm.
Two radiologists with >10 years of experience in breast
imaging diagnosis independently interpreted the MRI
results. After discussing the images, they reached a diagnos-
tic consensus. All data were transferred to a GE workstation

(Advantage Windows 4.5, General Electric, Madison, WI,
USA) [30].

2.3. HE Staining. Pathological specimens were obtained from
the enrolled patients. No data were excluded owing to miss-
ing values or ambiguity. Each sample was fixed in a 10%
buffered formalin solution. The fixed tissue was dehydrated
and cleared in an automatic tissue processor and stained
with HE. The samples were first dewaxed in xylene and alco-
hol. The samples were then stained. Hematoxylin was dyed
for 5 minutes, and eosin was dyed for 3 minutes. Finally,
the samples were soaked in alcohol and xylene for dehydra-
tion and transparency. The slides are fixed with synthetic
resin.

2.4. IHC. All specimens were fixed with 4% neutral formal-
dehyde, embedded in paraffin, and continuously sectioned
at a thickness of 4μm. Following IHC staining, the speci-
mens were observed and photographed under a microscope.
We used the immunohistochemical SP method to detect the
expression of susceptible genes. Specific steps were per-
formed according to the standard instructions, and profes-
sional pathologists interpreted the films. We determined
the comprehensive staining intensity and the percentage of
positive cells. The final results were divided into the follow-
ing categories: <5% visible staining: -; 5% to 25% visible
staining: +; 26% to 50% visible staining: ++; and >50% visi-
ble staining: +++ (where - was defined negative and +, ++,
and +++ were defined positive).

Table 1: Clinical characteristics of patients with breast cancer.

Characteristics Training group (n = 79) Test group (n = 35)
Age (years) 55.3 55.9

ER

Positive 64 26

Negative 15 9

PR

Positive 53 25

Negative 26 10

HER2

Positive 24 7

Negative 55 28

Stage I 55 28

Stage II 17 5

Stage III 4 2

Stage IV 3 0

Lymphonodus

Positive 25 11

Negative 54 24

EGFR

Positive 48 21

Negative 31 14

ER: estrogen receptor; PR: progesterone receptor; HERK2: human
epidermal growth factor receptor 2; EGFR: epidermal growth factor
receptor.
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2.5. Texture Analysis. Texture analysis in this study was per-
formed on two medical datasets. Therefore, the image
modeling of a single information source not only explores
whether it can reflect the expression of EGFR mutation sta-
tus but also forms a weak classifier for the final modeling.

2.5.1. MRI Texture Analysis. The Pydicom library of Python
was used to read the spatial location of the image. First, we
used nearest neighbor interpolation to process the images
so that they had equal pixel spacing, followed by image reg-
istration according to the spatial location. The region of
interest (ROI) was manually obtained on a high-signal
DWI sequence, and there was no necrosis or cystic compo-
nents under ideal circumstances. In the case of no satisfac-
tory image (usually because of low resolution), the ROIs
were drawn by referencing T1 images. After standardizing
the images, the Laplacian of Gaussian filter was used to pro-
cess images. We used software to extract texture informa-
tion, including Elongation, Flatness, LeastAxisLength,
MajorAxisLength, Maximum2DDiameterColumn, Maxi-
mum2DDiameterRow, Maximum2DDiameterSlice, Maxi-
mum3DDiameter, MeshVolume, MinorAxisLength,
Sphericity, SurfaceArea, SurfaceVolumeRatio, and VoxelVo-
lume. The extraction of these parameters was based on gray
level cooccurrence matrix (GLCM).

2.5.2. Pathology Image Texture Analysis. The scikit-image
library of Python was used to process the pathology images.
An image normalization algorithm was used to separate the
dyeing effects of the two dyes and simulate two dyeing
images. This method detects a color vector that meets a spe-
cific condition and converts it to a fixed value. On this basis,
we extract several features of the image, including contrast,
dissimilarity, homogeneity, energy, correlation, and ASM.
The extraction of these parameters was also based on
GLCM.

2.6. Modeling Method. For enhanced MRI images, we
selected DWI, T1 FSE, and T2 FSE to extract texture features
from the ROI. For pathological images, we extracted texture
features from two simulated staining images. For the texture
features obtained from each image, we selected features with
a strong correlation with EGFR expression and adopted
methods including adaboost, support vector machine

(SVM), random forest, and decision tree for modeling. We
selected the model with the best effect and compared it with
the model from the same data source (MRI/HE). We
selected the model with the best effect (with higher AUC
value) as the weak classifier. In the case of similar classifica-
tion effects, we chose the overfitting model as the weak clas-
sifier. The choice was made based on the advice of a software
architect. Finally, we integrated the weak classifiers of the
two data sources to judge EGFR mutation status.

