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The heart is one of the most important organs of the human body. The role of the heart is to promote blood flow and
provide sufficient blood flow to organs and tissues. The research on the heart has important theoretical and clinical
significance. Because of the noninvasive and intuitive display of ultrasound image, it can dynamically obtain the heart state
and has become the main means to detect the heart dynamics. We analyze the characteristics of cardiac ultrasound image
from the medical point of view and signal processing. The heart movement is periodic and rhythmic. The image signal can be
decomposed. Firstly, the image is decomposed into high- and low-frequency signals to highlight different dimensional
information. Then, the attention model was introduced, focusing on the heart region. Finally, the multidimensional network
carrying model was established to achieve cardiac segmentation. The experimental results show that the AOM of the algorithm
proposed in this paper reaches 92%, which has a certain degree of advancement and can assist doctors to make accurate diagnosis.

1. Introduction

The heart is an important organ of the human body. Its
main function is to provide pressure for blood flow and
run the blood to all parts of the body. Its efficiency is related
to the shape and size of the heart [1]. Therefore, it is very
important to extract the region of the heart and carry out
research. Tang et al. [2] proposed a clustering algorithm
for heart sound segmentation. Icardo [3] established a model
from morphology to analyze the heart. Ahn et al. [4] focused
on the region of coronary artery through CT and carried out
research. Mythili et al. [5] used SVM to predict heart disease.
Pedrosa et al. [6] built a model to analyze the voice of young
children. Methaila et al. [7] used the big data technology to
analyze early heart disease. Pace et al. [8] implemented the
whole heart segmentation interactively. Saquib et al. [9]
diagnosed heart disease by calculating the volume ratio.
Xiong et al. [10] combined CT images with clinical data
for analysis. Wolterink et al. [11] used dilated convolutional
neural networks to segment MR images. Arabasadi et al. [12]

used a hybrid neural network genetic algorithm to predict
heart disease. Tong et al. [13] constructed 3D deep super-
vised U-Net to segment all hearts. Ahmed et al. [14] built a
deep network to segment the heart. Gao and Lu [15] focused
on fetal baseline to realize classification and extraction. Xu
et al. [16] combined a deep learning network and graph
matching to realize whole heart segmentation. de Albuquer-
que et al. [17] proposed fast heart fat segmentation based on
CT data set. Naseer et al. [18] constructed fuzzy sets to diag-
nose heart diseases. Yoshida et al. [19] used U-Net to auto-
matically segment the heart based on CT data. Banerjee
et al. [20] reconstructed the heart in 3D from 2D data. Diniz
et al. [21] built Concat-U-Net to realize automatic heart
extraction. Diniz et al. [22] built U-Net++ to realize heart
segmentation. Liu et al. [23] proposed automatic segmenta-
tion algorithm using attentional convolutional network.
Chen et al. [24] constructed 3D filter to suppress ultrasonic
image noise. Song et al. [25] proposed deep networks for
heart segmentation and explained the significance and chal-
lenges of heart segmentation.
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Through the above introduction, the current analysis of
the heart is focused on mature images with high imaging
quality such as CT [26] and MR [27]. However, CT and
MR mostly present static images, which cannot meet the
situation of dynamic analysis. Therefore, medical staff often
use dynamic echocardiography in analyzing [28] and has
achieved good results. Echocardiography is the most widely
used cardiac examination method in clinic, which can
dynamically evaluate the structure and function of the heart.
The ventricular wall motion of the heart is an important
driving force to maintain the function of the heart pump.
It is very important for doctors to identify whether the
ventricular wall motion is normal based on ultrasonic
images. The current ventricular wall motion evaluation is
mainly by eye or manual trace for motion amplitude, which
is very dependent on the operator’s experience and time-
consuming. If the segmental recognition method of ventric-
ular wall can be established to quickly identify the abnormal
motion of myocardium, it would be very helpful for the
diagnosis of heart disease.

However, due to the large noise interference of ultra-
sonic image and the lower imaging quality than CT and
MR, it is difficult to put forward computer-aided segmenta-
tion. In general, main problems are as follows: (1) low image
quality leads to limited access to information. (2) The heart
only occupies a limited area in the image, which is inefficient
to process the image pixels in a unified scale. (3) The con-
structed cardiac ultrasound image feature network has lim-
ited carrying capacity and insufficient representation.

In view of the above shortcomings, we propose a new
segmentation algorithm based on dynamic echocardiogra-
phy: (1) Octconv is proposed from the perspective of signal
composition, and the signal is decomposed into high- and
low-frequency parts to extract different frequency informa-
tion; (2) to simulate the doctor’s diagnosis process and build
an attention mechanism to focus on the region of the heart;
and (3) from the perspective of deep learning, a multidimen-
sional information carrying network is constructed to fuse
low-frequency and high-frequency signals to achieve heart
segmentation.