3. Result

3.1. Clinical Features. The clinical information of the
patients is shown in Table 1.

3.2. Enhanced MRI Texture Analysis

3.2.1. DWI. According to the ROI of the image (Figure 1),
the gray level of the image was measured. According to this,
a grayscale histogram was made (Figure 2).

A pseudocolor map of a 37-year-old patient with EGFR-
positive mutation status (T1N1M0, ER: +, PR: +, HER-2: +,
Ki67: -) is shown. Following imaging diagnosis, the breast
tumor (considered malignancy) was confirmed by postoper-
ative pathology. The images of T1 FSE and T2 FSE
sequences and HE staining images mentioned below are also
from this patient. The red part of the right picture is the
ROI.

In the DWI sequence, we selected some features for
modeling. As shown in Figure 3, these parameters had sig-
nificant distribution differences according to the mutation
status of EGFR in patients.

After comparing the modeling effects of various
methods, we found that the adaboost algorithm had a rela-
tively good classification effect on this problem (test group:
AUC, 0.735; specificity, 0.9286; and sensitivity, 0.5238).

3.2.2. T1 FSE. According to the ROI of the image (Figure 4),
the gray level of the image was measured. According to this,
a grayscale histogram was made (Figure 5).

In the T1 FSE sequence, we selected some features for
modeling. As shown in Figure 6, these parameters had sig-
nificant distribution differences according to the mutation
status of EGFR in patients.

Figure 1: Example of DWI.
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Figure 2: Grayscale histogram of pixels in the ROI of DWI.
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Figure 3: Feature distribution in DWI.

Figure 4: Pseudocolor maps of T1 FSE.
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After comparing the modeling effects of various
methods, we found that the adaboost algorithm had a rela-
tively good classification effect on this problem (test group:
AUC,0.741; specificity, 0.8571; and sensitivity, 0.6667).

3.2.3. T2 FSE. According to the ROI of the image (Figure 7),
the gray level of the image was measured. Based on this, a
grayscale histogram was made (Figure 8).

In the T2 FSE sequence, we selected some features for
modeling. As shown in the figure (Figure 9), these parame-
ters have significant distribution differences according to
the mutation status of EGFR in patients.

After comparing the modeling effects of various
methods, we found that the decision tree algorithm had a
relatively good classification effect on this problem (test
group: AUC,0.726; specificity, 0.6429; and sensitivity,
0.8095).

By comparing the three models based on enhanced MRI,
we conclude that the model based on T1 FSE is more suit-
able for weak classifiers (Figure 10).

3.3. Pathological Image. We used a special normalization
algorithm to normalize the pathological images of patients.
This method can separate the staining effect of two dyes
(Figure 11).
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Figure 5: Grayscale histogram of pixels in the ROI of T1 FSE.
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Figure 6: Feature distribution in T1 FSE.
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3.4. Hematoxylin. In the simulated hematoxylin staining
image, we selected contrast, dissimilarity, homogeneity,
energy, correlation, and ASM as the features. Finally, we
chose the decision tree algorithm for modeling, which had
a relatively good classification effect on this problem (test
group:AUC,0.595; specificity, 0.4286; and sensitivity,
0.7619).

3.5. Eosin. In the simulated eosin staining images, we also
selected contrast, dissimilarity, homogeneity, energy, corre-
lation, and ASM as the features. We finally chose the ran-
dom forest algorithm for modeling, which had a relatively
good classification effect on this problem (test group;
AUC,0.662; specificity, 0.7857; and sensitivity, 0.6667).

By comparing two models based on pathological images,
we conclude that the model based on eosin images is more
suitable for weak classifiers (Figure 12).

Finally, we selected two models from the MRI and path-
ological models (T1 FSE model and eosin model). As seen
from the data distribution of the predicted values of the
weak classifiers, EGFR mutation status can be clearly distin-
guished (Figure 13).

Finally, we adopted SVM to classify the data. In both the
training set and the test set, the model achieved good results
(Figure 14) (training group: AUC, 0.983; 95% CI, 0.95-1.00;

accuracy, 0.962; specificity, 0.936; and sensitivity, 0.979; test
group: AUC, 0.983; 95% CI, 0.94-1.00; accuracy, 0.943; spec-
ificity, 1.00; and sensitivity, 0.905).

4. Discussion

In this study, we developed an algorithm to predict EGFR
expression in patients with untreated breast cancer based
on enhanced MRI and pathologic images. This provides
additional clinical information for physicians who do not
perform EGFR testing. Given the growing importance of
EGFR in the diagnosis and treatment of breast cancer, this
approach is certainly valuable.

The EGFR gene is an oncogene-driven gene [31]. EGFR
has several carcinogenic effects, including the stimulation of
DNA synthesis, cell cycle, cell proliferation, cell metastasis,
and invasion. Moreover, EGFR mutation was discovered to
be the first molecular change in lung cancer. TKIs that target
sensitizing mutations in the EGFR gene are a key pillar of
the treatment of non-small-cell lung cancer [32]. To date,
acquired resistance to EGFR-TKIs has been an inevitable
process, usually occurring 9-12 months after treatment
[33]. In breast cancer, there are also some studies describing
the importance of EGFR mutation status in the diagnosis
and treatment of breast cancer. Current evidence suggests

Figure 7: Pseudocolor maps of T2 FSE.
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Figure 8: Grayscale histogram of pixels in the ROI of T2 FSE.
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an association between low baseline serum EGFR and
shorter survival or reduced treatment responses in patients
with advanced breast cancer. EGFR is usually overexpressed
in metastatic breast cancer, but metastatic breast cancer is
usually resistant to EGFR therapy. Anti-EGFR therapies
such as cetuximab and erlotinib have had limited efficacy
in clinical trials [34]. Therefore, more studies are needed to
understand the underlying mechanistic link between EGFR
expression and metastasis progression.

Recent studies on the texture analysis of EGFR mutation
status mainly focused on lung cancer [35]. This is because
EGFR-related targeted drugs have played an important role
in the diagnosis and treatment of lung cancer [36]. Due to
the particularity of lung tumor diagnosis, CT is often the
most important imaging method for patients [37]. Therefore,
the main image data sources for the texture analysis of EGFR
expression are CT or PET/CT [38]. In the field of breast can-
cer, only a few studies have chosen to use MRI for analysis.
Therefore, there is quite a gap in this area. However, in the
above studies, due to the difficulty in obtaining medical
records, it is rare to comprehensively consider pathological
images and imaging data. In addition, many assays have been
proposed to detect EGFR. A noninvasive test proved to have
great potential [39]. In our experiment, we used medical
information images from two different sources to predict
EGFR expression. This multidimensional modeling method
undoubtedly greatly improves the accuracy of the prediction
results.

In this study, we adopted a specific method of patholog-
ical image normalization. This method helps us to exclude
the influence of different dyeing conditions on the image
coloring. At the same time, this normalization method sepa-
rates the dyeing effect of the two dyes. The two dyes have

different affinity for different tissues. This method gives us
the ability to analyze the texture characteristics of specific
tissues. Prior to this, we had conducted an imaging study
on breast cancer [30]. The enhanced MRI data in both stud-
ies came from the same machine and included roughly the
same patients. We can obviously see that in the aspect of
imaging data analysis, compared with the simple texture
analysis, the method of tumor image segmentation undoubt-
edly has higher accuracy.

However, this experiment still has considerable limita-
tions. First, in the process of making pathological sections,
tumor tissues will shrink to different degrees after chemical
process. This means that the spatial structure of the tumor
has changed. Therefore, it is extremely difficult to complete
the spatial correspondence between tumor images and image
data. It is a very difficult task to try to analyze the tumor
pathological sections and corresponding image layers
together. This makes it impossible to compare our models
across image sources. This difficulty forced us to separate
models from different sources of clinical information, which
undoubtedly reduced the efficiency of model screening. If
images from different sources can correspond spatially, it
means that we can give a higher information dimension to
the space represented by each voxel. So, on the one hand,
we can reduce the number of models. On the other hand,
we were able to explore the effect of intratumor heterogene-
ity on EGFR status. We can even explore MRI’s ability to
distinguish tissue distribution by using artificial methods to
distinguish tumor subareas and boundaries reflected in
pathological images. On this basis, it is very potential to
explore a high-precision tumor subregion segmentation
method [40]. Second, it is well known that tumors are het-
erogeneous diseases, and the composition of each subregion
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Figure 9: Feature distribution in T2 FSE.
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Figure 10: ROC curves of the three classification models ((a) DWI, (b)T1 FSE, and (c) T2 FSE).
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can well reflect the characteristics of tumors. This imaging
method of analyzing the characteristics and relationships
between tumor subareas is medically known as habitat imag-
ing. However, due to the chemical process of pathological
sections, the proportions of mesenchymal and parenchymal
cells in each subregion are significantly different, and the
contraction of each subregion is undoubtedly different after
such treatment. This means that the spatial structure of the
original subregion of the tumor has been artificially altered
[41]. This change has a significant impact on habitat imag-
ing that emphasizes relationships between subregions. At
the same time, this method of research requires the acquisi-
tion of overall tumor image data. For pathological sections, it
is undoubtedly very difficult to obtain such a large number
of complete sections, including tumor edge conditions.
Therefore, in this experiment, we only selected representa-
tive tumor sections as information sources for texture anal-
ysis. This choice also brings problems. Compared with the
image data generated by artificial ROI, the overfitting of
the model constructed by pathological images is greater.
This means that the biopsy does not cover all the informa-
tion about the tumor. With the development of computer-
aided diagnosis (CAD) and image scanning technology,
whole-slide image (WSI) scanners are widely used in the
field of pathological diagnosis. Therefore, WSI analysis has
become the key to modern digital histopathology. In this
study, we used pathological images artificially generated by
pathologists to ensure that the selected areas were domi-
nated by tumor components. Due to objective conditions,