2. Algorithm

The research of echocardiography algorithm is based on the
current situation of low echocardiography quality and the
actual situation of echocardiography clinical diagnosis. A
dynamic echocardiography segmentation algorithm based
on deep learning is constructed, and the specific block dia-
gram is shown in Figure 1. Firstly, Octconv is proposed to
decompose the image into low-frequency and high-
frequency signals by simulating the principle of visual per-
ception. Then, an attention mechanism is built to focus on
the region where the heart is located. Finally, a multidimen-
sional information carrying network is built to realize heart
segmentation.

2.1. Image Preprocessing. Evaluating the motion of ventric-
ular wall is an important content of echocardiography.
The left ventricle is the main chamber responsible for

pumping blood. Usually, the left ventricular wall is divided
into 16 or 17 segments (including the apex) according
American Society of Echocardiography (ASE) guidelines.
Each segment was dominated by its corresponding coro-
nary artery branches for blood supply. Segmental wall
motion abnormalities can occur in coronary heart disease
or other myocardial diseases (diabetes, hypertension, amy-
loidosis, etc.); thus, each LV segment is needed to be eval-
uated. This cardiac segmentation can help doctors quickly
identify the region of ventricular wall with abnormal
motion, so as to accurately locate the location of impaired
myocardium.

We used video sequences to do our research. Therefore,
the detection region is extracted from the pixel variation of
the whole video sequence, and the sector region can be pre-
liminarily determined. To this end, we build the maximum
density projection mechanism to obtain the information of
the sequence image and focus on the image region, as shown
in Figure 2.

The projection of maximum density is the maximum
value of the coordinates at (x, y) and can be used to calculate
the area of concern.

M x, yð Þ =max I1 x, yð Þ,:⋯ In x, yð Þð Þ: ð1Þ

After the maximum density projection of the image, the
threshold method was used to determine detection area, and
then, the ultrasonic image region was obtained according to
mathematical morphology operation.

2.2. Octconv. Information can be transmitted at different fre-
quencies, and the characteristic diagram output by the con-
volution layer can also be regarded as the combination of
information at different frequencies. Therefore, scholars
have proposed Octconv to store and process feature graphs
with low spatial resolution and slow spatial change. Octconv
has orthogonality and complementarity and can establish a
better topology to reduce the spatial redundancy caused by
low-frequency information in deep convolution network.
The specific structure is shown in Figure 3. αin is the propor-
tion of input low-frequency channel in the total channels.
The corresponding input size is cin ×w × h, and the output
size is cout ×w × h. W is the convolution kernel, and the
corresponding parameter is cin × cout × k × k, stride = 1,
and padding = same. The most available calculation amount
is ðcin × k × kÞ × ðcout ×w × hÞ. Compared with ordinary con-
volution, Octconv contains a certain proportion of low-
frequency channels, and the complexity is improved. But
the performance is better than ordinary convolution.

Octconv uses the coefficient α to append the feature
graph into high-resolution component (XH) and low-
resolution component (XL). XH saves the edge, contour,
and other details of the images with a large amount of infor-
mation data. XL saves the abstract information of the images
with a small amount of information data. The multifre-
quency feature representation method is constructed, and
the smooth low-frequency mapping is stored in the low-
frequency tensor to reduce spatial redundancy. The specified
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convolution kernel w is used to convolute x to obtain the
corresponding component:

YH⟶H = Conv XH ,WH⟶H� �
,

YH⟶L = Conv Avgpool XH , 2
� �

,WH⟶L� �
,

YL⟶H = upsample Conv XL,WL⟶H� �
, 2

� �
,

YL⟶L = Conv XL,WL⟶L� �
:

ð2Þ

High-frequency output is YH = YH⟶H + YL⟶H , and
low-frequency output is YL = YH⟶L + YL⟶L. The amount
of Octconv convolution calculation is only 1/4 of that of
ordinary conv.

2.3. CBAM Attention Module. Due to the increase of the
length of neural network, the long-distance information will
be weakened, resulting in the loss of important information
after information transmission. To reduce the risk of losing
important information, we focus our limited attention on
important information to build attention modules. Due to
the convolutional block attention module (CBAM) combin-
ing channel and space, the channel attention module and

spatial attention module are connected in series. According
to the importance of features, they focus on the area of inter-
est step by step and extract key information through corre-
sponding spatial transformation. The structure is shown in
Figure 4.