this study did not use WSI as the information source for
pathological images [42]. Modeling based on pathological
staining images is significantly worse than modeling based
on enhanced MRI data. The source of such pathological
images may not adequately reflect the tumor itself. The total
number of patients included in this experiment was limited
due to the hospital scale and total number of patients. How-
ever, the final modeling results showed a better performance.
Nevertheless, the strong overfitting characteristic of a weak
classifier is undoubtedly the embodiment of insufficient data
[43]. In addition, the feature extraction method adopted in
this paper is relatively simple [44].

The imaging features used in this study are from GLCM
formed by a single image processing method [45]. In fact,
the features extracted by the texture analysis technique can
be combined with a variety of filters to extract the texture
information of a variety of matrices [46]. However, in our
study, we found that the effect of a single model can be
improved to some extent by simply adding the dimensions
of texture parameters. Nevertheless, when we selected such
a model as a weak classifier, the effect of the final model
did not have more advantages, and its data distribution did
not show more obvious differences. This finding is in accor-
dance with the software architect’s suggestion that the over-
fitted weak classifier will not have a significant effect on the
final model.

The method adopted in this study is to model the texture
features extracted from images. This usually entails convert-
ing the original image to a grayscale image for further

(a) (b)

(c)

Figure 11: Simulated staining images ((a) hematoxylin, (b) eosin, and (c) HE).
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manipulation. However, some experiments show that RGB
feature extraction technology has achieved good results in
a variety of malignant tumors, including breast cancer and
prostate cancer [47]. In recent years, artificial intelligence
(AI) technology has developed rapidly. In particular, impor-
tant achievements have been made in computer vision,
image processing, and analysis. In pathology, there are many
studies showing the use of multiple neural networks to clas-
sify and segment tumors [48, 49]. A study showed that con-
volutional neural networks have also made a breakthrough
in the recognition of EGFR [50]. In fact, in the field of med-
icine, convolutional neural network has become a hot topic.
From tumor image recognition to gene expression classifica-

tion, convolutional neural network has made great contribu-
tions to medical research [51, 52]. In a preexperiment in this
paper, we discussed the predictive power of using deep
learning for EGFR mutation status. There is no doubt that
deep learning can make more effective use of information
in images. At present, the data sources of relevant studies
mainly focus on using pathological images or radiological
images alone. One feasible idea is to use Markov random
field or conditional random field model to classify medical
images directly [53]. Both methods have their own advan-
tages in information processing [54, 55]. This method has
made progress not only in the identification of EGFR status
or breast cancer but also in gastrointestinal tumors, gliomas,
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Figure 12: ROC curves of the two classification models ((a) hematoxylin and (b) eosin).
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reproductive system tumors, respiratory system tumors, etc.
[56–58]. In both qualitative and quantitative medical prob-
lems, this approach has undisputed obvious advantages
[59, 60]. Another idea is to use the image segmentation
method to subsegment the tumor. These methods include
k-means, U-Net, and other unsupervised or supervised algo-
rithms [61, 62]. The final prediction model is established by
describing the formed subregion. This method has made
good progress in the field of imaging. All in all, we will try
to develop a new comprehensive classification method in
the future work. This method can make full use of WSI
images and combine with imaging data to classify breast

cancer. Neural networks will undoubtedly replace our cur-
rent texture extraction methods.

5. Conclusions

In summary, a model was established based on features
extracted from MRI and pathology images. The model can
satisfactorily predict EGFR detected by immunohistochem-
istry. This study provides a reference for screening the
high-risk population for surgery, drug therapy, and
prognosis.
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Figure 13: Scatter diagram of data distribution.
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