(1) Channel attention module. Input feature F ðH ×
W × CÞ and two channel features (1 × 1 × C) are
obtained through Maxpool and Avgpool to connect
MLP (multilayer perceptron). The corresponding
number of neurons in the first layer is C/r, and the
number of neurons in the second layer is c. The
weight coefficient of the activation function is
obtained as follows:

Mc Fð Þ = Sigmoid MLP AvgPool Fð Þð Þ +MLP MaxPool Fð Þð Þð Þ
ð3Þ

The corresponding new feature is

F ′ =MC Fð ÞF: ð4Þ

(2) Spatial attention module. Maxpool and Avgpool are
performed on F ′ to get the channel description,
and the dimension is H ×W × 1. Splice the two
descriptions according to the channel, and pass
through 7 × 7 convolution, and the weight function
is

Ms F ′
� �

= Sigmoid f AvgPool F ′
� �

, MaxPool F ′
� �� �n o

ð5Þ
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The corresponding new feature is

F″ =Ms F ′
� �

F ′, ð6Þ

where Mc and Ms form a complementary relationship.
The use of Maxpool and Avgpool increases more diversified
information, resulting in less computation and stable perfor-
mance improvement of CBAM.

2.4. Network Model. The main advantage of U-Net++ is that
it connects each branch U-Net to share a coding layer and
allows the middle part of the model to participate in train-
ing, so that the information loss in the encoder process can
be repaired to some extent. The performance is improved
on the basis of limited increase of parameters. Since each
branch U-Net shares an encoder path, the same information
is lost in the downsampling process. U-Net++ obtains U-Net
features with different depths in the decoder process, but this
feature difference is obtained after each branch U-Net per-
forms its own upsampling, so the information supplement
of U-Net++ in the feature recovery process is limited and
has lack of pertinence.

Through the above analysis, there are five layers in
total based on the U-Net++ framework. Octconv is used
to replace the traditional Conv2D. The whole framework
is divided into two U-Net++ structure branches of high-
frequency and low-frequency synchronous parallel. Oct-
conv is used in each layer of coding-decoding to exchange
low-frequency and high-frequency information. It reduces
the model parameters, reduces the information loss intro-
duced by each coding layer in downsampling, and makes
the whole network obtain more abundant information. In
the decoding stage, bilinear interpolation sampling is used
to realize image restoration. After each sampling, it is
spliced with the features of the same layer and the same
scale and then connected with CBAM to strengthen the
attention of convolution operation in the model to the tar-
get area and realize more accurate pixel category classifica-
tion. The problem of offset of restoration features is
avoided as much as possible in order to make the network
more robust.

Init-Octconv and input high frequency obtain character-
istics through downsampling, and then, Octconv is per-
formed to obtain high-frequency and low-frequency output.
COM-Octconv is input by high-frequency and low-
frequency characteristics, and Octconv is directly carried
out through hyperparameter α to control the proportion of

high- and low-frequency channels of output. Fin-Octconv
is input by high-frequency and low-frequency characteristics.
After convolution, the low-frequency upsampling is added to
the high frequency to output the high frequency.

We introduce the objective function. Tversky coefficient
is the generalized coefficient of Dice coefficient and Jaccard
coefficient:

TI X, Yð Þ = X ∩ Y
X ∪ Y + β X − Yj j + α X + Yj j , ð7Þ

where X represents the true value and Y represents the
predicted value. In medical image segmentation, Dice Loss
(α = β = 0:5) is often used in small lesion segmentation as
the objective function. It has good performance in the case
of extremely unbalanced samples, but in general, its use will
have an adverse impact on back propagation and make the
training unstable. As a result, the effect of Dice Loss is not
ideal and the fluctuation range is large.

Therefore, we construct a new objective function to
reduce the weight of simple samples and increase the weight
of difficult samples. γ coefficient is introduced to learn diffi-
cult samples with small sample regions of interest:

FTL =〠
c

1 − TIcð Þγ, γ ∈ 1, 3½ �: ð8Þ

3. Experiment and Result Analysis

The experiment is conducted with 50 groups of image
sequences collected by the hospital, and the data resolution
is 600 × 800, and the equipment is Philips Epiq 7c. As shown
in Figure 5, the red box is the continuous image sequence.
The area where the heart is located is marked at the pixel
level by a professional doctor. We adopt double-blind
method, which is a common algorithm in annotation field.
The gold standard was determined by combining the label-
ing results of two physicians. The programming environ-
ment is Linux and Python. We adopted the deep learning
network. So the input of the deep learning network we
designed is 600 × 800. For other resolutions, normalize to
600 × 800. We built 1 : 1 ratio of training samples to test
samples. The cross-validation method is adopted.

3.1. Octconv Performance. Based on the principle of signal
processing, we decompose signals into low-frequency and
high-frequency components to construct Octconv. To verify
Octconv performance, we build a unified network model

Input
feature

MaxPool

AvgPool
Channel

Attention

Attention + Mc

Sigmoid

×

MaxPool AvgPool Sigmoid
Ms

×

F

Figure 4: CBAM structure.
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and compare the convergence curves of Octconv and ordi-
nary convolution to obtain the performance. AOM is intro-
duced to measure the convergence effect.

AOM=
A ∩ B
A ∪ B

: ð9Þ

As shown in Figure 6, Octconv has better iteration
times than traditional convolution when the curve con-
verges. Due to the orthogonality and complementarity of
Octconv, signals are decomposed into low-frequency and
high-frequency components, which is in line with the princi-
ple of visual sensing and has low redundancy. However, the
traditional convolution only considers the relationship
between parts, resulting in a large amount of redundancy in
the parameters and slow convergence speed.

3.2. Segmentation Effect Comparison. The loss function,
crossentropy loss function, Dice Loss, and Tversky Loss are
proposed as the objective function for experiments. We
introduce AVM, AUM, and CM to measure the accuracy
of the algorithm:

AVM= A − B
A

,

AUM =
B − A
B

,

CM =
1
3

AOM + 1 −AVMð Þ + 1 −AUMð Þf g,

8>>>>>><
>>>>>>:

ð10Þ

whereAis the segmentation result marked by the doctor
andBis the segmentation result of the algorithm, in which
AOM and CM are proportional to the segmentation result
and AVM and AUM are inversely proportional to the seg-
mentation result. The performance is shown in Table 1.
Crossentropy loss is used in multitarget segmentation and
analyzed from the perspective of energy, but the signal-to-
noise ratio of ultrasonic image is low and the energy is not

concentrated, resulting in poor performance. Dice Loss is
often used in medical small target segmentation loss func-
tion, but the image area occupied by heart data is large,
which has the risk of overfitting, resulting in inaccurate
boundary focusing. Tversky comprehensively considers the
differences between simple samples and complex samples
and constructs weights, which has better improved the case
of fuzzy boundary and reduced the probability of pixel
misclassification.

In order to verify the performance of different network
algorithms, Sen and Spe are introduced to measure:

Sen = TP
TP + FN

,

Spe =
TP

TP + FP
,

8>><
>>:

ð11Þ

where TP represents the number of pixels correctly
predicted as positive samples and TN represents the num-
ber of pixels correctly predicted as negative samples. FP
represents the number of pixels incorrectly predicted as
positive samples, and FN represents the number of pixels
incorrectly predicted as negative samples. The results are
shown in Table 2, and the corresponding ROC curve is
shown in Figure 7.

To visually display the segmentation effect, as shown in
Figure 8, the pretreatment results are shown in green, and
the obtained sector area is the detection area.

The heart is periodic diastolic and contractile, which can
be determined according to the correlation of motion. It is on
this basis that the significance region is determined to achieve
auxiliary segmentation. Traditional U-Net can inevitably lose
details after downsampling. Encoder-decoder structure can
reduce the loss, but after the image restoration by upper sam-
pling, it is difficult to pay attention to the details and deter-
mine the contour limits of the target category under the
influence of multinoise. The proposed attention model pays
more attention to the target region, highlights the difference

Figure 5: Data display.
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between foreground and background, and realizes accurate
segmentation.

In this paper, the deep learning network is adopted, and
the results are related to the input image. Therefore, if the
acquisition equipment is changed, the image quality will be
different and the algorithm should be retrained, but the
overall framework remains unchanged, so the algorithm
should have certain effects.

4. Conclusion

The heart is the human body’s important organ and has
very important sense to the dynamic monitoring. Based
on dynamic echocardiographic noninvasive, can display
the superiority, is currently the main observation way of
the heart. However, it is limited by the mechanism of ultra-
sonic imaging; imaging noise is large and easy to produce
motion blur. We propose a new heart segmentation algo-
rithm, which decomposes the image into low-frequency
and high-frequency signals according to the principle of
signal decomposition to obtain different frequency informa-
tion. According to the principle of cardiac dynamic con-
traction, the attention model was introduced to simulate
the diagnosis process of doctors and focus on the region
of the heart. The network model will be built to realize
multiscale information carrying and finally realize heart
segmentation. Subsequent studies on myocardial extraction
and analysis will be carried out to study the lightweight net-
work, improve the calculation efficiency of the algorithm,
and quickly assist doctors to make accurate diagnosis.
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Table 1: Algorithm performance.

Algorithm AOM AVM AUM CM

Cross entropy 0.72 0.31 0.35 0.69

Dice 0.78 0.27 0.33 0.73

Tversky 0.92 0.18 0.21 0.84

Table 2: Algorithm performance.

Algorithm Sen (%) Spe (%)

U-Net 82 79

U-Net++ 87 82

Ours 94 85
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Figure 8: Segmentation effect.
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